

DEPARTMENT OF MECHANICAL ENGINEERING

Vision of the Program

To provide knowledge centered education and prepare students for meeting global mechanical engineering challenges thereby enabling them to contribute for the prosperity of the society.

Mission of the Program

- To impart quality education in the field of mechanical engineering through teaching and learning process.
- > To promote students awareness about the importance of professional ethical practices.
- > To enrich the knowledge in mechanical engineering through research and innovation.
- > To inculcate the spirit of entrepreneurship among students.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Graduates of Mechanical engineering program will have a successful career in Mechanical Engineering and allied industries.

PEO2: Graduates of Mechanical engineering program will have expertise in the areas of Design, Thermal, Materials and Manufacturing.

PEO3: Graduates of Mechanical engineering program will contribute towards technological development through academic research and industrial practices.

PEO4: Graduates of Mechanical engineering program will practice their profession with good communication, leadership, ethics and social responsibility.

PEO5: Graduates of Mechanical engineering program will adapt to evolving technologies through life-long learning.

PROGRAMME OUTCOMES (POs)

PO GRADUATE ATTRIBUTES

- 1. **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solution for complex engineering problems and design systems components or process that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environmental and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-Long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO 1: Ability to implement new ideas in various fields such as thermal, industrial and product design & development while ensuring best manufacturing practices.

PSO 2: Ability to lead professional career in industries or an entrepreneur by applying engineering and management principles and practices.

Programme Educational Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
PEO1	~	~	~	~	~	~	~	~	~	~	~	~	~	~
PEO2	~	~	~	~	~	~	~	~	-	-	-	~	~	-
PEO3	~	~	~	~	~	~	~	-	-	-	-	~	~	~
PEO4	-	-	~	-	-	~	~	~	~	~	~	~	-	~
PEO5	~	~	~	~	~	~	~	~	~	~	~	~	~	~

PEO / PO MAPPING:

		SEMEST	ER III					
S No	Course	Subject Neme	Cotogory	Perio	ds per v	week	Contact	Crodite
3. INU.	Code	Subject Mame	Category	L	Т	Р	Periods	Creans
		THEO	RY					
1	MA4352	Transforms and Complex functions	BSC	3	1	0	4	4
2	ME4301	Fluid Mechanics and Machinery	ESC	3	0	0	3	3
3	ME4302	Engineering Thermodynamics	PCC	3	1	0	4	4
4	ME4303	Manufacturing Processes	PCC	3	0	0	3	3
5	ME4304	Engineering Materials and Metallurgy	PCC	3	0	0	3	3
		PRACTI	CALS					
6	ME4306	Computer Aided Machine Drawing Laboratory	ESC	0	0	4	4	2
7	ME4307	Manufacturing Processes Laboratory	PCC	0	0	4	4	2
8	HS4310	Professional Skills	HSMC	0	0	2	2	1
			Total	15	2	10	27	22

	1	SEMES	<u>FER IV</u>				1	
S No	Course	Subject Name	Category	Perio	ds per	week	Contact	Credits
5. 140.	Code	Subject Name	Category	L	Т	Р	Periods	Creuits
		THE	ORY					
1	MA4401	Probability and Statistics	BSC	3	1	0	4	4
2	ME4401	Strength of Materials	ESC	3	0	0	3	3
3	ME4402	Thermal Engineering	PCC	3	0	0	3	3
4	ME4403	Hydraulics and Pneumatics	PCC	3	0	0	3	3
5	ME4404	Metal Cutting and Machine Tools	PCC	3	0	0	3	3
6	ME4405	Metrology and Measurements	PCC	3	0	0	3	3
		PRACT	ICALS					
7	ME4406	Strength of Materials and Fluid Machinery Laboratory	ESC	0	0	4	4	2
8	ME4407	Internal Combustion Engineering Laboratory	PCC	0	0	4	4	2
9	ME4408	Machine Tools Laboratory	PCC	0	0	4	4	2
			Total	18	1	12	31	25

		SEME	STER V	r			r	r
S.	Course	Subject Name	Category	Perio	ds per v	week	Contact	Credits
No.	Code	Subject Name	Category	L	Т	Р	Periods	creates
		THE	CORY					
1	ME4501	Design of Machine Elements	PCC	3	1	0	4	4
2	ME4502	Theory of Machines	PCC	3	0	0	3	3
3		Professional Elective Course – I	PEC	3	0	0	3	3
4		Professional Elective Course – II	PEC	3	0	0	3	3
5		Professional Elective Course – III	PEC	3	0	0	3	3
6		Mandatory Course - I	MC	3	0	0	3	0
		PRACT	FICALS					
7	ME4507	Metrology and Dynamics Laboratory	PCC	0	0	4	4	2
8	ME4508	CAD/CAM Laboratory	PCC	0	0	4	4	2
9	ME4509	Summer Internship*	EEC	0	0	0	0	1
			Total	18	1	8	27	21

*Summer Internship carries one credit and it will be done during IV semester summer vacation and same will be evaluated in V semester.

		SEMEST	'ER VI					
S.	Course	Subject Name	Catagory	Perio	ls per	week	Contact	Credits
No.	Code	Subject Name	Category	L	Т	Р	Periods	Creatis
		THEO	RY	1				
1	ME4601	Heat and Mass Transfer	PCC	3	1	0	4	4
2	CS4655	C Programming and Basics of Data Structures	ESC	3	0	0	3	3
3		Professional Elective Course – IV	PEC	3	0	0	3	3
4		Professional Elective Course – V	PEC	3	0	0	3	3
5		Professional Elective Course – VI	PEC	3	0	0	3	3
6		Mandatory Course - II	MC	3	0	0	3	0
		PRACTI	CALS					
7	CS4657	C Programming and Data Structures Laboratory	ESC	0	0	4	4	2
8	ME4608	Heat Transfer, Refrigeration and Air- Conditioning Laboratory	PCC	0	0	4	4	2
9	ME4609	Design and Fabrication Project	EEC	0	0	4	4	2
			Total	18	1	12	31	22

		SEMES	FER VII					
S.	Course	Subject Nome	Cotogowy	Perio	ds per	week	Contact	Credita
No.	Code	Subject Name	Category	L	Т	Р	Periods	Creans
		THE	ORY					
1	ME4701	Mechatronics	PCC	3	0	0	3	3
2	ME4702	Computer Integrated Manufacturing	PCC	3	0	0	3	3
3	GE4791	Human Values and Ethics	HSMC	3	0	0	3	3
4		Professional Elective Course – VII	PEC	3	0	0	3	3
5		Open Elective Course – I	OEC	3	0	0	3	3
		PRACT	TICALS					
6	ME4707	Simulation and Analysis Laboratory	PCC	0	0	4	4	2
7	ME4708	Mechatronics Laboratory	PCC	0	0	4	4	2
			Total	15	0	8	23	19

		SEMES	FER VIII					
S.	Course	Subject Neme	Cotogory	Perio	ds per	week	Contact	Credits
No.	Code	Subject Name	Category	L	Т	Р	Periods	
		THE	ORY					
1	GE4792	Industrial Management	HSMC	3	0	0	3	3
2		Open Elective Course – II	OEC	0	0	0	3	3
		PRACT	FICALS					
3	ME4807	Project Work	EEC	0	0	20	20	10
			Total	3	0	20	26	16

TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE = 175

HUM	IANITIES A	AND SOCIAL SCIENCES INCLUDI	NG MANAG	EMEN	Г COU	RSES (HSMC)	
S.	Course	Subject Nome	Catagowy	Perio	ds per	week	Contact Periods	Credits
No.	Code	Subject Name	Category	L	Т	Р		
1	HS4101	Communicative English	HSMC	3	0	0	3	3
2	HS4201	Professional English	HSMC	3	0	0	3	3
3	HS4310	Professional Skills	HSMC	0	0	2	2	1
4	GE4791	Human Values and Ethics	HSMC	3	0	0	3	3
5	GE4204	Environmental Science and Engineering	HSMC	3	0	0	3	3
6	GE4792	Industrial Management	HSMC	3	0	0	3	3
7	MB4741	Total Quality Management	HSMC	3	0	0	3	3
8	GE4151	தமிழர் மரபு / Heritage of Tamils	HSMC	1	0	0	1	1
9	GE4251	தமிழரும் தொழில் நுட்பமும்/ Tamils and Technology	HSMC	1	0	0	1	1

	BASIC SCIENCE COURSES (BSC)											
S.	Course	Subject Name	Catagory	Perio	ds per v	week	Contact	Credits				
No.	Code	Subject Name	Category	L	Т	Р	Periods	Creans				
1	MA4102	Engineering Mathematics	BSC	4	0	0	4	4				
2	PH4103	Engineering Physics	BSC	3	0	0	3	3				
3	CY4104	Engineering Chemistry	BSC	3	0	0	3	3				
4	BS4108	Physics and Chemistry Laboratory	BSC	0	0	4	4	2				
5	MA4202	Statistics and Numerical Methods	BSC	4	0	0	4	4				
6	PH4253	Materials Science	BSC	3	0	0	3	3				
7	MA4352	Transforms and Complex functions	BSC	4	0	0	4	4				
8	MA4401	Probability and Statistics	BSC	4	0	0	4	4				

		ENGINEERING SCIE	NCE COURS	SES (ES	C)			
S.	Course	Subject Nome	Catagory	Perio	ds per	week	Contact	Creadita
No.	Code	Subject Name	Category	L	Т	Р	Periods	Credits
1	GE4105	Problem Solving and Python Programming	ESC	3	0	0	3	3
2	GE4106	Engineering Graphics	ESC	2	0	4	6	4
3	GE4107	Python Programming Laboratory	ESC	0	0	4	4	2
4	BE4251	Basic Electrical, Electronics Engineering	ESC	0	0	4	2	2
5	GE4206	Engineering Mechanics	ESC	3	1	0	4	4
6	GE4207	Engineering Practices Laboratory	ESC	0	0	4	4	2
7	BE4258	Basic Electrical, Electronics Engineering Laboratory	ESC	0	0	4	2	2
8	ME4301	Fluid Mechanics and Machinery	ESC	3	0	0	3	3
9	ME4306	Computer Aided Machine Drawing Laboratory	ESC	0	0	4	4	2
10	ME4401	Strength of Materials	ESC	3	0	0	3	3
11	ME4406	Strength of Materials and Fluid Machinery Laboratory	ESC	0	0	4	4	2
12	CS4655	C Programming and Basics of Data Structures	ESC	3	0	0	3	3
13	CS4657	C Programming and Data Structures Laboratory	ESC	0	0	4	4	2

	PROFESSIONAL CORE COURSES (PCC)											
S.	Course	Subject Name	Category	Periods per week			Contact	Credits				
No.	Code	Subject Hume	cutegory	L	Т	Р	Periods	oreans				
1	ME4302	Engineering Thermodynamics	PCC	3	1	0	4	3				
2	ME4303	Manufacturing Processes	PCC	3	0	0	3	3				
3	ME4304	Engineering Materials and Metallurgy	PCC	3	0	0	3	3				
4	ME4307	Manufacturing Processes Laboratory	PCC	0	0	4	4	2				
5	ME4402	Thermal Engineering	PCC	3	0	0	3	3				
6	ME4403	Hydraulics and Pneumatics	PCC	3	0	0	3	3				
7	ME4404	Metal Cutting and Machine Tools	PCC	3	0	0	3	3				
8	ME4405	Metrology and Measurements	PCC	3	0	0	3	3				

				-				-
9	ME4407	Internal Combustion Engineering Laboratory	PCC	0	0	4	4	2
10	ME4408	Machine Tools Laboratory	PCC	0	0	4	4	2
11	ME4501	Design of Machine Elements	PCC	3	1	0	4	4
12	ME4502	Theory of Machines	PCC	3	0	0	3	3
13	ME4507	Metrology and Dynamics Laboratory	PCC	0	0	4	4	2
14	ME4508	CAD/CAM Laboratory	PCC	0	0	4	4	2
15	ME4601	Heat and Mass Transfer	PCC	3	1	0	4	4
16	ME4608	Heat Transfer, Refrigeration and Air- Conditioning Laboratory	PCC	0	0	4	4	2
17	ME4701	Mechatronics	PCC	3	0	0	3	3
18	ME4702	Computer Integrated Manufacturing	PCC	3	0	0	3	3
19	ME4707	Simulation and Analysis Laboratory	PCC	0	0	4	4	2
20	ME4708	Mechatronics Laboratory	PCC	0	0	4	4	2

EMPLOYABILITY ENHANCEMENT COURSES (EEC)									
S.	Course	Subject Nome	Cotogowy	Perio	ds per v	week	Contact	Credits	
No.	Code	Subject Name	Category	L	Т	Р	Periods		
1	ME4509	Summer Internship*	EEC	0	0	0	0	1	
2	ME4609	Design and Fabrication Project	EEC	0	0	3	4	2	
3	ME4807	Project Work	EEC	0	0	20	20	10	

	SEMESTER V									
MANDATORY COURSES I										
S.	S. Course Contact Contact Contact Contact									
No.	Code	Subject Name	Category	L	Т	Р	Periods	Credits		
1	MX4001	Introduction to Women and Gender Studies	MC	3	0	0	3	0		
2	MX4002	Elements of Literature	MC	3	0	0	3	0		
3	MX4003	Personality Development through Life Enlightment Skills	MC	3	0	0	3	0		
4	MX4004	Disaster Management	MC	3	0	0	3	0		

	SEMESTER VI									
	MANDATORY COURSES II									
S. Course Subject Name Cotogon Periods per week Conta										
No.	Code	Subject Name	Category	L	Т	Р	Periods	Credits		
1	MX4005	Well Being with Traditional Practices	МС	3	0	0	3	0		
2	MX4006	History of Science and Technology in India	MC	3	0	0	3	0		
3	MX4007	Political and Economic Thought for a Humane Society	MC	3	0	0	3	0		
4	MX4008	Industrial Safety	MC	3	0	0	3	0		

	PROFESSIONAL ELECTIVE COURSES (PEC) :VERTICALS										
VERTICAL 1 : PRODUCT AND PROCESS DEVELOPMENT											
S.	S. Course Subject Name Category Periods per week Contact Credits										
No.	Code	Subject Name	Category	L	Т	Р	Periods	Creans			
1	ME4511	Value Engineering	PEC	3	0	0	3	3			
2	ME4512	CAD/CAM	PEC	3	0	0	3	3			
3	ME4513	Ergonomics in Design	PEC	3	0	0	3	3			
4	ME4514	New Product Development	PEC	3	0	0	3	3			
5	ME4515	Product Life Cycle Management	PEC	3	0	0	3	3			

	VERTICAL 2 : ROBOTICS AND AUTOMATION										
S. Course		Subject Name	Category	Perio	ds per	week	Contact	Credits			
No.	Code	Subject Name	Category	L	Т	Р	Periods	creatis			
1	ME4521	Sensors and Instrumentation	PEC	3	0	0	3	3			
2	ME4522	Electrical Drives and Actuators	PEC	3	0	0	3	3			
3	ME4523	Embedded Systems and Programming	PEC	3	0	0	3	3			
4	ME4524	Robotics	PEC	3	0	0	3	3			
5	ME4525	Automation in Manufacturing	PEC	3	0	0	3	3			

	VERTICAL 3 : PROCESS EQUIPMENT AND PIPING DESIGN									
S.	Course	Subject Name	Category	Periods per week			Contact	Credits		
No.	Code	Bubjeet Nume	Cuttgory	L	Т	Р	Periods	Creans		
1	ME4531	Non-Destructive Testing Techniques	PEC	3	0	0	3	3		
2	ME4532	Plant Layout and Materials Handling	PEC	3	0	0	3	3		
3	ME4533	Safety In Material Handling	PEC	3	0	0	3	3		
4	ME4534	Process Equipment Design	PEC	3	0	0	3	3		
5	ME4535	Design of Pressure Vessels	PEC	3	0	0	3	3		

	VERTICAL 4 : DIVERSIFIED COURSES GROUP 1										
S.	Course	Subject Name	Category	Perio	ds per v	week	Contact	Credits			
No.	Code		5.	L	Т	P	Periods				
1	ME4541	Automobile Engineering	PEC	3	0	0	3	3			
2	ME4542	Automotive Materials, Components, Design and Testing	PEC	3	0	0	3	3			
3	ME4543	Power Plant Engineering	PEC	3	0	0	3	3			
4	ME4544	Refrigeration and Air Conditioning	PEC	3	0	0	3	3			
5	ME4545	Measurements and Controls	PEC	3	0	0	3	3			

	VERTICAL 5 : DIVERSIFIED COURSES GROUP II										
S.	Course	Subject Name	Category	Perio	ds per	week	Contact	Credita			
No.	Code	Subject Mane	Category	L	Т	Р	Periods	Creuits			
1	ME4551	Non-traditional Machining Processes	PEC	3	0	0	3	3			
2	ME4552	Turbo Machines	PEC	3	0	0	3	3			
3	ME4553	Design of Transmission Systems	PEC	3	0	0	3	3			
4	ME4554	Finite Element Analysis	PEC	3	0	0	3	3			
5	ME4555	Design for Manufacturing	PEC	3	0	0	3	3			

S.	Course	Subject Neme	Cotogory	Perio	ds per '	week	Contact Periods	Credits			
No.	Code	Subject Name	Category	L	Т	Р					
1	ME4561	Advanced Internal Combustion Engines	PEC	3	0	0	3	3			
2	ME4562	Process Planning and Cost Estimation	PEC	3	0	0	3	3			
3	ME4563	Gas Dynamics and Jet Propulsion	PEC	3	0	0	3	3			
4	ME4564	Operational Research	PEC	3	0	0	3	3			
5	ME4565	Casting and Welding Processes	PEC	3	0	0	3	3			

VERTICAL 6 : DIVERSIFIED COURSES GROUP III

Γ

OPEN ELECTIVE COURSES (OEC)										
	SEMESTER VII									
OPEN ELECTIVE I										
S.	Course	Such is at Norma	Catagory	Perio	ds per	week	Contact	Creadita		
No.	Code	Subject Name	Category	L	Т	Р	Periods	Credits		
1	OEC414	Basics of Biomedical Instrumentation	OEC	3	0	0	3	3		
2	OEC412	Foundation of Robotics	OEC	3	0	0	3	3		
3	OIT411	Fundamentals of Database Design	OEC	3	0	0	3	3		
4	OMA426	Resource Management Techniques	OEC	3	0	0	3	3		
5	OEE411	Renewable Energy Systems	OEC	3	0	0	3	3		
6	OMA411	Graph Theory and Its Application	OEC	3	0	0	3	3		
7	OAD432	Deep Learning	OEC	3	0	0	3	3		
8	OEC411	IoT Concepts and Applications	OEC	3	0	0	3	3		
9	OAD422	Data Science Fundamentals	OEC	3	0	0	3	3		

	SEMESTER VIII OPEN ELECTIVE II									
S.	Course	Subject Name	Category	Periods per week			Contact Periods	Credits		
NO.	Code			L	Т	Р	Periods			
1	OEE423	Control Systems	OEC	3	0	0	3	3		
2	OEE421	Electric and Hybrid Vehicle	OEC	3	0	0	3	3		
3	OME423	Additive Manufacturing	OEC	3	0	0	3	3		
4	OME427	Reverse Engineering	OEC	3	0	0	3	3		
5	OMB413	Digital Marketing	OEC	3	0	0	3	3		
6	OAD414	Artificial Intelligence and Machine Learning	OEC	3	0	0	3	3		
7	OCS422	Machine Learning Techniques	OEC	3	0	0	3	3		
8	OCS423	Augmented and Virtual Reality	OEC	3	0	0	3	3		
9	OME416	Testing of Materials	OEC	3	0	0	3	3		

Credits Distribution

S.				Cred	lits Pe	r Sem	ester			Total	Percentage
No.	Subject Area	Ι	II	III	IV	V	VI	VII	VIII	Credits	%
1	Humanities, Science & Management Courses (HSMC)	4	4	1	-	-	-	3	3	15	8.57
2	Basic Science Courses (BSC)	12	10	4	4	-	-	-	-	30	17.14
3	Engineering Science Courses (ESC)	9	11	5	5	-	5	-	-	35	20.00
4	Professional Cores Courses (PCC)	-	-	12	16	11	6	10	-	55	31.43
5	Professional Elective Courses (PEC)	-	-	-	-	9	9	3	-	21	12.00
6	Open Elective Courses (OEC)	-	-	-	-	-	-	3	3	6	3.43
7	Employability Enhancement Courses (EEC)	-	-	-	-	1	2	-	10	13	7.43
8	Mandatory (MC) / Summer Internship (SI)	-	-	-	\checkmark	\checkmark	\checkmark	-	-	-	-
	Total	25	25	22	25	21	22	19	16	175	100

Semester Wise Course Details

S. No.	Semester	Theory	Laboratory	Mini Project	Project	МС	SI	Total
1	Ι	7	2	-	-	-	-	9
2	II	7	2	-	-	-	-	9
3	III	5	3	-	-	-	-	8
4	IV	6	3	-	-	-	-	9
5	V	5	2	-	-	1	1	9
6	VI	5	2	1	-	1	-	9
7	VII	5	2	-	-	-	-	7
8	VIII	2	-	-	1	-	-	3
Total		42	16	1	1	2	1	63

ENROLLMENT FOR B.E. / B. TECH. (HONOURS) / MINOR DEGREE (OPTIONAL)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E. / B. Tech. (Honours) or Minor Degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes, Moreover, for minor degree the student can register for courses from any one of the following verticals also.

VERTICALS FOR MINOR DEGREE

Vertical I	Vertical II	Vertical III	Vertical IV	Vertical VEnvironment and Sustainabilityinfrastructure DevelopmentSustainable Agriculture and Environmental ManagementSustainable Bio MaterialsMaterials for Energy Sustainability		
Fintech and Block Chain	Entrepreneurship	Public Administration	Business Data Analytics	Environment and Sustainability		
Financial Management	Foundations of Entrepreneurship	Principles of Public Administration	Statistics for Management	infrastructure Development		
Fundamentals of Investment	Team Building and Leadership Management for Business Constitution of India Datamining for Business Intelligence		Sustainable Agriculture and Environmental Management			
Banking, Financial Services and Insurance	Creativity and Innovation in Entrepreneurship	Insurance Public Personnel Administration	Human Resource Analytics	Sustainable Bio Materials		
Introduction to Blockchain and its Applications	Principles of Marketing Management for Business	Administrative Theories	Marketing and Social Media Web Analytics	Materials for Energy Sustainability		
Fintech Personal Finance and Payments	Human Resource Management for Entrepreneurs	Indian Administrative System	Operation and Supply Chain Analytics	Green Technology		
Introduction to Fintech	Financing New Business Ventures	Public Policy Administration	Financial Analytics	Environmental Quality Monitoring and Analysis		
				Integrated Energy Planning for Sustainable Development		
				Energy Efficiency for Sustainable Development		

(In addition to all the verticals of other programmes)

We Make You Shine St. JOSEPH'S INSTITUTE OF TECHNOLOGY (An Autonomous Institution) St. Joseph's Group of Institutions OMR, Chennai - 119

Department of Mechanical Engineering

LIST OF VALUE ADDED COURSES

S No	Sub Code	Title	Credits
1	MVA001	Small Unmanned Aerial Vehicle (SUAV) - Drone	2
2	MVA002	3D Printing	2
3	MVA003	Elements of Automation and Process Control	1
4	MVA004	Geometric Dimensioning and Tolerancing	2
5	MVA005	Smart Materials and Structures	2
6	MVA006	Green Energy Technologies and Management	2
7	MVA007	Automation Suite for Smart Systems	2
8	MVA008	IoT Applications in Mechanical Engineering	1
9	MVA009	Surface Coating Technology	2
10	MVA010	Energy Resources and Management	2
11	MVA011	Modeling for Design Engineers	2
12	MVA012	Basic Concept of HVAC Designing and Drafting	2
13	MVA013	Robotics Process Automation	2
14	MVA014	Welding and Inspection Techniques	2
15	MVA015	Modern Trends in Refrigeration and Air Conditioning	2
16	MVA016	Finite Element Meshing Techniques	2
17	MVA017	Nanoscience and Technology	2
18	MVA018	Plant Design Management System	2
19	MVA019	Technology for Energy Storage	2
20	MVA020	Modeling Practice for Automotive Assemblies	2
21	MVA021	Modeling and Machining Practice for CNC Machines	2
22	MVA022	Introduction to Multi Body Dynamics	2
23	MVA023	IoT and Augmented Reality Applications in Mechanical Engineering	2

		T	T	Ъ	C		
HS4101	COMMUNICATIVE ENGLISH	L 2	1 0	P	<u>C</u>		
OBJECTIVES * To develop * To improve * To hone re * To enhance	listening skills to comprehend lectures, ask questions and seek clarifications e speaking skills to speak fluently in real contexts ading skills to comprehend different types of texts writing skills to convey their ideas effectively	3	0	0	3		
✤ To strength	en the grammar and general vocabulary						
UNIT I	LISTENING TO CONVERSATIONS AND SPEECHES				9		
Listening – short texts – short formal and informal conversations; Speaking – basics of speaking – introducing oneself – exchanging information – speaking on given topics & situations; Reading – critical reading – finding key information in a given text – sifting facts from opinions; Writing – autobiographical writing – developing hints; Language development – Parts of speech – articles – voices – Question types: wh- and yes/no; Vocabulary development – prefixes – suffixes – Polite Expressions.							
UNIT II	SHARING INFORMATION RELATED TO ONESELF/FAMILY& F	RIE	NDS		9		
Listening – TED talks – extensive speech on current affairs and discussions; Speaking – describing a simple process – asking and answering questions; Reading – short narratives and descriptions from newspapers –Reading comprehension texts with varied question types – Writing – paragraph writing – topic sentence – main ideas– free writing, short narrative descriptions using suggested vocabulary and structures – Language development – prepositions, clauses; Vocabulary development– guessing meanings of words in context – use of sequence words.							
UNIT III	READING FOR COMPREHENSION				9		
Listening – Listenin routine actions and analysis of a text; Language developm development – idior	ng to TED talks and long speeches for comprehension; Speaking – roleplay - expressing opinions; Reading– short texts and longer passages (cloze readi Writing – types of paragraphs and writing essays – rearrangement of jumb nent – degrees of comparison – pronouns – Direct vs; Indirect Question ns and phrases– cause & effect expressions, adverbs.	– ask ing) d led s is; V	ing a & cri enter ocabu	bout tical ices; ilary	CO3		
UNIT IV	FREE WRITING AND EXTENDED WRITING				9		
Listening – Listening comprehension for English proficiency tests; Speaking –describing friends/places/hobbies; Reading – comprehension – reading longer texts – reading different types of texts – magazines; Writing – informal letter writing – e-mails – conventions of personal email; Language development – Tenses – Simple present – simple past– present continuous and past continuous – conditionals; Vocabulary development– synonyms – antonyms – single word substitutes – Collocations.							
UNIT V GRAMMAR AND LANGUAGE DEVELOPMENT							
Listening – popular speeches and presentations; Speaking – impromptu speeches & debates; Reading – comparisons and contrast; Writing – brainstorming – writing short essays – developing an outline – identifying main and subordinate ideas – dialogue writing; Language development – modal verbs – present/ past perfect tense; Vocabulary development – Phrasal verbs – fixed and semi–fixed expressions.							
	ТО	TAL	.: 45	PER	IODS		

TEXTBOOKS

- 1. Sanjay Kumar & Pushp Lata Communication Skills Second Edition, Oxford University Press: 2015.
- Board of Editors. Using English, A Coursebook for Undergraduate Engineers and Technologists. Orient Black Swan Limited, Hyderabad: 2020
- 3. Richards, C. Jack. Interchange Students 'Book–2 New Delhi: CUP, 2015.

REFERENCE BOOKS

- 1. Bailey, Stephen. Academic Writing: A Practical Guide for Students. New York: Rutledge, 2011.
- 2. Means, L. Thomas and Elaine Langlois. English & Communication for Colleges. Cengage Learning, USA: 2007
- **3**.Redston, Chris & Gillies Cunningham Face 2 Face (Pre–intermediate Student's Book & Workbook) Cambridge University Press, New Delhi: 2005
- 4. Comfort, Jeremy, et al. Speaking Effectively: Developing Speaking Skills for Business English. Cambridge University Press, Cambridge: Reprint 2011
- 5. Dutt P. Kiranmai and Rajeevan Geeta Basic Communication Skills, Foundation Books: 2013
- **6**. John Eastwood et al: Be Grammar Ready: The Ultimate Guide to English Grammar, Oxford University Press: 2020. .

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Listen and comprehend different spoken discourses/excerpts
CO2	Speak clearly and confidently with one or many listeners using appropriate communicative strategies
CO3	Read different genres of texts adopting various reading strategies
CO4	Write coherently and flawlessly on different topics
CO5	Communicate using a wide vocabulary without grammatical errors

COs		PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	_	_	_	_	-	_	_	_	2	3			2	2
CO2		1	_	2	-				_	3	_	_	2	2
CO3	_	2	_	3	-	-	-	-	_	2	-		2	2
CO4	_	_	_	_	_	_	_	_	2	2	_	_	2	2
CO5	_	2	1	1	2	_	2	_	_	3	_	_	3	3

MA4102	ENGINEERING MATHEMATICS	Τ	Ρ	С					
	3	1	0	4					
OBJECTIVES	lon the way of matrix cleaking to chair way that is maded by an singary for any stical and	1: 4:							
 To develop the use of matrix algebra techniques that is needed by engineers for practical applications. To familiarize the students with differential calculus. 									
✤ To famil	harize the students with functions of several variables. This is needed in many	hear	ahaa	of					
		bran	ines	01					
	Ing.								
	the students understand various techniques of integration.	-1a ar	.त. म						
	taint the student with mathematical tools needed in evaluating multiple integra	us ar	ia ti	leir					
)3					
				'+3					
Characteristic equation - Cayley-Hamilton theorem (without proof) - Eigenvalues and Eigenvectors of a									
real matrix – Pro	operties of Eigenvalues and Eigenvectors – Diagonalization of matrices – Reduction	a of a	C	:01					
quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms.									
UNIT II	DIFFERENTIAL CALCULUS		ģ)+3					
Limit of a function - Continuity - Derivatives - Differentiation rules – Interval of increasing and									
decreasing funct	ions – Maxima and Minima - Intervals of concavity and convexity.			02					
UNIT III	FUNCTIONS OF SEVERAL VARIABLES		9)+3					
Partial different	ation - Homogeneous functions and Euler's theorem - Total derivatives - Chan	ge of							
variables – Jaco	bians – Partial differentiation of implicit functions – Taylor's series for functions of	of two		' ^2					
variables – Max	tima and Minima of functions of two variables - Lagrange's method of undetern	nined		05					
multipliers.									
UNIT IV	INTEGRAL CALCULUS		Ģ)+3					
Definite and Inc	lefinite integrals – Substitution rule – Techniques of Integration – Integration by	parts,	1						
Trigonometric in	ntegrals, Trigonometric substitutions, Integration of rational functions by partial fra	ction,	C	'04					
Integration of irr	rational functions - Improper integrals.								
UNIT V	MULTIPLE INTEGRALS		9)+3					
Double integrals	- Change of order of integration – Double integrals in polar coordinates – Area end	losed							
by plane curves	- Change of variables from cartesian to polar co-ordinates in double integrals - '	Friple	C	:05					
integrals – Volu	me of solids.								
	TOTAL : 6	0 PE	RIO	DS					
TEXT BOOKS									
1. Grewal	B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi. 43rd Edit	ion, 2	014.						
0 T 0		1.00		-					

 James Stewart, "Calculus: Early Transcendental", Cengage Learning, 7th Edition, New Delhi,2015. [For Units I & III - Sections 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1 (Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.2 - 7.4 and 7.8].

REFERENCE BOOKS

- 1. Anton, H, Bivens, I and Davis, S, "Calculus", Wiley, 10th Edition, 2016.
- 2. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 3rd Edition, 2007.
- **3**. Narayanan, S. and Manicavachagom Pillai, T. K., "Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2007.
- 4. Srimantha Pal and Bhunia, S.C, "Engineering Mathematics" Oxford University Press, 2015.
- 5. T. Veerarajan, "Engineering Mathematics I", McGraw Hill Education; First edition 2017.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the	concepts of	f matrix	algebra	for ana	alysing	practical	problems.

CO2	Apply differential	calculus tools i	in solving various	application problems

CO3 Use differential calculus ideas on several variable functions.

CO4 Apply different methods of integration in solving practical problems.

CO5 Evaluate area, volume and other practical problems by multiple integrals.

	MAPPING OF COs WITH POs AND PSOs													
COs		PROGRAM OUTCOMES (POs)										PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	3	-	-	-	-	-	-	2	1	1
CO2	3	3	1	-	3	-	-	-	-	-	-	2	3	2
CO3	3	3	1	-	3	-	-	-	-	-	-	2	3	2
CO4	3	3	1	-	3	-	-	-	-	-	-	2	2	2
CO5	3	3	1	-	3	-	-	-	-	-	-	2	2	1

PH4103

ENGINEERING PHYSICS

L	Т	Р	С
3	0	0	3

9

9

9

9

9

OBJECTIVES

- ✤ To make the students to understand about the elastic property and stress strain diagram.
- To educate the students about principle of laser and its role in optical fibers and its applications as sensors and communication.
- ✤ To teach the students about the heat transfer through solids and liquids.
- To educate the students about the quantum concepts and its use to explain black bodyradiation, Compton effect, tunnelling electron microscopy and its applications.
- To make the students to understand the importance of various crystal structures and various growth techniques.

UNIT I PROPERTIES OF MATTER

Elasticity – Stress-strain diagram and its uses - factors affecting elastic modulus and tensilestrength – torsional stress and deformations – twisting couple - torsion pendulum: theory and experiment - bending of beams - bending moment – cantilever: theory and experiment – uniform and non-uniform bending: theory and experiment – Practical applications of modulus of elasticity-I-shaped girders - stress due to bending in beams.

UNIT II LASER AND FIBER OPTICS

Lasers : population of energy levels, Einstein's A and B coefficients derivation — resonant cavity, optical amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction — Industrial and medical applications of Laser- Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index,mode) — losses associated with optical fibers — Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber- Endoscopy-Fiber optic communication system.

UNIT III THERMAL PHYSICS

Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity – Rectilinear flow of heat- Lee's disc method: theory and experiment - conductionthrough compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters.

UNIT IV QUANTUM PHYSICS

Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependentequations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy.

UNIT V CRYSTAL PHYSICS

Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystalsystems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structurecrystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative). Crystal structure determination – Laue and powder diffraction method.

TOTAL : 45 PERIODS

TEXT	BOOKS							
1. Bl	nattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2019.							
2. G	aur, R.K. & Gupta, S.L. "Engineering Physics". Dhanpat Rai Publishers, 2017.							
З . Н	Halliday, D., Resnick, R. & Walker, J. "Principles of Physics". Wiley, 2015.							
REFF	CRENCE BOOKS							
1. Ti	1. Tipler, P.A. & Mosca, G. "Physics for Scientists and Engineers with Modern Physics'.W.H.Freeman,							
20	07.							
2. Se	2. Serway, R.A. & Jewett, J.W. "Physics for Scientists and Engineers". Cengage Learning, 2019.							
3 . Pa	ndey, B.K. & Chaturvedi, S. "Engineering Physics". Cengage Learning India, 2019.							
COU	RSE OUTCOMES							
Upon	completion of the course, students will be able to							
CO1	Gain knowledge on the basics of properties of matter and its applications,							
CO2	Acquire knowledge on the concepts of waves and optical devices and their applications in fibreoptics.							
CO3	Have adequate knowledge on the concepts of thermal properties of materials and theirapplications in expansion joints and heat exchangers.							
CO4	Get knowledge on advanced physics concepts of quantum theory and its applications intunneling microscopes, and							
CO5	Understand the basics of crystals, their structures and different crystal growth techniques.							

COs						PROG	FRAM	OUTC	OMES	(POs)			PROGRAM SPECIFIC OUTCOMES (PSOs)PSO1PSO222			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	3	3	3	3	2	2	1	3	2	1	2	2	2		
CO2	3	3	3	2	3	2	2	1	2	2	2	1	3	3		
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	2		
CO4	3	3	2	2	2	1	1	1	1	1	1	3	3	3		
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	3		

CV4104	FNGINFERING CHEMISTRV	L	Т	CY4104 ENGINEERING CHEMISTRY						
014104		3	0	0	3					
OBJECTIVES										
 To Study 	the principles of water characterization and treatment for industrial purpose	s.								
✤ To apply to apply to apply to apply to apply the apply th	the principles and applications of surface chemistry and catalysis.									
 To learn a 	about Phase rule and various types of alloys.									
✤ To analys	is Various types of fuels, applications and combustion.	1								
✤ To unders	stand Conventional and non-conventional energy sources and energy storage	ge de	vice.							
UNIT I V	WATER AND ITS TREATMENT				9					
Hardness of water– Types – Expression of hardness–Units–Estimation of hardness by EDTA method – Numerical problems on EDTA method – Boiler troubles (scale and sludge, caustic embrittlement, boiler corrosion, priming and foaming)–Treatment of boiler feed water–Internal treatment (carbonate, phosphate, colloidal, sodium aluminate and calgon conditioning)–External treatment–Ion exchange process, Zeolite process–Desalination of brackish water by reverse Osmosis.										
UNIT II S	SURFACE CHEMISTRY AND CATALYSIS				9					
 Surface chemistry: Types of adsorption – Adsorption of gases on solids – Adsorption of solute from solutions– Adsorption isotherms – Freundlich's adsorption isotherm–Langmuir's adsorption isotherm – Kinetics of uni-molecular surface reactions – Adsorption in chromatography – Applications of adsorption in pollution abatement using PAC. Catalysis: Catalyst – Types of catalysis – Criteria – Contact theory – Catalytic poisoning and Catalytic promoters – Industrial applications of catalysts – Catalytic convertor – Auto catalysis – Enzyme catalysis – Michaelis – Menten equation. 										
UNITIII	PHASE RULE AND ALLOYS				9					
Phase rule: Introd	duction – Definition of terms with examples – One component system–Wa	ater s	syste	m –						
Reduced phase	rule – Thermal analysis and cooling curves – Two component sys	stem	s—Le	ead-						
silver system – I Alloys: Introduct of alloying eleme alloys – Brass an	Pattinson process. ion– Definition – Properties of alloys – Significance of alloying – Functi ents – Nichrome, Alnico, Stainless steel (18/8)-Heat treatment of steel – nd bronze.	ons : - No	and e n-fe	effect rrous	CO3					
UNIT IV I	FUELS AND COMBUSTION				9					
 Fuels : Introduction – classification of fuels – Comparison of solid, liquid, gaseous fuels – Coal– Analysis of coal (proximate and ultimate). – Carbonization – Manufacture of metallurgical coke (Otto Hoffmann method) – Petroleum – Cracking – Manufacture of synthetic petrol (Bergius process, Fischer Tropsch Process) – Knocking – Octane number – Diesel oil–Cetane number– Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) –Power alcohol and biodiesel. Combustion of fuels: Introduction – Calorific value – Higher and lower calorific values –Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignition temperature – Explosive range – Flue gas analysis by Orset Method 										
UNIT V N	NON – CONVENTIONAL ENERGY SOURCES AND STORAGE DE	VIC	ES		9					
Nuclear energy – Fission and fusion reactions – Differences – Chain reactions – Nuclearreactors– Classification of reactors – Light water nuclear reactor for power generation –Breeder reactor –Solar energy conversion – Solar cells – Wind energy – Fuel cells –Hydrogen - oxygen fuel cell.Batteries – Types of batteries – Alkaline batteries – Lead - acid, Nickel – cadmium and Lithium batteries.										
	101	AL :	45	PER	1008					

ТЕУ	KT BOO	OKS													
1. 2. 3.	P.C.Jaiı S.S. Da P. Kanr Chenna	n, Mo ra, S nan , i,(20	onica Ja .S. Uma A. Ravi 09).	in, Engi are, A te i krishna	neering xt book m, Engin	Chemis of Engi neering	try 17 th neering Chemist	Ed.Dha Chemis try I,Sri	npatRail try S. (Krishna	Pub.Co. Chand & Hi-tech	New De Co. Ltd Publis	elhi,(201 , New l hing Co	15). Delhi(20 mpany (020). (P) Ltd.	
REI	FEREN	CE]	BOOK	S											
1.	B.K. Sh	arma	a – Engi	ineering	chemist	try Kri	shna Pra	akasan N	Aedia (P) Ltd., N	Meerut (2001).			
2.	B. Siva	sanka	ar – Eng	gineering	g Chemi	istry Ta	ata Mc (Graw – I	Hill Pub	. Co .Lt	d, New	Delhi(2	008).		
3.	Prasanta	a Rat	h- Engi	neering	Chemis	try Cei	ngage L	earning	India (P) Ltd .,]	Delhi, (2	2015).			
4.	Shikha Delhi,(2	Agai 2015	rwal – E)	Engineer	ing Che	mistry–	Fundan	nentals a	undAppl	ications	∥,Camb	ridge Ui	niversity	v press,	
5.	A. Paha	ri, B	. Chauh	an- Eng	ineering	Chemis	stry I,Fir	e wall N	Media., I	New De	lhi., (20	10).			
6. COI	Sheik M	<u>lidee</u>	en ., Eng	gineering	g Chemi	istry , A	irwalk 1	Publicat	ions ,Ch	ennai (2	2018).				
	URSE (n comp	oletia	COMI on of th	ES e cours	e , stude	ents will	be able	e to							
CO	1 Able	to u fying	ndersta water.	nd impu	rities in	industri	al water	, boiler	troubles	, interna	al and ex	ternal ti	reatment	t method	s of
CO	2 Able pollu	Able to understand concepts of absorption, adsorption, adsorption isotherms, application of adsorption for pollution abatement, catalysis and enzyme kinetics.													
co	Able 03 .The App	e to 1 y sho licati	recogniz ould be ons in a	ze signif acquain Illoying.	icance c ted with	of alloyi phase r	ing , fun ule and	ctions o reduced	f alloyir phase a	ng eleme nd its	ents and	types of	f alloys .	uses of a	alloys
CO	4 Able	e to io busti	dentify on of fu	various iels, met	types of hod of p	fuels, p preparati	ropertie ion of bi	s,uses an	nd analy l, synthe	sis of fu tic petro	els. The	y shoul	d be able	e to unde	erstand
CC	95 Able gene	e to u ratio	ndersta n by nu	nd conv clear rea	entional actor, wi	, non–c ind, sola	onventi r energy	onal ene	ergy source eparation	rces , nu n, uses (clear fis	sion and s batter	d fusion, ies.	, power	
					MA	PPING	OF CO)s WIT	H POs A	AND PS	SOs				
C	Os				F	PROGR	AMOU	тсом	ES(POs	5)				PROG SPEC OUTCO (PSO	RAM IFIC DMES Ds)
	P	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO)1	3	3	3	3	3	2	3	2	2	2	2	2	2	2
CO)2	3	3	2	2	2	2	2	1	1	1	1	2	2	1
CO)3	3	3	3	3	3	2	2	1	2	2	2	2	2	2
CO)4	3	3	3	2	2	3	3	2	2	3	2	2	3	1
СС)5	3	2	3	3	3	3	3	2	2	2	2	2	3	2

GE4105 PROBLEM SOLVING AND PYTHON PROGRAMMING		P C
GE4105	PROBLEM SOLVING AND PYTHON PROGRAMMING	0 3
OBJECTIVES		
 To kno 	w the basics of algorithmic problem solving	
✤ To wri	e simple python programs	
To dev	elop python program by using control structures and functions	
To use	python predefined data structures	
✤ To write	e file-based program	
UNIT I	ALGORITHMIC PROBLEM SOLVING	9
Algorithms, Bu	ilding blocks of algorithms: statements, state, control flow, functions, Notation: pseudo	
code, flow char	t, programming language, Algorithmic problem solving: Basic algorithms, flowcharts and	-
pseudocode for	sequential, decision processing and iterative processing strategies, Illustrative problems:	CO1
find minimum	n a list, insert a card in a list of	
sorted cards, gu	less an integer number in a range, Towers of Hanoi.	
UNIT II	INTRODUCTION TO PYTHON	9
Python Introdu	ction, Technical Strength of Python, Python interpreter and interactive mode, Introduction	
to colab, pych	arm and jupyter idle(s) ,Values and types: int, float, boolean, string, and list; Built-in data	
types, variables	, Literals, Constants, statements, Operators: Assignment, Arithmetic, Relational, Logical,	CO2
Bitwise operato	rs and their precedence, Expressions, tuple	
assignment, Ac	cepting input from Console, printing statements, Simple Python programs.	
UNIT III	CONTROL FLOW, FUNCTIONS AND STRINGS	9
Conditionals: F	oolean values and operators, conditional (if), alternative (if-else), chained conditional (if-	
elif-else); Itera	tion: while, for; Loop manipulation using pass, break, continue, and else; Modules and	
Functions: fune	ction definition and use, flow of execution, parameters and arguments, local and global	
scope, return va	lues, function composition, recursion. Strings: string slices, immutability, string functions	CO3
and methods, s	tring module; Illustrative programs: square root, gcd, exponentiation, sum an array of	
numbers, linear	search, binary	
search.		
UNIT IV	LISTS, TUPLES, DICTIONARIES	9
Lists: Defining	list and list slicing, list operations, list slices, list methods, list loop, list Manipulation,	
mutability, alia	sing, cloning lists, list parameters, lists as arrays. Tuples: tuple assignment, tuple as return	
valua tunla N	Ianipulation; Dictionaries: operations and methods; advanced list processing - list	CO4
value, tuple h	, Illustrative programs: selection sort, insertion	
comprehension		
comprehension sort, merge sort	, histogram.	
comprehension sort, merge sort	FILES, MODULES, PACKAGES	9
comprehension sort, merge sor UNIT V Files and excep	FILES, MODULES, PACKAGES Dition: Concept of Files, Text Files; File opening in various modes and closing of a file,	9
comprehension sort, merge sor UNIT V Files and excep Format Operato	FILES, MODULES, PACKAGES Dition: Concept of Files, Text Files; File opening in various modes and closing of a file, ors, Reading from a file, Writing onto a file, File functions- open(), close(), read(),readline(),	9
comprehension sort, merge sor UNIT V Files and excep Format Operato readlines(),writ	FILES, MODULES, PACKAGES Detion: Concept of Files, Text Files; File opening in various modes and closing of a file, ors, Reading from a file, Writing onto a file, File functions- open(), close(), read(),readline(), e(), writelines(),tell(),seek(), Command Line arguments; Errorsand exceptions: handling	9 CO5
comprehension sort, merge sor UNIT V Files and excep Format Operator readlines(),write exceptions; mo	FILES, MODULES, PACKAGES ption: Concept of Files, Text Files; File opening in various modes and closing of a file, ors, Reading from a file, Writing onto a file, File functions- open(), close(), read(),readline(), e(), writelines(),tell(),seek(), Command Line arguments; Errorsand exceptions: handling dules, packages; introduction to numpy, matplotlib.	9 CO5

TEXT BOOKS

- 1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist ", 2nd edition, Updated for Python 3, Shroff/O_Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/)
- 2. Guido van Rossum and Fred L. Drake Jr, An Introduction to Python Revised andupdated for Python 3.2, Network Theory Ltd., 2011.
- 3. Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford UniversityPress, 2019.

REFERENCE BOOKS

- 1. John V Guttag, —Introduction to Computation and Programming Using Python_, Revised and expanded Edition, MIT Press, 2013
- 2. Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
- 3. Timothy A. Budd, —Exploring Pythonl, Mc-Graw Hill Education (India) Private Ltd., 2015.
- 4. Kenneth A. Lambert, -Fundamentals of Python: First Programs, CENGAGE Learning, 2012.
- Charles Dierbach, —Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013.
- 6. Paul Gries, Jennifer Campbell and Jason Montojo, -Practical Programming: An Introduction.

COURSE OUTCOMES

Upon co	ompletion of the course, students will be able to
CO1	Develop algorithmic solutions to simple computational problems
CO2	Develop simple console application in python
CO3	Develop python program by applying control structure and decompose program into functions.
CO4	Represent compound data using python lists, tuples, and dictionaries.
CO5	Read and write data from/to files in Python.

COs CO1		PROGRAMOUTCOMES(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	3	3	3	3	2	2	2	3	2	1
CO2	3	2	3	3	2	3	3	3	3	2	2	3	2	2
CO3	3	3	2	2	3	3	2	2	1	2	1	3	2	2
CO4	3	3	3	3	1	2	3	3	2	2	2	2	2	1
CO5	3	2	3	2	3	3	3	2	2	2	2	3	3	2

GF4106	ENGINEERING GRAPHICS	L	Т	Р	С
0124100		2	0	4	4
OBJECTIVI	ES evelop in students, graphic skills for communication of concepts, ideas and design neering products prose them to existing national standards related to technical drawings.	of			
CONCEPTS	AND CONVENTIONS (Not for Examination)				1
Importance of conventions dimensionin	of graphics in engineering applications – Use of drafting instruments – B and specifications – Size, layout and folding of drawing sheets – Lettering an g.	IS d			
UNIT I	PLANE CURVES AND FREEHAND SKETCHING				7+12
Basic Geome parabola and of square and Hand sketchi views- Freeh	trical constructions, Curves used in engineering practices: Conics – Construction hyperbola by eccentricity method – Construction of cycloid – construction circle – Drawing of tangents and normal to the abovecurves. Visualization conc ng: Visualization principles –Representation of Three-Dimensional objects – and sketching of multiple views from pictorial views of objects	n of of in epts a - La	ellip ivolu and F yout	ites ites iree of	CO1
UNIT II	PROJECTION OF POINTS, LINES AND PLANE SURFACE				6+12
Orthographic straight lines and true incl surfaces) incl	projection- principles-Principal Planes-First angle projection-projection of points. (only First angle projections) inclined to both the principal planes - Determination of inations by rotating line method and traces Projection of planes (polygonal ined to both the principal planes by rotating object method.	Proje f true and	ectior e leng circu	ı of çths ılar	CO2
UNIT III	PROJECTION OF SOLIDS				5+12
Projection of inclined to on	simple solids like prisms, pyramids, cylinder, cone and truncated solids when thea e of the principal planes by rotating object method.	xis is	5		CO3
UNIT IV	PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OFSUR	FAC	CES		6+12
Sectioning of principal plan surfaces of sin	E above solids in simple vertical position when the cutting plane is inclined to the sand perpendicular to the other — obtaining true shape of section.Developm mple and sectioned solids – Prisms, pyramids cylinders and cones.	heon ent o	e of of late	the eral	CO4
UNIT V	ISOMETRIC AND PERSPECTIVE PROJECTIONS				6+12
Principles of solids - Prism Perspective p	isometric projection — isometric scale –Isometric projections of simple solids as, pyramids, cylinders, cones- combination of two solid objects in simple vertica rojection of simple solids-Prisms, pyramids and cylinders by visual ray method.	and tr	runca sitior	ted 1s -	CO5
	TOT	AL :	: 90 I	PER	IODS
TEXT BOOI	KS				
1. Natar Ninth	ajan K.V., —A text book of Engineering Graphicsl, Dhanalakshmi Publishers, Edition 2016	Chen	nai,T	Wen	ity

 Venugopal K. and Prabhu Raja V., —Engineering Graphics, New Age International (P) Limited, 2011.

REFERENCE BOOKS

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019.
- 2. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
- 3. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2018.
- Luzzader, Warren.J. and Duff, John M., —Fundamentals of Engineering Drawing with an introduction to Interactive Comput er Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 5. N S Parthasarathy and Vela Murali, "Engineering Graphic", Oxford University, Press, New Delhi, 2015.
- 6. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.

COUR	RSE OUTCOMES
Upon	completion of the course, students will be able to
CO1	Understand the fundamentals and standards of Engineering graphics
CO2	Perform freehand sketching of basic geometrical constructions and multiple views of objects
CO3	Understand the concept of orthographic projections of lines and plane surfaces
CO4	Draw the projections of section of solids and development of surfaces
CO5	Visualize and to project isometric and perspective sections of simple solids

COs					PR	OGRA	M OUT	[COM]	ES (PO	s)			PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	3	-	-	-	-	-	-	-	1	1	1	3	2		
CO2	3	3	-	-	-	-	-	-	-	1	1	1	3	2		
CO3	3	3	-	-	-	-	-	-	-	1	1	1	3	2		
CO4	3	3	-	-	-	-	-	-	-	1	1	1	3	2		
CO5	3	3	-	-	-	-	-	-	-	1	1	1	3	2		

GE4151

அலகு ၊ மொழி மற்றும் இலக்கியம்	3
இந்திய மொழிக் குடும்பங்கள் திராவிட மொழிகள் - தமிழ் ஒரு செம்மொழி த	மிழ்
செவ்விலக்கியங்கள்- சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை- சங்க	_
இலக்கியத்தில் பகிர்தல் அறம்- திருக்குறளில் மேலாண்மைக் கருத்துக்கள் தமி)ழ்க்
காப்பியங்கள்- தமிழகத்தில் சமண பௌத்த சமயங்களின் தாக்கம- பக்தி இலக்கிட	ـــــــــــــــــــــــــــــــــــــ
ஆழ்வார்கள் மற்றும் நாயன்மார்கள் - சிற்றிலக்கியங்கள் -தமிழில் ந	പ്ത
இலக்கியத்தின் வளர்ச்சி - தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்	றும்
பாரதிதாசன் ஆகியோரின் பங்களிப்பு.	
அலகு	3
நடுகல் முதல் நவீன சிற்பங்கள் வரை - ஐம்பொன் சிலைகள்- பழங்குடியினர் மற்	றும்
அவர்கள் தயாரிக்கும் கைவினைப் பொருட்கள் பொம்மைகள் - தேர் செய்யும் கலை	ಖ
சுடுமண் சிற்பங்கள் நாட்டுப்புறத் தெய்வங்கள்- குமரிமுனையில் திருவள்ளுவர்	
சிலை - இசைக் கருவிகள் - மிருதங்கம். பறை, வீணை, யாழ். நாதஸ்வரம்	
தமிழர்களின் சமூக பொருளாதார வாழ்வில் கோவில்களின் பங்கு	
அலகு III நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக்கூத்து,	3
 தெருக்கூத்து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, ஒயிலாட்ட	_ம்,.
தோல்பாவைக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், தமிழர்க	ரின்
விளையாட்டுகள்.	
அலகு IV தமிழர்களின் திணைக் கோட்பாடுகள்	3
தமிழகத்தின் தாவரங்களும், விலங்குகளும் -தொல்காப்பியம் மற்றும் ச	ங்க
இலக்கியத்தில் அகம் மற்றும் புறக் கோட்பாடுகள் -தமிழர்கள் போற்	றிய
அறக்கோட்பாடு -சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் - சங்கக	ால
நகரங்களும் துறை முகங்களும் - சங்ககாலத்தில் ஏற்றுமதி மற்றும்	
இறக்குமதி -கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி	
இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் அலகு ∨ தமிழர்களின் பங்களிப்பு	3
இந்திய விடுதலைப்போரில் தமிழர்களின் பங்கு - இந்தியாவின் பிறப்பகுதிக	ரில்
தமிழ்ப் பண்பாட்டின் தாக்கம்- சுயமரியாதை இயக்கம் - இந்திய மருத்துவத்தில்,	
சித்த மருத்துவத்தின் பங்கு - கல்வெட்டுகள், கையெழுத்துப்படிகள் தமிழ்ப்	
புத்தகங்களின் அச்சு வரலாறு	
TOTAL: 15 PERIC	DS

TEXT-CUM REFERENCE BOOKS
1. தமிழக வரலாறு - மக்களும் பண்பாடும் - கே.கே. பிள்ளை (வெளியீடு தமிழ்நாடு
பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
2. கணினித்தமிழ் - முனைவர் இல சுந்தரம் (விகடன் பிரசுரம்).
3. கீழடி - வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை
வெளியீடு
4. பொருநை - ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of
Tamil Studies.
7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by:
International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by:International Institute of
Tamil Studies.)
9. Keeladi - 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:Department of
Archaeology & Tamil Nadu Text Book and Educational Services Corporation,
Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The
Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and
Educational Services Corporation, Tamil Nadu)
12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) – Reference
Book

GE4151

HERITAGE OF TAMILS

L T P C 1 0 0 1

3

3

UNIT I LANGUAGE AND LITERATURE

Language Families in India - Dravidian Languages – Tamil as a Classical Language – Classical Literature in Tamil – Secular Nature of Sangam Literature – Distributive Justice in Sangam Literature - Management Principles in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land - Bakthi Literature Azhwars and Nayanmars - Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan.

UNIT II

HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE

Hero stone to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of temple car making - - Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments -Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in Social and Economic Life of Tamils.

UNIT III

FOLK AND MARTIAL ARTS

Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV

THINAI CONCEPT OF TAMILS

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIANCULTURE

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

TOTAL: 15 PERIODS

TEXT-CUM REFERENCE BOOKS

1. தமிழக வரலாறு - மக்களும் பண்பாடும் - கே.கே. பிள்ளை (வெளியீடு தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).

2. கணினித்தமிழ் - முனைவர் இல சுந்தரம் (விகடன் பிரசுரம்).

3. கீழடி - வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)

4. பொருநை - ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)

3

3

3

5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print) 6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies. 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies). 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.) 9. Keeladi - 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu) 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author) 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu) 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) – Reference Book

GE4107	PYTHON PROGRAMMING LABORATORY	L	T	P	0
		0	0	4	
OBJECTIV	ES				
 ✤ 10 v ♣ To it 	and a construction programs with conditionals and loops				
↔ Iuse	Superiors for structuring Python programs				
* Osc	esent compound data using Python lists tuples and dictionaries				
ReprRead	and write data from/to files in Python.				
LIST OF EX	PERIMENTS				
1. Write	an algorithm and draw flowchart illustrating mail merge concept.				
2. Write prob	an algorithm, draw flowchart and write pseudo code for a real life or scientific or ems	rtechnio	cal		
3. Scie	tific problem-solving using decision making and looping.				U.
	Armstrong number, palindrome of a number, Perfect number.				
4. Sim	le programming for one dimensional and two-dimensional arrays.				
	Transpose, addition, multiplication, scalar, determinant of a matrix				
5. Progra	m to explore string functions and recursive functions.				
6. Utili	ing Functions' in Python				
	Find mean, median, mode for the given set of numbers in a list.				
	Write a function dups to find all duplicates in the list.			C	02
	Write a function unique to find all the unique elements of a list.				
	Write function to compute gcd, lcm of two numbers.				
7. Demo	nstrate the use of Dictionaries and tuples with sample programs.				
8. Imple	nent Searching Operations: Linear and Binary Search.				
9. To se	rt the n' numbers using: Selection, Merge sort and Insertion Sort.				
10. Find	the most frequent words in a text of file using command line arguments.				
11. Dem	onstrate Exceptions in Python.		_	C	0.
12. Appl	cations: Implementing GUI using turtle, pygame.				
	ΤΟ	FAL: 6	60 PH	ERIO	D

- Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford UniversityPress, 2019
- Allen B. Downey, Think Python: How to Think Like a Computer Scientist^I, Second Edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016.
- 3. Shroff —Learning Python: Powerful Object-Oriented Programming; Fifth edition, 2013.
- 4. David M.Baezly Python Essential Reference . Addison-Wesley Professional; Fourth edition, 2009.
- 5. David M. Baezly Python Cookbook O'Reilly Media; Third edition (June 1, 2013)

WEB REFERENCES

1.	http://www.edx.org					
COURSE OUTCOMES						
Upon completion of the course, students will be able to						
CO1	Develop simple console applications through python with control structure and functions					
CO2	Use python built in data structures like lists, tuples, and dictionaries for representing compound data.					
CO3	Read and write data from / to files in Python and applications of python.					

COs		PROGRAMOUTCOMES(POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2	2	3	3	-	-	-	-	2	2	3	2	1
CO2	3	2	3	3	2	-	-	-	-	2	2	3	2	2
CO3	3	3	2	2	3	-	-	-	-	2	1	3	2	2
BC/100	DUVSICS AND CHEMISTRY I ADODATODY	L	Т	Р	C									
---	---	-------	-------	-----	----	--								
D54108		0	0	4	2									
OBJECTIVES														
The students will	ll be trained to perform experiments to study the following.													
The Pro	perties of Matter													
 The Opt 	ical properties, Characteristics of Lasers & Optical Fibre													
✤ Electric:	al & Thermal properties of Materials													
Enable t	he students to enhance accuracy in experimental measurements.													
 To make volumet 	e the student to acquire practical skills in the determination of water quality para ric analysis	amete	ersth	oug	h									
✤ Instrum	ental method of analysis such as potentiometry, conductometry and PH metry													
LIST OF EXPI	ERIMENTS – PHYSICS													
(A minimum of	5 experiments to be performed from the given list)													
 Determination of Young's modulus of the material of the given beam by Non-uniform bending method. Determination of Young's modulus of the material of the given beam by uniform bending method. Determination of rigidity modulus of the material of the given wire using torsion pendulum. 														
 4. Determination of wavelength of mercury spectra using Spectrometer and grating. 5. Determination of dispersive power of prism using Spectrometer. 6. (a) Determination of wavelength and particle size using a laser. (b) Determination of Numerical and acceptance angle of an optical fibre. 7. Determination of energy band gap of the semiconductor. 8. Determination of coefficient of thermal conductivity of the given bad conductor using Lee's disc. 9. Determination of Hysteresis loss in a ferromagnetic materials. 														
1. Determin	ation of thickness of a thin sheet / wire – Air wedge method			C	01									
LIST OF EXPI	ERIMENTS – CHEMISTRY													
(A minimum of	6 experiments to be performed from the given list)													
 Determina Estimatio Determina 	ation of chloride content of water sample by argentometric method. n of copper content of the given solution by Iodometry. ation of strength of given hydrochloric acid using pH meter.			C	03									
 4. Determini 5. Estimatio 6. Determin 7. Conducto 	ation of strength of acids in a mixture of acids using conductivity meter. n of iron content of the given solution using potentiometer. ation of molecular weight of polyvinyl alcohol using Ostwald viscometer. metric titration of strong acid vs strong base.			C	04									
8. Estimatio sample.	n of HCl using Na ₂ CO ₃ as primary standard and determination of alkalinity in w	ater												
9. Determin	ation of total, temporary & permanent hardness of water by EDTA method.			C	05									
10. Determination of DO content of water sample by Winkler's method.														
DEMONST	TRATION EXPERIMENTS			1										
		1.		T										
1. Estimatio thiocvar	n of iron content of the water sample using spectrophotometer (1,10-Phenanthronate method).	oline	/	CO	03									

COUR	RSE OUTCOMES
Upon	completion of the course, students will be able to
	Able to understand the concept about the basic properties of matter like stress, strain and typesof moduli.
CO1	Able to understand the concept of optics like reflection, refraction, diffraction by using spectrometer
	grating.
	Able to understand the thermal properties of solids, specific heat and some models for specificheat
CO2	calculation.
	Able to understand the working principle of laser components and working of different lasersystem.
	Able to understand the phenomenon of light, applications of fibre optics.
CO3	Able to understand the concept of determining the pH value by using pH meter.
0.05	Able to understand the concept about the amount of chloride present in the given sample ofwater.
	Able to understand the concept of determining the emf values by using potentiometer
CO4	Able to understand the concept about the measurement of conductance of strong acid andstrong base by
	using conductivity meter.
	Able to understand the amount of dissolved oxygen present in the water.
CO5	Able to understand the concept of estimation of hardness of water by EDTA method. Able to
	understand the concept of estimation of alkalinity in water sample.

COs		PROGRAM OUTCOMES (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	2	2	1	1	1	3	2	2	3	2	2
CO2	3	1	2	1	1	1	1	1	2	1	1	2	2	2
CO3	3	1	2	1	2	2	2	1	2	1	1	1	2	1
CO4	3	2	1	1	2	1	1	1	2	1	1	2	2	1
CO5	3	2	1	1	1	2	2	1	2	1	2	1	2	2

HS4201

OBJECTIVES

- ✤ To engage learners in meaningful language activities to improve their LSRW skills
- ✤ To enhance learners' awareness of general rules of writing for a specific purpose
- To develop analytical thinking skills for problem solving in communicative contexts
- ✤ To help learners understand the purpose, audience, contexts of different types of writing
- ✤ To demonstrate an understanding of job applications and interviews for internship and placements

UNIT I MAKING COMPARISONS 9 Listening - Evaluative Listening: Advertisements, Product Descriptions - Audio / video - Listening and filling a Graphic Organiser – Choosing a product or service by comparison; Speaking – Marketing a product, Persuasive Speech Techniques; Reading – Reading advertisements, user manuals, brochures; Writing – Professional emails, Email etiquette - Compare and Contrast Essay - Writing definitions; Grammar -**CO1** Prepositional phrases; Vocabulary - Contextual meaning of words. UNIT II **EXPRESSING CASUAL RELATIONS IN SPEAKING AND WRITING** 9 Listening – Listening to longer technical talks and completing gap filling exercises – Listening to technical information from podcasts – Listening to process/event descriptions to identify cause & effects – Speaking - Describing and discussing the reasons of accidents or disasters based on news reports; Reading - Reading longer technical texts - Cause and Effect Essays - Letters/ emails of complaint; Writing - Purpose CO2 statements - Writing responses to complaints; Grammar - Impersonal passive, Infinitive and Gerunds; Vocabulary - Word Formation (Noun-Verb-Adj-Adv). **UNIT III PROBLEM SOLVING** 9 Listening - Listening to / Watching movie scenes/ documentaries depicting a technical problem and suggesting solutions; Speaking – Group Discussion (based on case studies) – techniques and strategies, Reading – Case Studies, excerpts from literary texts, news reports etc; Writing – Letter to the Editor, CO3 Checklists, Problem solution essay – Argumentative Essay; Grammar – Error correction – If conditional sentences; Vocabulary - Compound Words, Sentence Completion. UNIT IV **REPORTING OF EVENTS AND RESEARCH** 9 Listening - Listening comprehension based on news reports and documentaries - paraphrasing and summarising; Speaking – Interviewing, presenting an oral report, Mini presentations on select topics; Reading – Newspaper articles; Writing – Recommendations, Transcoding charts and graphs Transcoding **CO4** Accident Report, Survey Report Grammar - Reported Speech, Subject-verb agreement, Vocabulary -Conjunctions – use of prepositions. UNIT V PRESENTING IDEAS OR INFORMATION COGENTLY 9 Listening – Listening to technical talks, Presentations, Formal job interviews, analysis of the interview performance; Speaking – Participating in a Role play, (interview/telephone interview), virtual interviews, making presentations with visual aids; Reading - Company profiles, Statement of Purpose (SOP), an excerpt **CO5** of interview with professionals; Writing – Job / Internship application – Cover letter & Resume; Grammar - Numerical adjectives, Relative Clauses; Vocabulary - Easily confused words.

TOTAL: 45 PERIODS

TEX	XT BOOKS							
1.]	English for Engineers & Technologists (2020 edition) Orient Blackswan Private Ltd. Departmen	nt of English,						
2.	English for Science & Technology Cambridge University Press 2021. Authored by Dr. Veena S	elvam, Dr.						
	Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Depar	rtment of						
	English, Anna University.	N						
3.] DEI	5. Raman. Meenaksm, Snarma. Sangeeta (2022). Technical Communication. Oxford University Press. New Defin.							
NĽ	ERENCE BOOKS							
1. 1	mprove Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, New Del	hi.						
2. 1	Learning to Communicate – Dr. V. Chellammal. Allied Publishers, New Delhi, 2003							
3.	. Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.							
4 . 1	. Developing Communication Skills by Krishna Mohan, Meera Bannerji- Macmillan India Ltd. 1990, Delhi.							
5.	5. Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford University Press. New Delhi.							
CO	URSE OUTCOMES							
Upo	n completion of the course, students will be able to							
CO	To compare and contrast products and ideas in technical texts.							
CO	To identify cause and effects in events, industrial processes through technical texts.							
CO	To analyse problems in order to arrive at feasible solutions and communicate them orally and in the written format.							
CO	To report events and the processes of technical and industrial nature.							
CO	To present opinions in a planned and logical manner, and draft effective resumes in context	of job search.						
	MAPPING OF COs WITH POs							
	DROCRAM OUTCOMES (DOs)	PROGRAM SPECIFIC						

Cos			SPECIFIC OUT COMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	1	1	-	1	1	-	1	2	2	2	2	2
CO2	-	-	1	1	-	1	1	-	1	2	2	2	2	2
CO3	-	-	2	1	-	-	1	-	1	3	2	2	2	2
CO4	-	-	2	1	-	2	2	1	2	3	2	3	2	2
CO5	-	-	1	2	-	2	2	1	1	3	2	3	1	1

MA4202

STATISTICS AND NUMERICAL METHODS

OBJECTIVES

- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- ✤ To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT I	TESTING OF HYPOTHESIS	9+3				
Sampling distrib	butions – Tests for single mean, proportion and difference of means (Large and small samples) –					
Tests for single	variance and equality of variances - Chi-square test for goodness of fit - Independence of	CO1				
attributes.						
UNIT II	DESIGN OF EXPERIMENTS	9+3				
One-way and t	wo-way classifications - Completely randomized design - Randomized block design - Latin					
square design –	2 ² factorial design.	CO2				
UNIT III	SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS	9+3				
Solution of algebraic and transcendental equations by Newton Raphson method – Solution of linear system						
of equations – Gauss elimination method – Pivoting – Gauss Jordan method – Iterative methods of Gauss						
Jacobi and Gau	ss Seidel – Eigenvalue of a matrix by Power method.					
UNIT IV	INTERPOLATION AND NUMERICAL CALCULUS	9+3				
Interpolations	- Lagrange's, Newton's forward and backward Interpolations - Approximation of					
derivatives us	ing interpolation polynomials - Numerical single and double integrations using	CO4				
Trapezoidal ar	nd Simpson's 1/3 rules.	04				
UNIT V	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS	9+3				
Single step me	thods: Taylor's series method - Euler's method - Modified Euler's method - Fourth order					
Runge-Kutta m	nethod for solving first order differential equations - Multi step method: Milne's predictor					
corrector meth	od for solving first order differential equations.	CO5				
	TOTAL : 60 PER	IODS				
TEXT BOOKS	5					

- 1. Grewal. B.S. and Grewal. J.S., "Numerical Methods in Engineering and Science", 10th Edition, Khanna Publishers, New Delhi, 2015.
- 2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.
- 3. Kandasamy P., Thilagavathi K and Gunavathi K., "Statistical and numerical methods", S. Chand & Company Ltd. Sultan Chand & Company, 2001.

REFERENCE BOOKS

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 2006.
- 4. Gupta S.C. and Kapoor V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 12th Edition, 2020.
- 5. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics", Tata McGraw Hill Edition, 4th Edition, 2012.
- 6. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", 9th Edition, Pearson Education, Asia, 2010.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Apply the concept of testing of hypothesis for small and large samples in real life problems.
CO2	Apply the basic concepts of classifications of design of experiments in the field of agriculture.
CO3	Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.
CO4	Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
CO5	Solve the ordinary differential equations with initial conditions by using certain techniques with engineering applications.

	MAPPING OF COs WITH POs AND PSOs													
COs					PROGRAM SPECIFIC OUTCOMES (PSOs									
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2
CO1	3	3	3	1	2	3	-	-	3	2	3	3	2	1
CO2	3	3	3	2	2	1	-	-	I	-	1	2	1	0
CO3	3	3	3	2	2	1	-	-	-	-	1	2	2	1
CO4	3	3	3	2	2	1	-	-	-	-	1	2	1	0
CO5	3	3	3	2	1	1	-	-	-	-	1	2	1	0

PH4253

MATERIALS SCIENCE

L	Т	Р	С
3	0	0	3

9

9

9

9

9

CO5

OBJECTIVES

To introduce the essential principles of materials science for mechanical and related engineering * applications.

UNIT I PHASE DIAGRAMS

Solid solutions - Hume Rothery's rules - the phase rule - single component system - one- component system of iron - binary phase diagrams - isomorphous systems - the tie-line rule - the lever rule - application to **CO1** isomorphous system - eutectic phase diagram - peritectic phase diagram - other invariant reactions - free energy composition curves for binary systems - microstructural change during cooling.

UNIT II FERROUS ALLOYS

The iron-carbon equilibrium diagram - phases, invariant reactions - microstructure of slowly cooled steels eutectoid steel, hypo and hypereutectoid steels - effect of alloying elements on the Fe-C system - diffusion in solids - Fick's laws of diffusion- mechanisms of diffusion, temperature dependence of diffusivity - steady and CO2 non-steady state diffusion - factors that influence diffusion - Properties and applications of copper alloys, aluminium alloys and titanium alloys. Phase transformations - T-T-T-diagram for eutectoid steel - pearlitic, baintic and martensitic transformations - tempering of martensite

UNIT III **MECHANICAL PROPERTIES**

Tensile test - plastic deformation mechanisms - slip and twinning - role of dislocations in slip - strengthening methods - strain hardening - refinement of the grain size - solid solution strengthening - precipitation hardening - creep resistance - creep curves - mechanisms of creep- creep-resistant materials - fracture - the CO3 Griffith criterion - critical stress intensity factor and its determination- Fatigue failure - fatigue tests - hardness - Rockwell and Brinell hardness - Knoop and Vickers micro hardness. Steps in materials selection process, Factors influencing materials selection, Case studies.

UNIT IV

MAGNETIC, DIELECTRIC AND SUPERCONDUCTING MATERIALS Ferromagnetism - domain theory - types of energy - hysteresis - hard and soft magnetic materials - ferrites -

dielectric materials - types of polarization - Langevin - Debye equation - frequency effects on polarization -**CO4** dielectric breakdown - insulating materials - Ferroelectric materials - superconducting materials and their properties.

UNIT V **NEW MATERIALS**

Historical perspective- Material properties and qualities, Classification of Materials - Ceramics - types and applications - composites: classification, role of matrix and reinforcement, processing of fibre reinforced plastics - metallic glasses: types, glass forming ability of alloys, melt spinning process, applications - shape memory alloys: phases, shape memory effect, pseudo elastic effect, NiTi alloy, applications – nano materials: preparation (bottom up and top down approaches), properties and applications.

TOTAL: 45 PERIODS

TEXT	BOOK	KS												
1. Bal 2. Raş 3. Raş	 Balasubramaniam, R. Callister's Materials Science and Engineering. Wiley India Pvt. Ltd., 2014. Raghavan, V. Physical Metallurgy: Principles and Practice. PHI Learning, 2015. Raghavan, V. Materials Science and Engineering: A First course. PHI Learning, 2015. 													
REFE	RENCI	E BOO	KS											
 Askeland, D. Materials Science and Engineering. Brooks/Cole, 2010. Smith, W.F., Hashemi, J. & Prakash, R. Materials Science and Engineering. Tata McGraw Hill Education Pvt. Ltd., 2014. Wahab, M.A. Solid State Physics: Structure and Properties of Materials. Narosa Publishing House, 2009. 														
Upon o	comple	tion of	the cou	rse, stu	dents v	will be a	able to							
CO1	Unde applie	rstand t cations	he vario in mate	ous form rials sys	ns of so stem.	olid solu	itions, e	quilibri	um, and	d differ	ent phas	se diagra	ams and t	heir
CO2	Understand the Fe - Fe_3C phase diagram, invariant reactions, diffusion of solids, mechanism, factors that influence diffusion, properties of copper, aluminium and titanium alloys and various microstructures of ferrous and their alloys.													
CO3	Understand the mechanical properties of materials, measurement and materials selections process and their case studies.													
CO4	Understand the properties of different types of magnetic materials - Ferromagnetic, Anti ferro magnetic, Ferrites. Understand the phenomenon of superconductivity, and its properties of superconductors and the properties of dielectric materials, various types of polarization and loss in dielectric materials.													
CO5	Unde glass, apply	rstand t , SMA, v to deve	he impo Nano n elop allo	ortance naterials bys of v	of vario 5. Their arious c	ous new histori compos	er mate cal pers ition wi	erials, li spective th desir	ke cera: e, prope able pr	mics, co rties, cl operties	omposit assifica	e materi tion and	ials, meta l fabricat	illic ion and
				N	IAPPI	NG OF	COs V	VITH F	POs AN	D PSO	S			
													PRO SPF	GRAM CIFIC
COs				P]	ROGR	AM OU	UTCON	AES (P	Os)				OUT (P	COMES SOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	3	3	-	-	-	-	3	3	3
CO2	-	-	-	-	-	3	3	-	-	-	-	3	3	3
CO3	-	-	-	-	-	3	3	-	-	-	-	3	3	3
CO4	-	-	-	-	-	3	3	-	-	-	-	3	3	3
CO5	-	-	-	-	-	3	3	-	-	-	-	3	3	3

		_	_	-	C		
GE4204	ENVIRONMENTAL SCIENCE AND ENGINEERING	L	Т	Р	C		
		3	0	0	3		
OBJECT	IVES						
• 1 • T	b appreciate the importance of environment by assessing its impact on the human work	d;env	visic	n			
	a find and implement scientific technological economic and political solutions to						
• 1	s find and implement scientific, technological, economic and political solutions to						
ei • T	ivironmental problems.						
* 1	apply the integrated themes and biodiversity, natural resources, pollution control and	was	te				
m • m	anagement.	c					
* 1	analyse the dynamic processes and understand the features of the earth's interior and	surt	ace.				
UNIT I	ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY				9		
Environmental protection – Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Foodchains, food webs and ecological pyramids – Ecological succession – Types, characteristic features, structure and function of forest, grass land, desert and aquatic (ponds, lakes, rivers, oceans, estuaries) ecosystem. Biodiversity – Definition – Genetic, species and ecosystem diversity – Value of biodiversity – Consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity atglobal, national and local levels – India as a mega diversity nation – Hot spots of biodiversity –Threats to biodiversity – Habitat loss, poaching of wild life, human-wildlife conflicts – Wildlife protection act and forest conservation act – Endangered and endemic species – Conservation of biodiversity – In-situ and ex-situ conservation of biodiversity.							
UNIT II	ENVIRONMENTAL POLLUTION				9		
Definition (c) Soil pc Solid wast waste – Rc Floods, ear study of lo	- Causes, effects and control measures of: (a) Air pollution (b) Water pollution llution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear e management: causes, effects and control measures of municipal solidwastes – Pro- le of an individual in prevention of pollution – Pollution casestudies – Disaster mar thquake, cyclone, tsunami and landslides – Field cal polluted site – Urban / Rural / Industrial / Agricultural.	n r haz blem nager	zards 1s of men	8 – Fe- t –	CO2		
UNIT III	NATURAL RESOURCES				9		
UNIT III NATURAL RESOURCES 9 Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overutilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources: Uses and exploitation – Environmental effects of extracting and using mineral resources – Food resources: World food problems – Changes caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Energy resources: Growing energy needs – Renewable and non-renewable energy sources – Use of alternate energy sources – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain – case studies							
UNIT IV	SOCIAL ISSUES AND THE ENVIRONMENT				9		
From unsustainable to sustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization –Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation — Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness.							

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies

TOTAL : 45 PERIODS

TEXT BOOKS

- 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).
- 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004).
- **3**. Dr. A. Sheik Mideen and S.Izzat Fathima, Environmental Science and Engineering, Airwalk Publications, Chennai, (2018).

REFERENCE BOOKS

- 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).
- 2. Erach Bharucha, "Textbook of Environmental Studies", Universities Press (I) Pvt, Ltd,Hydrabad, (2015).
- **3.** G. Tyler Miller, Scott E. Spoolman, "Environmental Science", Cengage Learning India Pvt.Ltd, Delhi, (2014).
- 4. R. Rajagopalan, Environmental Studies-From Crisis to Cure', Oxford University Press, (2005).
- 5. Anubha Kaushik , C.P. Kaushik, "Perspectives in Environmental Studies", New AgeInternational Pvt. Ltd, New Delhi, (2004).
- 6. Frank R. Spellman, "Handbook of Environmental Engineering", CRC Press, (2015).

COURSE OUTCOMES

Upon	Upon completion of the course, students will be able to					
CO1	To obtain knowledge about environment, ecosystems and biodiversity.					
CO2	To take measures to control environmental pollution.					
CO3	To gain knowledge about natural resources and energy sources.					
CO4	To find and implement scientific, technological, economic and political solutions to environmental problems.					
CO5	To understand the impact of environment on human population.					

MAPPING OF COs WITH POs AND PSOs

	PROGRAMOUTCOMES(POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	2	3	3	3	3	3	2	2	2	3	2	1		
CO2	3	2	3	3	2	3	3	3	3	2	2	3	2	2		
CO3	3	3	2	2	3	3	2	2	1	2	1	3	2	2		
CO4	3	3	3	3	1	2	3	3	2	2	2	2	2	1		
CO5	3	2	3	2	3	3	3	2	2	2	2	3	3	2		

9

CO5

DE 4251	BASIC ELECTRICAL AND ELECTRONICS	L	Т	Р	С					
DE4251	ENGINEERING	3	0	0	3					
 To introduce the basics of electric circuits and analysis To impart knowledge in the basics of working principles and application of electrical machines To introduce analog devices and their characteristics To educate on the fundamental concepts of digital electronics To introduce the functional elements and working of measuring instruments 										
UNIT I	ELECTRICAL CIRCUITS				9					
DC Circuits: Circ –Independent and sources only (Ste Value, Instantane analysis of RLC c	uit Components: Conductor, Resistor, Inductor, Capacitor – Ohm's Law - Kirch I Dependent Sources – Simple problems- Nodal Analysis, Mesh analysis with ady state). Introduction to AC Circuits and Parameters: Waveforms, Average sous power, real power, reactive power and apparent power, power factor – circuits (Simple problems only).	ihoff Indej valu Stead	's La pend e, RI dy st	iws ent MS ate	CO1					
UNIT II	UNIT II ELECTRICAL MACHINES									
Construction and Working principle- DC Separately and Self excited Generators, EMF equation, Types and Applications. Working Principle of DC motors, Torque Equation, Types and Applications. Construction, Working principle and Applications of Transformer, Three phase Alternator, Synchronous motor and Three Phase Induction Motor										
UNIT III	ANALOG ELECTRONICS				9					
Resistor, Inductor Junction Diodes, 2 MOSFET,IGBT –	and Capacitor in Electronic Circuits- Semiconductor Materials: Silicon &Gern Zener Diode –Characteristics Applications – Bipolar Junction Transistor-Biasing, - Types, I-V Characteristics and Applications, Rectifier and Inverters	aniu , JFE	m – 1 T, SC	PN CR,	CO3					
UNIT IV	DIGITAL ELECTRONICS				9					
Review of numbe representation of (Simple Problems	r systems, binary codes, error detection and correction codes, Combinational log logic functions-SOP and POS forms, K-map representations - minimization usits only)	gic - ng K	map	s	CO4					
UNIT V	MEASUREMENTS& INSTRUMENTATION				9					
Functional elemer Moving Iron mete DSO- Block diagr	nts of an instrument, Standards and calibration, Operating Principle, types - Movers, Measurement of three phase power, Energy Meter, Instrument Transformers- ram- Data acquisition.	ing (- CT	Coil a and l	ınd PT,	C O 5					
	ΤΟΤΑ	L:4	5 PE		ODS					
TEXT BOOKS										
 D.P. Kotharti S.K.Bhattacl 2017. 	and I.J Nagarath, Basic Electrical and Electronics Engineering, McGraw Hill, 20 harya "Basic Electrical and Electronics Engineering", Pearson Education)16, ' , Sec	Thirc ond	l Ed Edi	lition. ition,					
 Sedha R.S., ⁶ James A .Sv A.K. Sawh Instrumentat 	"A textbook book of Applied Electronics", S. Chand & Co., 2008 oboda, Richard C. Dorf, "Dorf's Introduction to Electric Circuits", Wiley ney, PuneetSawhney 'A Course in Electrical & Electronic M ion', DhanpatRai and Co, 2015.	 Ieası	ırem	ent	s &					

REFERENCE BOOKS

1. Kothari DP and I.J Nagrath, "Basic Electrical Engineering", Fourth Edition, McGraw Hill Education, 2019

- 2. Thomas L. Floyd, 'Digital Fundamentals', 11th Edition, Pearson Education, 2017.
- 3. Albert Malvino, David Bates, 'Electronic Principles, McGraw Hill Education; 7th edition, 2017.
- 4. MahmoodNahvi and Joseph A. Edminister, "Electric Circuits", Schaum' Outline Series, McGraw Hill, 2002.
- 5. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw-Hill, New Delhi, 2010

COURSE OUTCOMES

Upon	Upon completion of the course, students will be able to										
CO1	Compute the electric circuit parameters for simple problems										
CO2	Explain the working principle and applications of electrical machines										
CO3	Analyze the characteristics of analog electronic devices										
CO4	Explain the basic concepts of digital electronics										
CO5	Explain the operating principles of measuring instruments										

COs		PROGRAM OUTCOMES (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	-	-	-	-	-	-	-	-	2	3	3
CO2	3	3	3	-	-	-	-	-	-	-	-	2	3	3
CO3	3	3	3	-	-	-	-	-	-	-	-	2	3	3
CO4	3	3	3	-	-	-	-	-	-	-	-	2	3	3
CO5	3	3	3	-	-	-	-	-	-	-	-	2	3	3

GE4206

ENGINEERING MECHANICS

 L
 T
 P
 C

 3
 2
 0
 4

9+6

9+6

9+6

OBJECTIVES

To develop capacity to predict the effect of force and motion in the course of carrying out the design functions of engineering.

UNIT I STATICS OF PARTICLES

Introduction – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces – Vectorial representation of forces – Vector operations of forces - additions, subtraction, dot product, cross product – Coplanar Forces – rectangular components – Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent systems of forces – Principle of transmissibility.

UNIT II EQUILIBRIUM OF RIGID BODIES

Free body diagram – Types of supports –Action and reaction forces – stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon's theorem – Single equivalent force -Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in three dimensions.

UNIT III PROPERTIES OF SURFACES AND SOLIDS

Centroids and centre of mass – Centroids of lines and areas - Rectangular, circular, triangular areas by integration – T section, I section, - Angle section, Hollow section by using standard formula –Theorems of Pappus - Area moments of inertia of plane areas – Rectangular, circular, triangular areas by integration – T section, I section, Angle section, Hollow section by using standard formula –Parallel axis theorem and perpendicular axis theorem – Principal moments of inertia of plane areas – Principal axes of inertia-Mass moment of inertia –mass moment of inertia for prismatic, cylindrical and spherical solids from first principle – Relation to area moments of inertia.

UNIT IV DYNAMICS OF PARTICLES AND RIGID BODIES

Displacements, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion – Newton's laws of motion – Work Energy Equation.

UNIT V FRICTION AND RIGID BODY DYNAMICS

Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge friction-. Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere.

CO5

9+6

9+6

TOTAL : 45 PERIODS

TEXT BOOKS

1. Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers (In SI Units): Statics and

Dynamics", 8 Edition, Tata McGraw-Hill Publishing company, New Delhi (2004).

2. Hibbeller, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 11th Edition, Pearson Education 2010.

REFERENCE BOOKS

- 1. Bhavikatti, S.S and Rajashekarappa, K.G., "Engineering Mechanics", New Age International (P) Limited Publishers, 1998.
- 2. Irving H. Shames and Krishna Mohana Rao. G., "Engineering Mechanics Statics and Dynamics", 4 Edition, Pearson Education 2006.
- 3. Meriam J.L. and Kraige L.G., "Engineering Mechanics- Statics Volume 1, Dynamics- Volume 2", Third Edition, John Wiley & Sons, 1993.
- 4. Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics", 3 Edition, Vikas Publishing House Pvt. Ltd., 2005.

COURSE OUTCOMES

Upon	Upon completion of the course, students will be able to								
CO1	Illustrate the vectorial and scalar representation of forces and moments								
CO2	Analyse the rigid body in equilibrium								
CO3	Evaluate the properties of surfaces and solids								
CO4	Calculate dynamic forces exerted in rigid body								
CO5	Determine the friction and the effects by the laws of friction								

COs		PROGRAM OUTCOMES (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	-	-	-	-	-	3	3	3	3	3	3
CO2	3	3	3	-	-	-	-	-	3	3	3	3	3	3
CO3	3	3	3	-	-	-	-	-	3	3	3	3	3	3
CO4	3	3	3	-	-	-	-	-	3	3	3	3	3	3
CO5	3	3	3	-	-	-	-	-	3	3	3	3	3	3

GE4251

Т Ρ С 0 1 1 0

3

3

அலகு ၊ | நெசவு மற்றும் பானைத்தொழில்நுட்பம்

சங்க காலத்தில் நெசவுத் தொழில் - பானைத் தொழில்நுட்பம் - கருப்பு சிவப்பு பாண்டங்கள்-பாண்டங்களில் கீறல் குறியீடுகள்.

அலகு ။ வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்

சங்க காலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க காலத்தில் வீட்டுப் பொருட்களில் வடிவமைப்பு -சங்க காலத்தில் கட்டுமான பொருட்களும் நடுகல்லும் சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள் -மாமல்லபுரச் சிற்பங்களும், கோவில்களும் - சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் - நாயக்கர் காலக் கோயில்கள் -மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் - செட்டிநாட்டு வீடுகள்- பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோ- சாரோசெனிக் கட்டிடக் கலை.

அலகு 💷 உற்பத்தித் தொழில் நுட்பம்

கப்பல் கட்டும் கலை - உலோகவியல் - இரும்புத் தொழிற்சாலை -இரும்பை உருக்குதல், எஃகு வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் -- நாணயங்கள் அச்சடித்தல் - மணி உருவாக்கும் தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடி மணிகள் -சுடுமண் மணிகள் - சங்கு மணிகள் - எலும்புத்துண்டுகள் - தொல்வியல் சான்றுகள்-சிலப்பதிகாரத்தில் மணிகளின் வகைகள்,

அலகு 🗤 🛛 வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில் நுட்பம்:

அணை ஏரி, குளங்கள். மதகு - சோழர்காலக் குமுழித் தூம்பின் முக்கியத்துவம் கிணறுகள்-கால்நடை பராமரிப்பு -கால்நடைகளுக்காக வடிவமைக்கப்பட்ட வேளாண்மை மற்றும் வேளாண்மைச் சார்ந்த செயல்பாடுகள் - கடல்சார் அறிவு-மீன்வளம் – முத்து மற்றும் முத்துக்குளித்தல் பெருங்கடல் குறித்த பண்டைய அறிவு அறிவுசார் சமூகம்:

அறிவியல் தமிழ் மற்றும் கணித்தமிழ் அலகு v

அறிவியல் தமிழின் வளர்ச்சி - கணித்தமிழ் வளர்ச்சி – தமிழ் நூல்களை மின்பதிப்பு செய்தல் - தமிழ் மென்பொருட்கள் உருவாக்கம் - தமிழ் இணையக் கல்விக்கழகம் - தமிழ் மின் நூலகம் - இணையத்தில் தமிழ் அகராதிகள் – சொற்குவைத் திட்டம்.

TOTAL: 15 PERIODS

3

3

3

TEXT-CUM REFERENCE BOOKS

1.தமிழக வரலாறு -மக்களும் பண்பாடும் - கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்)

2. கணினித் தமிழ் - முனைவர் இல சுந்தரம். (விகடன் பிரசுரம்).

3. கீழடி -வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)

4. பொருநை - ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)

5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL-(in print)

6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.

7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).

8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)

9. Keeladi - 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)

11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) – Reference Book.

GE4251

TAMILS AND TECHNOLOGY

L T P C 1 0 0 1

UNIT I WEAVING AND CERAMIC TECHNOLOGY

Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)- Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo – Saracenic architecture at Madras during British Period.

UNIT III	MANUFACTURING TECHNOLOGY	3
----------	--------------------------	---

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold- Coins as source of history - Minting of Coins – Beads making-industries Stone beads -Glass beads - Terracotta beads -Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY

Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society.

UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING

Development of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Development of Tamil Software – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries – Sorkuvai Project.

TOTAL: 15 PERIODS

TEXT-CUM REFERENCE BOOKS

பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்)

2. கணினித் தமிழ் - முனைவர் இல சுந்தரம். (விகடன் பிரசுரம்).

3. கீழடி -வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)

4. பொருநை - ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)

5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL-(in print)

6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International

Institute of Tamil Studies.

3

3

3

3

7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).

8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)

9. Keeladi - 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)

11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) – Reference Book.

ENGINEERING PRACTICES LABORATORY

 L
 T
 P
 C

 0
 0
 4
 2

CO3

CO4

OBJECTIVES

	• To provide exposure to the students with hands on experience on various basic engineering prac	tices in
	Civil, Mechanical, Electrical and Electronics Engineering	
T TC		
LIS	OF EXPERIMENTS	
GR	UP A (CIVIL & MECHANICAL)	
Ι	CIVIL ENGINEERING PRACTICE	
	uildings:	
	(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.	
	Plumbing Works:	
	(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.	
	b) Study of pipe connections requirements for pumps and turbines.	
	c) Preparation of plumbing line sketches for water supply and sewage works.	CO1
	d) Hands-on-exercise:	
	Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.	
	e) Demonstration of plumbing requirements of high-rise buildings.	
	Carpentry using Power Tools only:	
	a) Study of the joints in roofs, doors, windows and furniture.	
	b) Hands-on-exercise:	
	Wood work, joints by sawing, planning and cutting.	
Π	MECHANICAL ENGINEERING PRACTICE	
	Welding:	
	a) Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding.	
	b) Gas welding practice	
	Sasic Machining:	
	a) Simple Furning and Faper turning b) Drilling Prostice	
	b) Dinning Flactice	
	a) Forming & Bending	
	b) Model making – Trays and funnels	CO2
	c) Different type of joints.	00-
	Machine assembly practice:	
	a) Study of centrifugal pump	
	b) Study of air conditioner	
	Demonstration on:	
	(a) Smithy operations, upsetting, swaging, setting down and bending. Example – Exercise – Production of hexagonal headed bolt.	
	(b) Foundry operations like mould preparation for gear and step cone pulley.	
	(c) Fitting – Exercises – Preparation of square fitting and V – fitting models.	

GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lamp wiring.
- 3. Stair case wiring
- 4. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.
- 6. Measurement of resistance to earth of an electrical equipment.

IV ELECTRONICS ENGINEERING PRACTICE 1. Study of electronic components and equipment's – Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR. **CO5** 2. Study of logic gates AND, OR, EX-OR and NOT. Generation of Clock Signal. 3. Soldering practice – Components Devices and Circuits – Using general purpose PCB. 4. Measurement of ripple factor of HWR and FWR. **TOTAL: 60 PERIODS** LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS Quantity S.No. **DESCRIPTION OF EQUIPMENT** required CIVIL Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible 15 sets 1. pipes, couplings, unions, elbows, plugs and other fittings. Carpentry vice (fitted to work bench) 2. **15 Nos** 3. Standard woodworking tools 15 Sets. 15 Sets. Models of industrial trusses, door joints, furniture joints 4. 5 each **Power Tools:** (a) Rotary Hammer (b) Demolition Hammer 5. (c) Circular Saw 2 Nos (d) Planer (e) Hand Drilling Machine (f) Jigsaw **MECHANICAL** Arc welding transformer with cables and holders. 1. 5 Nos 2. Welding booth with exhaust facility. 5 Nos Welding accessories like welding shield, chipping hammer, wire brush, etc. 3. 5 Sets Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 4. 2 Nos Centre lathe. 5. 2 Nos 6. Hearth furnace, anvil and smithy tools. 2 Sets 7. Moulding table, foundry tools. 2 Sets 8. Power Tool: Angle Grinder. 2 Nos 9. Study-purpose items: centrifugal pump, air-conditioner. 1 Each **ELECTRICAL** Assorted electrical components for house wiring. 15 Sets 1. 2. Electrical measuring instruments. 10 Sets Study purpose items: Iron box, fan and regulator, emergency lamp. 3. 1 each 4. Megger (250V/500V). 1 No.

	ELECTRONICS								
1.	Soldering guns 10 Nos.	10 Nos.							
2.	Assorted electronic components for making circuits 50 Nos.	50 Nos.							
3.	Small PCBs.	10 Nos.							
4.	Multimeters	10 Nos.							
5.	Study purpose items: Telephone, FM radio, low-voltage power supply	1 each							

2 Nos

Power Tools: (a) Range Finder (b) Digital Live-wire detector

5.

COU Upon	RSE OUTCOMES completion of the course, students will be able to
CO1	Fabricate carpentry components and pipe connections including plumbing works. Use welding equipment's to join the structures.
CO2	Carry out the basic machining operations Make the models using sheet metal works
CO3	Carry out basic home electrical works and appliances.
CO4	Measure the electrical quantities
CO5	Elaborate on the components, gates, soldering practices

COs		PROGRAM OUTCOMES (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	3	-	-	3	-	-	-	-	-	3	1	2
CO2	3	2	3	-	-	3	-	-	-	-	-	3	1	2
CO3	3	1	2	-	-	2	-	-	-	-	-	3	1	2
CO4	3	2	3	3	1	3	1	1	1	1	2	3	1	2
CO5	3	2	3	3	1	2	1	1	1	1	2	3	1	2

			r									
BE	BE4258 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY		L	Т	Р	С						
		LABORATORY	0	0	4	2						
OBJE	CTIVES											
✤ To validate the principles studied in theory by performing experiments in the laboratory												
LIST OF EXPERIMENTS												
1. Verification of Kirchhoff's voltage and current laws												
2. Verification of Thevenin's and Norton's theorem.												
3. Load Test on DC Shunt Motor												
4. Speed Control of DC Shunt Motor												
5. Loa	d Test on	single phase transformer			(CO3						
6. Loa	d test on	three phase squirrel cage induction motor.										
7. Tra	nsistor ba	sed application circuits			_							
8. Half wave rectifier with capacitive filter.												
9. Cha	racteristi	cs of PN Diode.			_	-						
10. Cr	TD and T	ICS OF BJ I										
11. K	1D allu 1	ics of LVDT			- CO5							
12. CI			<u>۱</u> .	60 P	PERI	ODS						
COLU												
COU	KSE OUI	ICOMES										
Upon	completi	on of the course, students will be able toR										
CO1	Underst	and and experimentally verify the basics of electric circuit laws										
CO2	Underst	and and apply circuit theorems and concepts in engineering applications										
CO3	Analyze	and understand the working of AC machines.										
CO4 Understand and analyze the characteristics of diode, transistor and implement transistor ba application.												
CO5	Underst	and and analyze the characteristics of different transducers.										

COs				PRO	GRAM	IOUTC	OMES	(POs)					PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3	3	1	1	1	2	1	3	3	1	2	
CO2	3	3	3	3	3	2	1	1	2	1	3	3	1	2	
CO3	3	3	3	3	3	1	2	1	2	1	3	3	1	2	
CO4	3	3	3	3	3	1	1	1	2	1	3	3	1	2	
CO5	3	3	3	3	3	2	1	1	2	1	3	3	1	2	

		L	Т	Р	С						
MA4352	TRANSFORMS AND COMPLEX FUNCTIONS	3	1	0	4						
OBJECTIVES	9	<u> </u>									
This course is designed to cover topics such as Complex Analysis, Ordinary Differential Equation Transforms and Laplace Transform.											
 To develop an understanding of the standard techniques analytic function and its mapping property. To familiarize the students with complex integration and contour integration techniques which can be u real integrals. To acquaint the students with Differential Equations which are significantly used in engineering products. 											
To acqTo intr	oduce the effective mathematical tools for the solutions of partial differential equa	atior	ng pi 1s tha	it mo	odel						
several	physical processes and to develop Z-transform techniques for discrete time syste	ms									
To app discipli	bly Laplace transforms for solving the problems that occur in various branche	s of	eng	inee	ring						
UNIT I	ANALYTIC FUNCTIONS			9	9+3						
Analytic functi	ons – Necessary and sufficient conditions for analyticity in Cartesian and polar c	oord	linate	s							
- Properties – Harmonic conjugates – Construction of analytic function – Conformal mapping – Mapping by functions $w = Z + C$, CZ, 1/Z - Bilinear transformation											
UNIT II COMPLEX INTEGRATION											
Cauchy's integ	gral theorem - Cauchy's integral formula - Taylor's and Laurent's series - Sin	ngul	aritie	s							
- Residues - Residue theorem - Application of residue theorem for evaluation of real integrals - Use of											
circular contou	r and semi-circular contour(excluding poles on the real line)			(CO2						
UNIT III	ORDINARY DIFFERENTIAL EQUATIONS			9	9+3						
Higher order lin	ear differential equations with constant coefficients - Method of variation of paramet	ers-	-								
Homogenous e	equation of Euler's and Legendre's type – System of simultaneous linear differential of oefficients	equa	itions	(C O 3						
UNIT IV	Z – TRANSFORMS AND DIFFERENCE EQUATIONS			9	9+3						
Z-transforms –	Elementary properties – Inverse Z-transform (using partial fraction and residue	s) –	Initia	ıl							
and final value	e theorems – Convolution theorem – Formation of difference equations – Seations using Z – transform.	oluti	ion c	of (C O 4						
UNIT V	LAPLACE TRANSFORMS			!	9+3						
Existence cond	itions – Transforms of elementary functions – Basic properties - Shifting theorems - t	trans	sforn	ıs							
of derivatives a	nd integrals — Inverse transforms – Convolution theorem – Transform of periodic f	unct	ions	-							
Application to s	olution of linear second order ordinary differential equations with constant coefficie	ents.		(C O 5						
	TOTAI	.:6	0 PE	RIC	DDS						
TEXT BOOK	S										
 Grewal B.S. Kreyszig E 	, Higher Engineering Mathematics, Khanna Publishers, New Delhi, 43 rd Edition, rwin, "Advanced Engineering Mathematics", John Wiley and Sons, 10 th Edition, N	201 New	4. Dell	ıi, 2()16.						

REFERENCE BOOKS

- 1. G Bali N., Goyal M. and Watkins C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- Jain R.K. and Iyengar S.R.K., Advanced Engineering Mathematics, Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. O Neil, P.V. Advanced Engineering Mathematics, Cengage Learning India Pvt., Ltd, New Delhi, 2007.
- 4. Sastry, S.S, "Engineering Mathematics", Vol. I & II, PHI Learning Pvt. Ltd, 4th Edition, New Delhi, 2014
- Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand Analytic functions, conformal mapping & Bilinear transformation.
CO2	Evaluate real integration by Complex integration techniques.
CO3	Apply various techniques in solving ordinary differential equations.
CO4	Use the effective mathematical tools for the solutions of partial differential equations by using Z-transform techniques for discrete time systems.
CO5	Apply Laplace transform and inverse transform of simple functions, properties and various related theorems in solving differential equations with constant coefficients.
	MAPPING OF COs WITH POs AND PSOs

COs		PROGRAM OUTCOMES (POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	2	2	2	1	1	-	-	-	-	1	3	-		
CO2	3	3	3	2	2	2	1	-	-	-	-	1	3	-		
CO3	3	3	3	2	3	3	2	-	-	1	1	3	2	-		
CO4	3	1	1	1	2	1	1	1	2	2	1	0	2	-		
CO5	3	3	3	2	2	2	1	-	-	-	-	1	2	-		

		L	Т	Р	С						
ME4301	FLUID MECHANICS AND MACHINERY	3	0	0	3						
 COURSE OBJECTIVES: To introduce the students about properties of the fluids, behavior of fluids under static conditions. To impart basic knowledge of the dynamics of fluids and boundary layer concept. To expose to the applications of the conservation laws to a) flow measurements b) flow through pipes (boundary and turbulent) and c) forces on pipe bends. To exposure to the significance of boundary layer theory and its thicknesses. To expose the students to basic principles of working of hydraulic machineries and to design Pelton wheel, and Kaplan turbine, centrifugal and reciprocating pumps. UNIT I FLUID PROPERTIES AND FLOW CHARACTERISTICS 											
Properties of fluids – Fluid statics - Pressure Measurements - Buoyancy and floatation – Flow characteristics -											
Eulerian and Lagrangian approach - Concept of control volume and system - Reynold's transportation theorem - Continuity equation, energy equation and momentum equation - Applications.											
UNIT II FLOW THROUGH PIPES AND BOUNDARY LAYER											
Reynold's Experiment - Laminar flow through circular conduits - Darcy Weisbach equation – friction factor - Moody diagram - Major and minor losses - Hydraulic and energy gradient lines - Pipes in series and parallel - Boundary layer concepts - Types of boundary layer thickness.											
UNIT III	DIMENSIONAL ANALYSIS AND MODEL STUDIES				9						
Fundamental dim - Dimensionless p	ensions - Dimensional homogeneity - Rayleigh's method and Buckingham Pi th parameters - Similitude and model studies - Distorted and undistorted models.	neorer	n		CO3						
UNIT IV	TURBINES				9						
Impact of jets - V Principles - Peltor Specific speed - P	elocity triangles - Theory of rotodynamic machines - Classification of turbines n wheel - Modern Francis turbine - Kaplan turbine - Work done - Efficiencies - Performance curves for turbines - Governing of turbines.	- Wor - Draf	king t tube	;-	CO4						
UNIT V	PUMPS			T	9						
Classification of - Work done by t and it's variation	Fourps - Centrifugal pumps - Working principle - Heads and efficiencies– Veloche impeller - Performance curves - Reciprocating pump working principle - Indians - Work saved by fitting air vessels - Rotary pumps.	city tr	riangl liagra	es im	CO5						
	ТО	TAL	: 45 P	PERI	ODS						
TEXTBOOKS	S		_	_							
 Dr. R. K. Bansal., A Textbook of Fluid Mechanics and Hydraulic Machines. Laxmi Publications, New 2017 S. Ramamrutham, R. Narayan · Hydraulics, Fluid Mechanics And Fluid Machines, Dhanpat Rai Books Jain A. K. Fluid Mechanics including Hydraulic Machines. Khanna Publishers, New Dalbi, 2014 											
REFERENCE	E BOOKS										
 Modi P.N. and Seth, S.M. Hydraulics and Fluid Mechanics, Standard Book House, New Delhi, 22nd ed (2019) Kumar K. L., Engineering Fluid Mechanics, Eurasia Publishing House(p) Ltd. New Delhi, 2016. Fox W.R. and McDonald A.T., Introduction to Fluid Mechanics John-Wiley and Sons, Singapore,2011. Pani B S, Fluid Mechanics: A Concise Introduction, Prentice Hall of India Private Ltd, 2016. 											

COURSE OUTCOMES								
Upon completion of the course, students will be able to:								
CO1	Understand the properties and behaviour in static conditions. Also, to understand the conservation laws applicable to fluids and its application through fluid kinematics and dynamics							
CO2	Estimate losses in pipelines for both laminar and turbulent conditions and analysis of pipes connected in series and parallel. Also, to understand the concept of boundary layer and its thickness on the flat solid surface.							
CO3	Formulate the relationship among the parameters involved in the given fluid phenomenon and to predict the performances of prototype by model studies							
CO4	Explain the working principles of various turbines and design the various types of turbines.							
CO5	Explain the working principles of centrifugal, reciprocating and rotary pumps and design the centrifugal and reciprocating pumps							

COs		PROGRAM OUTCOMES (POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	3	2	2	1	2	2	1	2	1	1	2	3	2		
CO2	3	3	3	2	1	2	2	1	2	1	1	2	3	2		
CO3	3	3	3	3	1	2	2	1	2	1	1	2	3	2		
CO4	3	3	3	3	1	2	2	1	2	1	1	2	3	2		
CO5	3	3	3	3	1	2	2	1	2	1	1	2	3	2		

N / F / 202		L	Т	Р	С					
ME4302	ENGINEERING THERMODYNAMICS	3	1	0	4					
OBJECTI	VES									
🛠 Imp	art knowledge on the basics and application of zeroth and first law of thermodynamics.									
🔅 Imp	art knowledge on the second law of thermodynamics in analysing the performance of the	mal	devic	es.						
🔅 Imp	art knowledge on availability and applications of second law of thermodynamics									
Teach the various properties of steam through steam tables and Mollier chart.										
🔅 Imp	art knowledge on the macroscopic properties of ideal and real gases.									
UNIT I	BASICS, ZEROTH AND FIRST LAW			9-	+3					
Review of Basics - Thermodynamic systems, Properties and processes Thermodynamic Equilibrium -										
Displaceme	nt work - P-V diagram. Thermal equilibrium - Zeroth law - Concept of tempera	ıture	and							
Temperatur	e Scales. First law – application to closed and open systems – steady and unsteady flow p	roce	sses.	C	01					
UNIT II	SECOND LAW AND ENTROPY			9	+3					
Heat Engin	e - Refrigerator - Heat pump. Statements of second law and their equivalence & co	rolla	ries.							
Carnot cycl	e - Reversed Carnot cycle - Performance - Clausius inequality. Concept of entropy - T-s	diag	gram	C	` ``					
- Tds Equat	ions - Entropy change for a pure substance.				02					
UNIT III	AVAILABILITY AND APPLICATIONS OF II LAW			9	+3					
Ideal gases	undergoing different processes - principle of increase in entropy. Applications of II Law.	Hig	nand							
low-grade e	nergy. Availability and Irreversibility for open and closed system processes - I and II law E	fficie	ency	C	.03					
UNIT IV	PROPERTIES OF PURE SUBSTANCES			9	+3					
Formation	of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams	s. p-	·v-T							
surface. U	se of Steam Table and Mollier Chart. Determination of dryness fraction. Applic	atio	n of							
I and II lav	w for pure substances. Ideal and actual Rankine cycles, Cycle Improvement M	etho	ds -	C	D4					
Reheat and	l Regenerative cycles,									
UNIT V	IDEAL AND REAL GASES, THERMODYNAMIC RELATION			9	+3					
Properties of	of Ideal gas, real gas - comparison. Equations of state for ideal and real gases. vande	er W	aal's							
relation - R	educed properties - Compressibility factor - Principle of Corresponding states - Gen	neral	ized							
Compressit	ility Chart. Maxwell relations - TdS Equations - heat capacities relations - Energy e	equa	tion,		:05					
JouleThom	son experiment - Clausius-Clapeyron equation.									
TOTAL: 60 PEF										
]					
		-								

TEXTBOOKS

1. Nag.P.K., "Engineering Thermodynamics", 6th Edition, Tata McGraw Hill (2017), New Delhi.

2. Natarajan, E., "Engineering Thermodynamics: Fundamentals and Applications", 2nd Edition (2014), Anuragam Publications, Chennai.

REFERENCE BOOKS

1. Cengel, Y and M. Boles, Thermodynamics - An Engineering Approach, Tata McGraw Hill,9th Edition, 2019.

2. Chattopadhyay, P, "Engineering Thermodynamics", 2nd Edition Oxford University Press, 2016.

3. Rathakrishnan, E., "Fundamentals of Engineering Thermodynamics", 2nd Edition, Prentice Hall of India Pvt. Ltd, 2006.

4. Claus Borgnakke and Richard E. Sonntag, "Fundamentals of Thermodynamics", 10th Edition, Wiley Eastern, 2019.5. Venkatesh. A, "Basic Engineering Thermodynamics", Universities Press (India) Limited, 2007

COLU										
COUE Upon	Upon completion of the course, students will be able to:									
CO1	Understand the Forecasting methods and planning procedure.									
CO2	Explain the concepts of general management, financial management, human resources, production management, and marketing management.									
CO3	Illustrate the application with to identify solutions to industry problems									
CO4	Implement the Principles of Scientific and personnel Management									
CO5	Identify the optimum solutions with system approach to both industry and service sector.									

COs			PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1	-	-	-	-	-	-	-	2	3	2
CO2	3	3	2	1	-	-	-	-	-	-	-	2	3	2
CO3	3	3	2	1	-	-	-	-	1	-	1	2	3	2
CO4	3	3	2	1	-	1	-	-	2	-	1	2	3	2
CO5	3	3	2	1	-	1	-	-	2	-	1	2	3	2

ME4303	MANUFACTURING PROCESSES	L 3	Т 0	P	C 3						
 OBJECTIVES ★ To illustrate the working principles of various metal casting processes. ★ To learn and apply the working principles of various metal joining processes. ★ To analyse the working principles of bulk deformation of metals. ★ To learn the working principles of sheet metal forming process. ★ To study and practice the working principles of plastics molding. 											
UNIT I	METAL CASTING PROCESSES			ç)						
Sand Casting – Sand Mould – Type of patterns - Pattern Materials – Pattern allowances – Molding sand Properties and testing – Cores –Types and applications –Principle of special casting processes- Shell, investment – Ceramic mould – Pressure die casting – low pressure, gravity- Tilt pouring, high pressure die casting- Centrifugal Casting – CO2 casting – Defects in Sand casting process-remedies											
UNIT II	METAL JOINING PROCESSES			ç)						
Fusion welding processes – Oxy fuel welding – Filler and Flux materials—Arc welding, Gas Tungsten arc welding – Gas metal arc welding - Submerged arc welding – Electro slag welding– Plasma arc welding — Resistance welding Processes -Electron beam welding –Laser beam Welding Friction welding – Friction stir welding – Diffusion welding – Thermit Welding, Brazing - soldering – Adhesive bonding.											
UNIT III	BULK DEFORMATION PROCESSES				9						
Hot working and cold working of metals – Forging processes – Open, impression and closed die forging – cold forging- Characteristics of the processes – Typical forging operations – rolling of metals – Types of Rolling – Flat strip rolling – shape rolling operations – Defects in rolled parts – Principle of rod and wire drawing – Tube drawing – Principles of Extrusion – Types – Hot and Cold extrusion. Introduction to shaping operations.											
UNIT IV	SHEET METAL PROCESSES				9						
Sheet metal cha Formability of s Hydro forming forming, peen fo	aracteristics – Typical shearing, bending and drawing operations – Stretch forming operations – Stretch forming operations – Test methods –special forming processes - Working principle and applied – Rubber pad forming – Metal spinning – Introduction of Explosive forming, magnetorming, Super plastic forming – Micro forming – Incremental forming.	ratio catio etic p	ns – ns – pulse	CC	94						
UNIT V	MANUFACTURE OF PLASTIC COMPONENTS				9						
Types and cha principles and molding, Trans molding – Film	racteristics of plastics – Molding of thermoplastics & Thermosetting polymers– typical applications – injection molding – Plunger and screw machines – Com sfer Molding – Typical industrial applications – introduction to blow molding – Re ablowing – Extrusion – Thermoforming – Bonding of Thermoplastics- duff moulding	worl pres otationg.	king sion onal	CC	95						
	ΤΟΤΑ	L: 4	5 PE	RIO	DS						
ТЕХТВООК	TS										
 C.Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India, 4th Edition, 2013 P.N.Rao Manufacturing Technology Volume 1 Mc Grawhill Education 5th edition, 2018. 											
 P.N.Rao Manufacturing Technology Volume 1 Mc Grawhill Education 5th edition, 2018. REFERENCE BOOKS Roy. A. Lindberg, Processes and materials of manufacture, PHI / Pearson education, 2006. S. Gowri P. Hariharan, A.Suresh Babu, Manufacturing Technology I, Pearson Education, 2008. Paul Degarma E, Black J.T and Ronald A. Kosher, Eligth Edition, Materials and Processes, in Manufacturing, Eight Edition, Prentice – Hall of India, 1997. Hajra Chouldhary S.K and Hajra Choudhury. AK., Elements of workshop Technology, volume I and II, Media promoters and Publishers Private Limited, Mumbai, 1997 											

COUF Upon	COURSE OUTCOMES Upon completion of the course, students will be able to:							
CO1	Explain the principle of different metal casting processes.							
CO2	Describe the various metal joining processes.							
CO3	Illustrate the different bulk deformation processes.							
CO4	Apply the various sheet metal forming process.							
CO5	Apply suitable molding technique for manufacturing of plastics components.							

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	-	2	-	-	2	3	1	1	-	-	1	3	1	
CO2	3	-	2	-	-	2	3	1	1	-	-	1	3	1	
CO3	3	-	2	-	-	2	2	1	1	-	-	1	3	1	
CO4	3	-	2	-	-	2	2	1	1	-	-	1	3	1	
CO5	3	-	2	-	2	2	2	1	1	-	-	1	3	1	

111111111111	ENGINEERING MATERIALS AND METALLURGY	L	Т	Р	C
		3	0	0	3
OBJECTIVES		E			<u> </u>
 1 To le formati 	arn the constructing the phase diagram and using of iron-iron carbide phase diagram for micro	ostr	ucture	;	
✤ 2. To le	arn selecting and applying various heat treatment processes and its microstructure formation.				
✤ 3. To il	ustrate the different types of ferrous and non-ferrous alloys and their uses in engineering field.				
 ❖ 4. 10 11 ❖ 5 To left 	ustrate the different polymer, ceramics and composites and their uses in engineering field.				
UNIT I	CONSTITUTION OF ALLOYS AND PHASE DIAGRAMS			Τ	9
Constitution of	L alloys – Solid solutions, substitutional and interstitial – phase diagrams, Isomorphous, eutectic	, eu	tectoi	1,	
peritectic, and	peritectoid reactions, Iron - Iron carbide equilibrium diagram. Classification of steel and	d ca	ast-Irc	n C	201
microstructure,	properties and application.				
UNIT II	HEAT TREATMENT				9
Definition – Fu	l annealing, stress relief, recrystallisation and spheroidising –normalizing, hardening and ter	mpe	ering	of	
steel. Isotherm	al transformation diagrams - cooling curves superimposed on I.T. diagram - continuor	us o	coolin	g	
Transformation	(CCT) diagram – Austempering, Martempering – Hardenability, Jominy end quench	tes	t -cas	e C	202
hardening, cart	urizing, Nitriding, cyaniding, carbonitriding – Flame and Induction hardening – Vacuum a	ind	Plasm	a	
nardening – Th	sino-incenancai deatinents- clementary ideas on sintering.				
UNIT III	FERROUS AND NON-FERROUS METALS				9
Effect of alloyi	ng additions on steel (Mn, Si, Cr, Mo, Ni, V,Ti& W) - stainless and tool steels - HSLA -	- Ma	aragin	g	
steels _ Grev v	1. (c. m. 11. c. h. m. i. d. h. m. i. d. h. m. Commune d. (c. n. h. m. Duran David and C. Duran A. C.		onick	-	
steels – Oley, v	vnite, maileable, spheroidal – alloy cast irons, Copper and its alloys – Brass, Bronze and C	upr			' ^ 2
 Aluminium a Super alloys – s 	nd its alloys; Al-Cu – precipitation strengthening treatment – Titanium alloys, Mg-alloys have memory alloys. Properties and Applications overview of materials standards	upr s, N	i-base	d^{d}	:03
– Aluminium a super alloys – s	nd its alloys; Al-Cu – precipitation strengthening treatment – Titanium alloys, Mg-alloys hape memory alloys- Properties and Applications overview of materials standards	upros, N	i-base	d C	:03
– Aluminium a super alloys – s UNIT IV	nd its alloys; Al-Cu – precipitation strengthening treatment – Titanium alloys, Mg-alloys hape memory alloys- Properties and Applications overview of materials standards NON-METALLIC MATERIALS	upros, N	i-base		2O3 9
 Aluminium a super alloys – s UNIT IV Polymers – type 	 white, maileable, spheroidal – alloy cast frons, Copper and its alloys – Brass, Bronze and C nd its alloys; Al-Cu – precipitation strengthening treatment – Titanium alloys, Mg-alloys hape memory alloys- Properties and Applications overview of materials standards NON-METALLIC MATERIALS s of polymers, commodity and engineering polymers – Properties and applications of PE, PP, 	upro s, N: , PS	i-base		2O3 9
– Aluminium a super alloys – s UNIT IV Polymers – type PMMA, PET, I	 white, maileable, spheroidal – alloy cast frons, Copper and its alloys – Brass, Bronze and C nd its alloys; Al-Cu – precipitation strengthening treatment – Titanium alloys, Mg-alloys hape memory alloys- Properties and Applications overview of materials standards NON-METALLIC MATERIALS s of polymers, commodity and engineering polymers – Properties and applications of PE, PP, PC, PA, ABS, PAI, PPO, PPS, PEEK, PTFE, Thermoset polymers – Urea and Phenol formation of the polymers – Direction of	, N , N , PS	i-base		×O3 9
 Aluminium a super alloys – s UNIT IV Polymers – type PMMA, PET, I Nylon, Enginee Compositos M 	 white, maileable, spheroidal – alloy cast frons, Copper and its alloys – Brass, Bronze and C nd its alloys; Al-Cu – precipitation strengthening treatment – Titanium alloys, Mg-alloys hape memory alloys- Properties and Applications overview of materials standards NON-METALLIC MATERIALS s of polymers, commodity and engineering polymers – Properties and applications of PE, PP, C, PA, ABS, PAI, PPO, PPS, PEEK, PTFE, Thermoset polymers – Urea and Phenol formal ing Ceramics – Properties and applications of Al2O3, SiC, Si3N4, PSZ and SIALON – integrations of applications of Composites. 	, N , N , PS ldeł	i-base 5, PVC nydes etallic:	$\frac{d}{d} \mathbf{C}'$	203 9 204
 Aluminium a super alloys – s UNIT IV Polymers – type PMMA, PET, I Nylon, Enginee Composites- Mathematical 	 white, maileable, spheroidal – alloy cast frons, Copper and its alloys – Brass, Bronze and C nd its alloys; Al-Cu – precipitation strengthening treatment – Titanium alloys, Mg-alloys hape memory alloys- Properties and Applications overview of materials standards NON-METALLIC MATERIALS s of polymers, commodity and engineering polymers – Properties and applications of PE, PP, C, PA, ABS, PAI, PPO, PPS, PEEK, PTFE, Thermoset polymers – Urea and Phenol formal ting Ceramics – Properties and applications of Al2O3, SiC, Si3N4, PSZ and SIALON – integration and reinforcement Materials applications of Composites - Nano composites. 	lupro s, N 2, PS ldef	i-base 5, PVC nydes etallic:	el d C'	203 9 204
 Aluminium a super alloys – s UNIT IV Polymers – type PMMA, PET, I Nylon, Enginee Composites- Ma UNIT V 	 white, maileable, spheroidal – alloy cast frons, Copper and its alloys – Brass, Bronze and C nd its alloys; Al-Cu – precipitation strengthening treatment – Titanium alloys, Mg-alloys hape memory alloys- Properties and Applications overview of materials standards NON-METALLIC MATERIALS s of polymers, commodity and engineering polymers – Properties and applications of PE, PP, PC, PA, ABS, PAI, PPO, PPS, PEEK, PTFE, Thermoset polymers – Urea and Phenol formating Ceramics – Properties and applications of Al2O3, SiC, Si3N4, PSZ and SIALON – intentitiva and reinforcement Materials applications of Composites - Nano composites. MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS 	kupro s, N , PS ldeł ermo	i-base 5, PVC nydes etallic:		×O3 9 ×O4 9
 Aluminium a super alloys – s UNIT IV Polymers – type PMMA, PET, I Nylon, Enginee Composites- Ma UNIT V Mechanisms of under tension, hardness tests, 	 Materiale, spheroidal – alloy cast frons, Copper and its alloys – Brass, Bronze and C nd its alloys; Al-Cu – precipitation strengthening treatment – Titanium alloys, Mg-alloys hape memory alloys- Properties and Applications overview of materials standards NON-METALLIC MATERIALS s of polymers, commodity and engineering polymers – Properties and applications of PE, PP, PC, PA, ABS, PAI, PPO, PPS, PEEK, PTFE, Thermoset polymers – Urea and Phenol formating Ceramics – Properties and applications of Al2O3, SiC, Si3N4, PSZ and SIALON – interativa and reinforcement Materials applications of Composites - Nano composites. MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS plastic deformation, slip and twinning – Types of fracture – Griffith's theory- Testing of compression and shear loads – Hardness tests (Brinell, Vickers and Rockwell), Micro impact test lzod and charpy, fatigue and creep failure mechanisms. 	y, PS ldef f ma and	i-base 5, PVC nydes etallic: aterial		203 9 204 9 05
 Aluminium a super alloys – s UNIT IV Polymers – type PMMA, PET, I Nylon, Enginee Composites- Ma UNIT V Mechanisms of under tension, hardness tests, 	White, maileable, spheroidal – alloy cast irons, Copper and its alloys – Brass, Bronze and C nd its alloys; Al-Cu – precipitation strengthening treatment – Titanium alloys, Mg-alloys hape memory alloys- Properties and Applications overview of materials standards NON-METALLIC MATERIALS es of polymers, commodity and engineering polymers – Properties and applications of PE, PP, PC, PA, ABS, PAI, PPO, PPS, PEEK, PTFE, Thermoset polymers – Urea and Phenol formating Ceramics – Properties and applications of Al2O3, SiC, Si3N4, PSZ and SIALON – intentiation reinforcement Materials applications of Composites - Nano composites. MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS plastic deformation, slip and twinning – Types of fracture – Griffith's theory- Testing of compression and shear loads – Hardness tests (Brinell, Vickers and Rockwell), Micro impact test lzod and charpy, fatigue and creep failure mechanisms.	, No	i-base 5, PVC nydes etallica aterial aterial nanc	2] d C' ;- ;- ;- C' s C' VIO	203 9

TEXTBOOKS

1. Kenneth G.Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 9th edition ,2018.

2. Sydney H.Avner, "Introduction to Physical Metallurgy", McGraw Hill Book Company, 199

REFERENCE BOOKS

1. A. Alavudeen, N. Venkateshwaran, and J. T.WinowlinJappes, A Textbook of Engineering Materials and Metallurgy, Laxmi Publications, 2006.

2. Amandeep Singh Wadhwa, and Harvinder Singh Dhaliwal, A Textbook of Engineering Material and Metallurgy, University Sciences Press, 2008

3. G.S. Upadhyay and Anish Upadhyay, "Materials Science and Engineering", Viva Books Pvt.Ltd, New Delhi, 2020.

4. Raghavan.V, "Materials Science and Engineering", Prentice Hall of India Pvt.Ltd. 6th edition, 2019.

5. Williams D Callister, "Material Science and Engineering" Wiley India Pvt Ltd, 2nd edition Re print 2019.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Explain alloys and phase diagram, Iron-Iron carbon diagram and steel classification.
CO2	Explain isothermal transformation, continuous cooling diagrams and different heat treatment processes.
CO3	Clarify the effect of alloying elements on ferrous and non-ferrous metals.
CO4	Summarize the properties and applications of non-metallic materials.
CO5	Explain the testing of mechanical properties.

COs	PROGRAM OUTCOMES (POs)										PROGRAM SPECIFIC OUTCOME (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	3	2	-	-	-	-	-	-	-	2	3	-
CO2	3	1	3	2	-	-	-	-	-	-	-	2	3	-
CO3	3	1	3	2	-	-	-	-	-	-	-	2	3	-
CO4	3	1	3	2	-	-	-	-	-	-	-	2	3	-
CO5	3	1	3	2	-	-	-	-	-	-	-	2	3	-

COMPUTER AIDED MACHINE DRAWING LABORATORY

L	Т	Р	C		
0	0	4	2		

12

16

CO₂

32

CO3

OBJECTIVES

- ✤ To apply Indian Standards in drawing practices of machine components.
- ✤ To use hand books for the selection of the standard components like bolts, nuts, screws, keys etc.
- ✤ To show the limits, fits and tolerances in the production drawings of machine components.
- To prepare assembly drawings both manually and using standard CAD packages.
- To add the knowledge on 3D Modelling with the detailing features available in the standard CAD packages for converting 3D models into 2D drawings.

DRAWING STANDARDS & FITS AND TOLERANCES

Code of practice for Engineering Drawing, BIS specifications – Welding symbols, riveted joints, keys, fasteners – Reference to hand book for the selection of standard components like bolts, nuts, screws, keys etc. - Limits, Fits – Tolerancing of individual dimensions – Specification of Fits – Preparation of production drawings and reading of part and assembly drawings, basic principles of geometric dimensioning & Tolerance.

INTRODUCTION TO 2D DRAFTING

- Drawing, Editing, Dimensioning, Layering, Hatching, Block, Array, Detailing, Detailed drawing.
- Bearings Bush bearing, Plummer block
- Valves Safety and non-return valves.

3D GEOMETRIC MODELING AND ASSEMBLY

Sketcher - Datum planes – Protrusion – Holes - Part modeling – Extrusion – Revolve – Sweep – Loft – Blend

- Fillet Pattern Chamfer Round Mirror Section Assembly Detailing for production drawing.
 - Couplings Flange, Universal, Oldham's, Muff, Gear couplings
 - Joints Knuckle, Gib & cotter, strap, sleeve & cotter joints
 - Engine parts Piston, connecting rod, cross-head (vertical and horizontal), stuffing box, multi-plate clutch
 - Miscellaneous machine components Screw jack, machine vice, tail stock, chuck, vane and gear pump

TOTAL: 60 PERIODS

Note: 25% of assembly drawings must be done manually and the remaining 75% of assembly drawings must be done by using any CAD software. The above tasks can be performed manually and using standard commercial 2D / 3D CAD software

TEXTBOOKS

1. Gopalakrishna K.R., —Machine Drawingl, 22nd Edition, Subhas Stores Books Corner, Bangalore, 2017

REFERENCE BOOKS

- 1. N. D. Bhatt and V.M. Panchal, -Machine Drawing, 48th Edition, Charotar Publishers, 2016
- 2. K.L. Narayana, P. Kannaiam and K. Venkata Reddy, Machine Drawing, published by New Age International Publishers, 2019.

3. N. Siddeshwar, P. Kanniah, V.V.S. Sastri, Machine Drawing, published by Mc GrawHill, 2017
4. Engineering Drawing Practice for Schools and Colleges BIS SP46:2003 (R2008), Published by Bureau of Indian Standards (BIS), 2008.

COURSE OUTCOMES							
Upon completion of the course, students will be able to:							
CO1	Apply the knowledge on standards in drawing practices to prepare the production drawings.						
CO2	Use the hand books for selecting the standard components in the drafting of Machine components.						
CO3	Distinguish between the 2D drafting and 3D modeling processes available in the standard CAD packages.						

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S. NO	Description of the Equipment	Quantity
1.	Computer nodes or systems with suitable graphics facility	30 Nos
2.	Licensed software for Drafting and Modeling	30 Nos
3.	Laser Printer or Plotter to print / plot drawings	1 No

MANUFACTURING PROCESSES LABORATORY

OBJECTIVES

To study and practice the various operations that can be performed in lathe, shaper, drilling, milling machines etc. and to equip with the practical knowledge required in the core industries.

LIST OF EXPERIMENTS

Machining and Machining time estimations for:

- 1. Taper Turning
- 2. External Thread cutting
- 3. Internal Thread Cutting
- 4. Eccentric Turning
- 5. Knurling

Casting and Joining processes

- 6. Joining of plates by horizontal, vertical and overhead welding (Arc Welding)
- 7. Joining of plates and pipes using Gas Metal Arc Welding/ Arc Welding /Submerged arc welding
- 8. Preparation of green sand moulds for various patterns
- 9. Manufacturing of simple sheet metal components using shearing and bending operations.
- 10. Manufacturing of sheet metal components using metal spinning on a lathe.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Demonstrate the safety precautions exercised in the mechanical workshop.

CO2 Make the workpiece as per given dimensions and calculate machining time for different operations in Lathe.

CO3 Join two metals using arc welding

CO4 Use sheet metal fabrication tools and make simple tray and funnel

CO5 Use different moulding tools, patterns and prepare sand moulds

COs	PROGRAM OUTCOMES (Pos)												PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	2	3	3	3	3	3	3	3	3	3	1
CO2	3	1	3	2	3	3	3	3	3	3	3	3	3	1
CO3	3	1	2	2	3	3	3	3	3	3	3	3	3	1
CO4	3	1	2	2	3	3	3	3	3	3	3	3	3	1
CO5	3	1	2	2	3	3	3	3	3	3	3	3	3	1

HS4310

PROFESSIONAL SKILLS LAB

L	Т	Р	С		
0	0	2	1		

OBJECTIVES

- Enhance the employability and career skills of students
- Orient the students towards grooming as a professional
- ✤ Make them employable graduates
- ✤ To acquaint themselves with the major generic divisions in English literature
- Develop their confidence and help them attend interviews successfully

LIST OF EXPERIMENTS	
UNIT I	6
Introduction to soft skills – Hard skills & Soft skills – employability and career skills – grooming as a professional with values – making an oral presentation – planning and preparing a model presentation – organizing the presentation to suit the audience and context; connecting with the audience with the presentation; projecting a positive image while speaking; emphasis on effective body language – general awareness of current affairs	C01
UNIT II	6
Self-Introduction – organizing the material – introducing oneself to the audience introducing the topic answering questions individual presentation practice – making a power point presentation – structure and format; covering elements of an effective presentation; body language dynamics – making an oral presentation–planning and preparing a model presentation – organizing the presentation to suit the audience and context; connecting with the audience with the presentation; projecting a positive image while speaking; emphasis on effective body language	CO2
UNIT III	6
Introduction to group discussion – participating in group discussions – understanding group dynamics – brain storming the topic – questioning and clarifying – GD strategies – structure and dynamics of a GD; techniques of effective presentation in group discussion; preparing for group discussion; accepting others' views /ideas; arguing against others' views or ideas etc	CO3
UNIT IV	6
Basics of public speaking; preparing for a speech; features of a good speech; speaking with a microphone. (Famous speeches maybe played as model speeches for learning the art of public speaking). Interview etiquette – dress code – body language – attending interviews – telephone/skype interview – one-to-one & a panel interview job interviews purpose and process; how to prepare for an interview; language and style to be used in an interview types of interview questions and how to answer them	CO4
UNIT V	6
Recognizing differences between groups and teams – managing time – managing stress – networking professionally – respecting social protocols – understanding career management – developing a long-term career plan making career change	CO5
TOTAL: 30 PER	IODS
LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS	
✤ One Server	
 30 Desktop Computers 	
✤ One Hand Mike	
 One LCD Projector 	
TEXT BOOKS

- 1. Butterfield, Jeff Soft Skills for Everyone. Cengage Learning: New Delhi,2015
- 2. E. Suresh Kumar et al, Communication for Professional Success. Orient Blackswan: Hyderabad, 2015
- 3. Raman, Meenakshi and Sangeetha Sharma. Professional Communication. Oxford University Press: Oxford 2014
- 4. S. Hariharan et al. Soft Skills. MJP Publishers: Chennai, 2010
- 5. Interact English Lab Manual for Undergraduate Students, Orient BlackSwan: Hyderabad, 2016.

COURSE OUTCOMES

Upon completion of the course,	, students will be able to
--------------------------------	----------------------------

- **CO1** Develop adequate Soft Skills required for the workplace
- **CO2** Make effective presentations
- **CO3** Participate confidently in Group discussions
- **CO4** Attend job interviews and be successful in them
- **CO5** Hone their communications skills for their career

COs		PROGRAM OUTCOMES (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													PSO2	
CO1	-	2	-	2	1	-	-	-	2	3	-	-	2	2	
CO2	-	2	-	2	-	-	-	-	2	3	-	-	2	2	
CO3	-	-	-	-	-	-	-	-	2	2	-	-	2	2	
CO4	-	-	-	-	-	-	-	-	2	2	-	2	1	1	
CO5	-	2	1	1	2	-	2	-	2	3	-	2	3	3	

MA4401

OBJECTIVES

This course aims at providing the required skill to apply the statistical tools in engineering problems.

✤ To introduce the basic concepts of probability and random variables.

◆ To introduce the basic concepts of two dimensional random variables.

* To provide necessary basic concepts of probability and random processes for applications in engineering.

✤ To introduce the basic concepts and important roles in the statistical quality control.

UNIT I	PROBABILITY AND RANDOM VARIABLES	9+3
Discrete and con	tinuous random variables – Moments – Moment generating functions – Binomial, Poisson,	001
Geometric, Unife	orm, Exponential and Normal distributions.	
UNIT II	TWO - DIMENSIONAL RANDOM VARIABLES	9+3
Joint distribution	s - Marginal and conditional distributions - Covariance - Correlation and linear regression -	
Transformation of	f random variables.	CO2
UNIT III	RANDOM PROCESSES	9+3
Classification -	- Stationary process - Markov process - Poisson process - Discrete parameter Markov	
chain – Chapm	an Kolmogorov equations (Statement only) – Limiting distributions.	CO3
UNIT IV	NON-PARAMETRIC TESTS	9+3
Introduction – Tests based on	The Sign test – The Signed – Rank test – Rank – sum tests – The U test – The H test – Runs – Test of randomness – The Kolmogorov Test.	CO4
UNIT V	STATISTICAL QUALITY CONTROL	9+3
Control charts	for measurements (X and R charts) - Control charts for attributes (p, c and np charts) -	
Tolerance limits	s - Acceptance sampling.	CO5
	TOTAL : 60 PER	IODS
TEXT BOOK	S	

- 1. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.
- 2. Milton. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata McGraw Hill, 4th Edition, 2007.
- 3. Ibe, O.C., "Fundamentals of Applied Probability and Random Processes", Elsevier,1st Indian Reprint, 2007.

REFERENCE BOOKS

- 1. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 2. Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill Edition, New Delhi, 2004.
- 3. Papoulis, A. and Unnikrishnapillai, S., "Probability, Random Variables and Stochastic Processes", McGraw Hill Education India, 4th Edition, New Delhi, 2010.
- 4. Ross, S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 3rd Edition, Elsevier, 2004.
- 5. Spiegel. M.R., Schiller. J. and Srinivasan, R.A., "Schaum's Outline of Theory and Problems of Probability and Statistics", Tata McGraw Hill Edition, 2004.
- 6. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", Pearson Education, Asia, 8th Edition, 2007.

COURSE OUTCOMES

Upon completion of the course, students will be able to:

CO1	Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon
CO2	Understand the basic concepts of one and two dimensional random variables and apply in engineering Applications.
CO3	Apply the concept of random processes in engineering disciplines.
CO4	Apply the basic concepts of statistical quality control.
CO5	Have the notion of sampling distributions and statistical techniques used in engineering and management problems.

COs		PROGRAM OUTCOMES (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PSO1	PSO2
CO1	3	3	3	-	-	-	-	-	2	3	-	1	3	-
CO2	3	2	2	-	-	-	-	-	1	2	-	1	3	-
CO3	3	3	3	-	-	-	-	-	2	2	-	1	3	-
CO4	3	2	2	-	-	-	_	-	2	1	-	2	2	-
CO5	3	3	2	-	-	-	-	-	2	2	-	2	3	-

			1	1	_						
ME4401	STRENGTH OF MATERIALS	L	Т	Р	С						
		3	0	0	3						
 OBJECTIVES To understand the concepts of stress, strain, principal stresses and principal planes. To study the concept of shearing force and bending moment due to external loads in determinate beams and their effect on stresses. To determine stresses and deformation in circular shafts and helical spring due to torsion. To compute slopes and deflections in determinate beams by various methods. To study the stresses and deformations induced in thin and thick shells. UNIT I STRESS, STRAIN AND DEFORMATION OF SOLIDS Rigid bodies and deformable solids – Tension, Compression and Shear Stresses - Deformation of simple and compound bars – Thermal stresses – Elastic constants - Volumetric strains – Stresses on inclined planes. 											
	TDANSVEDSE LOADING ON DEAMS AND STDESSES IN DE	АЛЛ									
	Transverse loading on beams Sheer force and Donding moment			<i>a</i>	9						
Beams – Types - Transverse loading on beams – Shear force and Bending moment in beams – Cantilever, Simply supported and over hanging beams. Theory of simple bending – Bending stress distribution – Load carrying capacity – Proportioning of sections – Flitched beams – Shear stress distribution.											
UNIT III	TORSION				9						
Theory of Torsic moment and tors Coiled helical sp	on – Stresses and Deformations in Solid and Hollow Circular Shafts – Comb sion of shafts - Power transmitted to shaft – Shaft in series and parallel – Clo prings – springs in series and parallel.	bined osed a	bend nd Oj	ling pen	CO3						
UNIT IV	DEFLECTION OF BEAMS				9						
Elastic curve – C moment method Principal stresse	Governing differential equation - Double integration method - Macaulay's n - Conjugate beam method for computation of slope and deflection of determes and principal planes – Mohr's circle of stress.	nethoo	d – A t beai	.rea ms.	CO4						
UNIT V	THIN CYLINDERS, SPHERES AND THICK CYLINDERS				9						
Stresses in thin Deformation in spherical shells	cylindrical shell due to internal pressure - circumferential and longitudi thin cylinders – Spherical shells subjected to internal pressure – De – Thick cylinders - Lame's theory.	inal st eform	tresse	es - in	CO5						
	то	DTAL	: 45 I	PERI	ODS						

TEXTBOOKS

- Rajput R.K. "Strength of Materials (Mechanics of Solids)", S.Chand & company Ltd., New Delhi, 7th edition, 2018.
- R. C. Hibbeler, Kai Beng Yap , Mechanics of Materials , The Tenth SI Edition Pearson Education Limited . 2018

REFERENCE BOOKS

- 1. Rattan S.S., "Strength of Materials", Tata McGraw Hill Education Pvt .Ltd., New Delhi, 2017.
- 2. Singh. D.K., "Strength of Materials", Ane Books Pvt Ltd., New Delhi, 2021.
- 3. Egor P Popov, "Engineering Mechanics of Solids", 2nd edition, PHI Learning Pvt. Ltd., New Delhi, 2015.
- 4. Beer. F.P. & Johnston. E.R. "Mechanics of Materials", Tata McGraw Hill, 8th Edition, New Delhi 2019.
- 5. Vazirani. V.N, Ratwani. M.M, Duggal .S.K "Analysis of Structures: Analysis, Design and
- 6. Detailing of Structures-Vol.1", Khanna Publishers, New Delhi 2014.

COURSE OUTCOMES

Upon completion of the course, students will be able to:

CO1	Understand the concepts of stress and strain in simple and compound bars, the importance of principal stresses and principal planes.
CO2	Understand the load transferring mechanism in beams and stress distribution due to shearing force and bending moment.
CO3	Apply basic equation of torsion in designing of shafts and helical springs
CO4	Calculate slope and deflection in beams using different methods.
CO5	Analyze thin and thick shells for applied pressures.

COs		PROGRAM OUTCOMES (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													PSO2
CO1	3	3	3	3	2	3	1	3	2	3	1	3	3	2
CO2	3	3	3	3	2	3	1	3	2	3	1	3	3	2
CO3	3	3	3	3	2	3	1	3	2	3	1	3	3	2
CO4	3	3	3	3	2	3	1	3	2	3	1	3	3	2
CO5	3	3	3	3	2	3	1	3	2	3	1	3	3	2

		L	Т	Р	С
ME4402	THERMAL ENGINEERING	3	0	0	3
COURSE OB	JECTIVES:				
 To learn performan 	the concepts and laws of thermodynamics to predict the operation of thermo- ce of Internal Combustion(IC) engines and Gas Turbines.	odynai	mic c	ycles	and
✤ To analyzi	ng the performance of steam nozzle, calculate critical pressure ratio				
 To Evaluation and composition 	ting the performance of steam turbines through velocity triangles, understand thounding of turbines	e need	d for	govei	rning
✤ To analyz	ing the working of IC engines and various auxiliary systems present in IC engines	5			
✤ To evaluat	ting the various performance parameters of IC engines				
UNIT I	THERMODYNAMIC CYCLES				9
Air Standard Cy	ccles – Carnot, Otto, Diesel, Dual, Brayton – Cycle Analysis and its Performance	Calcu	ılatio	ns (C O 1
UNIT II	STEAM NOZZLES AND INJECTOR				9
Types and Shar rate with pressu	pes of nozzles, Flow of steam through nozzles, Critical pressure ratio, Variation ure ratio. Effect of friction. Metastable flow.	of ma	iss flo	w (C O2
UNIT III	STEAM AND GAS TURBINES				9
Types, Impulse conditions. Mu Performance ar	and reaction principles, Velocity diagrams, Work done and efficiency – optimal lti-staging, compounding and governing. Gas turbine cycle analysis – open and c nd its improvement - Regenerative, Intercooled, Reheated cycles and their combin	opera losed nation	ting cycle	· (C O 3
UNIT IV	INTERNAL COMBUSTION ENGINES – FEATURES AND COMBUSTIO	N			9
IC engine – Cla diagrams, p-v d and performanc calculation – lea	ssification, working, components and their functions. Ideal and actual : Valve an iagrams- two stroke & four stroke, and SI & CI engines – comparison. Geometre comparison of SI and CI engines. Desirable properties and qualities of fuels. An and rich mixtures. Combustion in SI & CI Engines – Knocking – phenomena a	d port ic, op Air-fu and co	timin tini tiel ration tiel ration	ıg g, io	CO4
UNIT V	INTERNAL COMBUSTION ENGINE PERFORMANCE AND AUXILIAR SYSTEMS	Y			9
Performance a Multipoint Fu Battery and E Emission Nor	nd Emission Testing, Performance parameters and calculations. Morse and Heat le el Injection system and Common rail direct injection systems. Ignition systems lectronic. Lubrication and Cooling systems. Concepts of Supercharging and Tur ns	Balano s – M bocha	ce tes lagne trging	ts. to,	CO5
	TO	TAL:	45 PI	ERIC	DDS
L					
TEXTBOO	KS				
1.Mahesh. M.	Rathore, "Thermal Engineering", 1st Edition, Tata McGraw Hill, 2010.				\neg

2. Ganesan.V, "Internal Combustion Engines" 4th Edition, Tata McGraw Hill, 2012.

REFERENCE BOOKS

- 1. Ballaney. P, "Thermal Engineering", 25th Edition, Khanna Publishers, 2017.
- 2. Domkundwar, Kothandaraman, &Domkundwar, "A Course in Thermal Engineering", 6th Edition, Dhanpat Rai& Sons, 2011.

3. Gupta H.N, "Fundamentals of Internal Combustion Engines", 2nd Edition Prentice Hall of India, 2013.

4. Mathur M.L and Mehta F.S., "Thermal Science and Engineering", 3rd Edition, Jain Brothers Pvt. Ltd, 2017.

5. Soman. K, "Thermal Engineering", 2nd Edition, Prentice Hall of India, 2011

COUR	COURSE OUTCOMES										
Upon completion of the course, students will be able to											
CO1	Apply thermodynamic concepts to different air standard cycles and solve problems										
CO2	To solve problems in steam nozzle and calculate critical pressure ratio.										
CO3	Explain the flow in steam turbines, draw velocity diagrams, flow in Gas turbines and solve problems.										
CO4	Explain the functioning and features of IC engine, components and auxiliaries.										
CO5	Calculate the various performance parameters of IC engines										

COs		PROGRAM OUTCOMES (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	-	-	-	-	-	-	-	1	2	2
CO2	3	2	2	1	-	-	-	-	-	-	-	1	2	2
CO3	3	2	2	1	-	-	-	-	-	-	-	1	2	2
CO4	3	2	1	1	-	-	-	-	-	-	-	1	2	2
CO5	3	2	1	1	-	-	-	-	-	-	-	1	2	2

Т Р L С **ME4403** HYDRAULICS AND PNEUMATICS 3 0 0 3 **OBJECTIVES** 1. To provide the knowledge on the working principles of fluid power systems. ◆ 2. To study the fluids and components used in modern industrial fluid power system. ✤ 3. To develop the design, construction and operation of fluid power circuits. ✤ 4. To learn the working principles of pneumatic power system and its components. ✤ 5. To provide the knowledge of trouble shooting methods in fluid power systems. **UNIT I** FLUID POWER PRINICIPLES AND HYDRAULIC PUMP 9 Introduction to Fluid power - Advantages and Applications - Fluid power systems - Types of fluids -Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque- Problems, Sources of Hydraulic power: Pumping Theory-- Pump Classification --**CO1** Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps -Fixed and Variable displacement pumps - Problems. **UNIT II** HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary Actuators-Hydraulic motors - Control Components: Direction Control, Flow control and pressure control CO₂ valves – Types, Construction and Operation – Accessories: Reservoirs, Pressure Switches – Filters –types and selection- Applications - Fluid Power ANSI Symbols - Problems HYDRAULIC CIRCUITS AND SYSTEMS **UNIT III** 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double-Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits, **CO3** Servo and Proportional valves - Applications- Mechanical, hydraulic servo systems. **UNIT IV** PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 Properties of air -Air preparation and distribution - Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit -classification- single cylinder and multi cylinder circuits-Cascade method -Integration of fringe circuits, Electro Pneumatic **CO4** System – Elements – Ladder diagram – timer circuits-Problems, Introduction to fluidics and pneumatic logic circuits. UNIT V TROUBLE SHOOTING AND APPLICATIONS 9 Installation, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic systems, Conditioning of hydraulic fluids Design of hydraulic circuits for Drilling, Planning, Shaping, Surface

handling, clamping counter and timer circuits. – Low-cost Automation – Hydraulic and Pneumatic power packs, IOT in Hydraulics and pneumatics

Note: (Use of standard Design Data Book is permitted in the University examination)

grinding, Press and Forklift applications- mobile hydraulics; Design of Pneumatic circuits for metal working,

TOTAL: 45 PERIODS

CO5

TEXTBOOKS

- 1. Anthony Esposito, "Fluid Power with Applications", Prentice Hall, 2009.
- 2. Shanmugasundaram.K, "Hydraulic and Pneumatic Controls". Chand & Co, 2006.

REFERENCE BOOKS

- 1. James A. Sullivan, "Fluid Power Theory and Applications", Fourth Edition, Prentice Hall, 199
- 2. Jagadeesha. T., "Pneumatics Concepts, Design and Applications ", Universities Press, 2015.
- 3. Joshi.P., Pneumatic Control", Wiley India, 2008.
- 4. Majumdar, S.R., "Oil Hydraulics Systems Principles and Maintenance", TataMcGraw Hill, 2001.
- 5. Shanmugasundaram.K., "Hydraulic and Pneumatic Controls". Chand & Co, 2006.

6. Srinivasan.R., "Hydraulic and Pneumatic Controls", Vijay Nicole Imprints, 3rd edition,2019.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Apply the working principles of fluid power systems and hydraulic pumps.

CO2 Apply the working principles of hydraulic actuators and control components.

CO3 Design and develop hydraulic circuits and systems.

CO4 Apply the working principles of pneumatic circuits and power system and its components.

CO5 Identify various troubles shooting methods in fluid power systems

COs		PROGRAM OUTCOMES (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	2	-	-	-	-	-	-	-	2	2	-
CO2	2	2	3	2	-	-	-	-	-	-	-	2	2	-
CO3	2	2	3	2	-	-	-	-	-	-	-	2	2	-
CO4	2	2	3	2	-	-	-	-	-	-	-	2	2	-
CO5	2	2	3	2	-	-	-	-	-	-	-	2	2	-

MF4404	METAL CUTTING AND MACHINE TOOLS	L	Т	Р	С				
17112 -7-7 0 -7	METAL COTTING AND MACHINE TOOLS	3	0	0	3				
OBJECTIVES									
To study	the concepts and basic mechanics of metal cutting and the factors affecting ma	china	bility	,					
 To learn 	working of basic and advanced turning machines.								
 To teach 	the basics of machine tools with reciprocating and rotating motions and abrasis	ve fin	ishing	5					
To study	the basic concepts of CNC of machine tools and constructional features of CN	С							
 To learn the basic concepts of CNC programming concepts to develop the part programme for Machine centre and 									
turning c	entre.								
UNIT I N	AECHANICS OF METAL CUTTING				9				
Mechanics of ch	ip formation, forces in machining, Types of chip, cutting tools - single poin	t cutt	ing to	loc					
nomenclature, or	thogonal and oblique metal cutting, thermal aspects, cutting tool materials, to	ol we	ear, to	ool	CO1				
life, surface finis	h, cutting fluids and Machinability.								
UNIT II 7	URNING MACHINES				9				
Centre lathe, con	structional features, specification, operations – taper turning methods, thread cut	ting n	netho	ds,					
special attachme	nts, surface roughness in turning, machining time and power estimation. Sp	ecial	lathe	s -	cov				
Capstan and tur	ret lathes- tool layout – automatic lathes: semi-automatic – single spindle:	Swi	ss ty	pe,	02				
automatic screw	type – multi spindle								
UNIT III	RECIPROCATING MACHINE TOOLS				9				
Reciprocating m	achine tools: shaper, planer, slotter: Types and operations- Hole making: Drill	ing, r	eamii	ng,					
boring, tapping,	type of milling operations-attachments- types of milling cutters- machining tin	ne cal	culati	ion					
- Gear cutting, ge	ear hobbing and gear shaping – gear finishing methods Abrasive processes: grir	nding	whee	-1	CO3				
specifications an	d selection, types of grinding process – cylindrical grinding, surface grinding	ng, ce	entrele	ess					
grinding, interna	l grinding - micro finishing methods								
UNIT IV	CNC MACHINES				9				
Computer Nume	erical Control (CNC) machine tools, constructional details, special feature	es –	Driv	es,					
Recirculating ba	ll screws, tool changers; CNC Control systems – Open/closed, point-to-point	/conti	inuou	s -	COA				
Turning and mac	chining centres – Work holding methods in Turning and machining centres, Coc	olant s	systen	ns,	004				
Satety features.									
UNIT V	PROGRAMMING OF CNC MACHINE TOOLS				9				
Coordinates, axis	s and motion, Absolute vs Incremental, Interpolators, Polar coordinates, Program	n plar	nning,	, G					
and M codes, M	anual part programming for CNC machining centers and Turning centers -	Fixed	cycl	es,	CO5				
Loops and subro	utines, Setting up a CNC machine for machining.								
	ТО	TAL:	45 P	ERI	ODS				
TEVTDOOVS]				
			• • •	-					
1. Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India,7th Edition, 2018.									
2. Michael Fitzpatrick, Machining and CNC Technology, McGraw-Hill Education; 4th edition, 2018.									
REFERENCE	BOOKS								
1. Roy. A. Lindb	erg, Processes and materials of manufacture, PHI / Pearson education, 2006.								
2. Geofrey Booth	royd, "Fundamentals of Metal Machining and Machine Tools", McGraw Hill,	1984.							

3. Rao. P.N "Manufacturing Technology," Tata McGraw- Hill, New Delhi, 2009.

4. A. B. Chattopadhyay, Machining and Machine Tools, Wiley, 2nd edition, 2017.

COUR	COURSE OUTCOMES							
Upon	Upon completion of the course, students will be able to							
CO1	Apply the mechanism of metal removal process and to identify the factors involved in improving machinability.							
CO2	Describe the constructional and operational features of centre lathe and other special purpose lathes.							
CO3	Describe the constructional and operational features of reciprocating machine tools.							
CO4	Apply the constructional features and working principles of CNC machine tools.							
CO5	Demonstrate the Program CNC machine tools through planning, writing codes and setting up CNC machine tools to manufacture a given component.							

COs				PI	ROGR	AM OU	JTCON	IES (P	Os)				PROC SPEC OUTC (PS	GRAM CIFIC COMES SOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	1	1	1	3	-	-	3	-	2	2	1
CO2	3	3	3	1	1	1	3	-	-	3	-	2	2	1
CO3	3	3	3	1	1	1	3	-	-	3	-	2	2	1
CO4	3	3	3	1	1	1	3	-	-	3	-	2	2	1
CO5	3	3	3	1	1	1	3	-	-	3	-	2	2	1

METROLOGY AND MEASUREMENTS

9

9

9

9

9

OBJECTIVES

- ✤ 1 To learn basic concepts of the metrology and importance of measurements.
- ◆ 2 To teach measurement of linear and angular dimensions assembly and transmission elements.
- ✤ 3 To study the tolerance analysis in manufacturing.
- ✤ 4 To develop the fundamentals of GD & T and surface metrology.
- ✤ 5 To provide the knowledge of the advanced measurements for quality control in manufacturing industries.

UNIT I BASICS OF METROLOGY

Measurement – Need, Process, Role in quality control; Factors affecting measurement - SWIPE; Errors in Measurements – Types – Control – Measurement uncertainty – Types, Estimation, Problems on Estimation of Uncertainty, Statistical analysis of measurement data, Measurement system analysis, **CO1** Calibration of measuring instruments, Principle of air gauging- ISO standards.

UNIT II MEASUREMENT OF LINEAR, ANGULAR DIMENSIONS, ASSEMBLY AND TRANSMISSION ELEMENTS

Linear Measuring Instruments – Gauge blocks – Use and precautions, Comparators – Working and advantages; Opto-mechanical measurements using measuring microscope and Profile projector - Angular measuring instruments – Measurement of Screw threads - Single element measurements – Pitch Diameter, Lead, Pitch. Measurement of Gears – purpose – Analytical measurement – Runout, Pitch variation, Tooth profile, Tooth thickness, Lead – Functional checking – Rolling gear test.

UNIT III TOLERANCE ANALYSIS

Tolerancing– Interchangeability, Selective assembly, Tolerance representation, Terminology, Limits and Fits, Problems (using tables IS919); Design of Limit gauges, Problems. Tolerance analysis in manufacturing, Process capability, tolerance stackup, tolerance charting. CO3

UNIT IV METROLOGY OF SURFACES

Fundamentals of GD & T- Conventional vs Geometric tolerance, Datums, Inspection of geometric deviations like straightness, flatness, roundness deviations; Simple problems – Measurement of Surface finish – Functionality of surfaces, Parameters, Comparative, Stylus based and Optical Measurement CO4 techniques, Filters, Introduction to 3D surface metrology- Parameters.

UNIT V ADVANCES IN METROLOGY

Lasers in metrology - Advantages of lasers – Laser scan micrometers; Laser interferometers –Applications – Straightness, Alignment; Ball bar tests, Computer Aided Metrology - Basic concept of CMM – Types of CMM – Constructional features – Probes – Accessories – Software – Applications – Multi-sensor CMMs. Machine Vision - Basic concepts of Machine Vision System – Elements – Applications - On-line and in-process monitoring in production – Computed tomography – White light Scanners.

TOTAL: 45 PERIODS

TEXTBOOKS

- 1. Gupta. I.C., "Engineering Metrology", Dhanpatrai Publications, 2005.
- 2. Jain R.K. "Engineering Metrology", Khanna Publishers, 2009.

REFERENCE BOOKS

1. Dotson Connie, "Dimensional Metrology", Cengage Learning, First edition, 2012.

2. Mark Curtis, Francis T. Farago, "Handbook of Dimensional Measurement", Industrial Press, Fifth Edition 2013.

3. AmmarGrous, J "Applied Metrology for Manufacturing Engineering", Wiley-ISTE, 2011.

4.Galyer, J.F.W. Charles Reginald Shotbolt, "Metrology for Engineers", Cengage Learning EMEA; 5th revised edition, 1990.

5. Raghavendra N.V. and Krishnamurthy. L., Engineering Metrology and Measurements, Oxford University Press, 2013.

COURSE OUTCOMESUpon of the course, students will be able toCO1Discuss the concepts of measurements to apply in various metrological instruments.CO2Apply the principle and applications of linear and angular measuring instruments, assembly and
ransmission elements.CO3Apply the tolerance symbols and tolerance analysis for industrial applications.CO4Apply the principles and methods of form and surface metrology.CO5Apply the advances in measurements for quality control in manufacturing Industries.

COs		PROGRAM OUTCOMES (POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	2	2	-	2	-	-	-	-	-	3	3	-		
CO2	3	2	2	2	-	2	-	-	-	-	-	3	3	-		
CO3	3	2	2	2	-	2	-	-	-	-	-	3	3	-		
CO4	3	2	2	2	-	2	-	-	-	-	-	3	3	-		
CO5	3	2	2	2	-	2	-	-	-	-	-	3	3	-		

ME4406	STRENGTH OF MATERIALS AND FLUID MECHANICS AND	L	Т	Р	С				
WIE4400	MACHINERY LABORATORY	0	0	4	2				
 OBJECTIVES To study the mechanical properties of materials when subjected to different types of loading. To verify the principles studied in Fluid Mechanics theory by performing experiments in lab. 									
STRENGTH (OF MATERIALS LABORATORY								
LIST OF EXP	PERIMENTS								
1. Tension test	on a mild steel rod								
2. Double shea	r test on Mild steel and Aluminium rods			C	01				
3 Torsion test on mild steel rod									
4. Impact test c	on metal specimen								
5. Hardness tes	t on metals - Brinnell and Rockwell Hardness Number			C	02				
6. Deflection te	est on beams			0	02				
7. Compression	a test on helical springs								
8 Strain Measurement using Rosette strain gauge									
9 Effect of hardening. Improvement in hardness and impact resistance of steels									
 10. Microscopic Examination of Hardened samples and Hardened and tempered samples. 									
	TUTA	L: 3	0 PE	RIO)DS				
FLUID MECH	IANICS AND MACHINES LABORATORY								
1 Determination	an of the Coefficient of discharge of given Orifice meter								
2. Determination	on of the Coefficient of discharge of given Venturi meter								
3. Calculation of	of the rate of flow using Rota meter.			CC)4				
4. Determinatio	on of friction factor for a given set of pipes.								
5. Conducting e pump	experiments and drawing the characteristic curves of centrifugal pump / subn	nergi	ible						
6. Conducting e	experiments and drawing the characteristic curves of reciprocating pump.								
7. Conducting e	experiments and drawing the characteristic curves of Gear pump.			CO5					
8. Conducting e	experiments and drawing the characteristic curves of Pelton wheel.								
9. Conducting e	experiments and drawing the characteristics curves of Francis turbine.								
10. Conducting	experiments and drawing the characteristic curves of Kaplan turbine.								
	ТОТ	AL:	30 Pl	ERIO	ODS				

COURSE OUTCOMES

Upon	Upon completion of the course, students will be able to							
CO1	Determine the tensile, torsion and shear properties of metals by testing							
CO2	Determine the impact, hardness and deflection properties of metals by testing							
CO3	Determine the stiffness properties of helical spring, strain measurement and microscopic analysis of metal samples.							
CO4	Apply the conservation laws to determine the coefficient of discharge of a venturimeter, Orifice meter, Rotameter and finding the friction factor of given pipe							
C05	Determine the performance characteristics of turbine, roto-dynamic pump and positive displacement pump.							

COs	PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	-	-	-	1	2	2	3	3	-	2	3	2
CO2	3	1	-	-	-	1	2	2	3	3	-	2	3	2
CO3	3	1	-	-	-	1	2	2	3	3	-	2	3	2
CO4	3	1	-	-	-	1	2	2	3	3	-	2	3	2
CO5	3	1	-	-	_	1	2	2	3	3	-	2	3	2

	ME4407 INTERNAL COMPLISTION ENCINEEDING LABORATORY									
ME440	77 INTERNAL COMBUSTION ENGINEERING LABORATORY	0	0	4	2					
COURSI	C OBJECTIVES:			1						
♦ T	o study the value timing-V diagram and performance of IC Engines									
 To Study the characteristics of fuels/Lubricates used in IC Engines 										
 To study the Performance of steam generator/ turbine 										
LIST OF	EXPERIMENTS I.C. ENGINE LAB									
1. Valve Timing and Port Timing diagrams.										
2. Actual	p-v diagrams of IC engines.									
3. Perform	nance Test on 4 – stroke Diesel Engine.									
4. Heat Ba	alance Test on 4 – stroke Diesel Engine									
5. Morse '	Fest on Multi-cylinder Petrol Engine.									
7. Retarda	tion Test on a Diesel Engine.									
8. Determ	ination of Flash Point and Fire Point of various fuels / lubricants.									
9. Perform	nance test on a two stage Reciprocating Air compressor									
STEAM L	AB									
1. Study c	n Steam Generators and Turbines.									
2. Perform	nance and Energy Balance Test on a Steam Generator.									
3. Perform	nance and Energy Balance Test on Steam Turbine.									
LIST OF I	TO TO TO T	FAL:	60 PE	ERIC	DS					
S. No	Name of the Equipment		Otv	,						
1	I.C Engine – 2 stroke and 4 stroke model		1 Se	t						
2	Apparatus for Flash and Fire point		1 No).						
3	4-stroke Diesel Engine with mechanical loading		1 No).						
4	4-stroke Diesel Engine with hydraulic loading		1 No).						
5	4-stroke Diesel Engine with electrical loading		1 No).						
6	Multi-Cylinder Petrol Engine		1 No).						
7	Single Cylinder Petrol Engine		1 No).						
8	8 Data Acquisition system with any one of the above engines 1 No.									
9	9 Steam Boiler with turbine setup 1 No.									
COURSI	COUTCOMES									
Upon con	npletion of the course, students will be able to									
CO1 Conduct tests to evaluate performance characteristics of IC engines										
CO2 C	onduct tests to evaluate the performance of refrigeration cycle									

Conduct tests to evaluate Performance and Energy Balance on a Steam Generator.

CO3

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	1	1	-	-	-	-	1	-	-	1	1	1	
CO2	2	2	1	1	-	-	-	-	1	-	-	1	1	1	
CO3	2	2	1	1	-	-	-	-	1	-	-	1	1	1	
														I	

ME4408

MACHINE TOOLS LABORATORY

OBJECTIVES

To Study and acquire knowledge on various basic Machining Operations in special purpose machines and its applications in real life manufacture of components in the industry.

List of Experiments

- 1. Contour milling using vertical milling machine
- 2. Spur gear cutting in milling machine
- 3. Helical Gear Cutting in milling machine
- 4. Gear generation in hobbing machine
- 5. Gear cutting in gear shaping machine
- 6. Square Head shaping
- 7. Plain Surface grinding
- 8. Cylindrical grinding
- 9. Centreless grinding
- 10. Tool angle grinding with tool and Cutter Grinder
- 11. Measurement of cutting forces in Milling / Turning Process
- 12. CNC Part Programming

Sl. No.	Name of the Equipment	Qty.
1.	Centre Lathes	7 Nos
2.	Turret and Capstan Lathes	1 Nos
3.	Horizontal Milling Machine	2 Nos
4.	Vertical Milling Machine	2 Nos
5.	Surface Grinding Machine	1 Nos
6.	Cylindrical Grinding Machine	1 Nos
7.	Centreless Grinding Machine	1 Nos
8.	Tool and Cutter Grinder	1 Nos
9.	Lathe tool Dynamometer	1 Nos
10.	Milling tool Dynamometer	1 Nos
11.	Gear Hobbing Machine	1 Nos
12.	Tool Makers Microscope	1 Nos
13.	CNC Lathe	1 Nos
14.	CNC Milling	1 Nos
15.	Gear Shapping Machine	1 Nos

TOTAL: 60 PERIODS

COUR	RSE OUTCOMES
Upon	completion of the course, students will be able to
CO1	The students will be able to use different machine tools used in the process of milling, finishing operations, manufacture of Gears and to manufacture tools using cutter grinder
CO2	Develop CNC part programming

Program **PROGRAM OUTCOMES (POs)** SPECIFIC OUTCOMES COs (PSOs) PO2 PO3 **PO1** PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PSO2 2 3 1 1 2 --------_ CO1 ----2 2 **CO2** -3 1 1 ----**CO3** -3 -1 ---1 2 2 ---_ **CO4** -3 -1 ---1 2 2 ----**CO5** -3 ----1 2 2 1 ----

				·						
ME4501	DESIGN OF MACHINE ELEMENTS		r P	C						
		3 1	1 0	4						
OBJECTIVES										
 To learn 	the various steps involved in the Design Process.									
 To learn designing shafts and couplings for various applications. 										
✤ To learn the design of temporary and permanent Joints.										
To learn	designing helical, leaf springs, flywheels, connecting rods and crank shafts for variou	us app	olicati	ons.						
 To learn 	designing and select sliding and rolling contact bearings, seals and gaskets.									
(Use of	PSG Design Data book is permitted)			-1						
UNIT I	FUNDAMENTAL CONCEPTS IN DESIGN			12						
Introduction to t mechanical prope of safety - Combi theories of failur Endurance limit -	Introduction to the design process - factors influencing machine design, selection of materials based on nechanical properties - Preferred numbers - Direct, Bending and torsional loading- Modes of failure - Factor of safety - Combined loads - Principal stresses - Eccentric loading - curved beams - crane hook and 'C' frame - heories of failure - Design based on strength and stiffness - stress concentration - Fluctuating stresses - Endurance limit - Design for finite and infinite life under variable loading - Exposure to standards.									
UNIT II	DESIGN OF SHAFTS AND COUPLINGS			12						
Shafts and Axles splines - Rigid an	- Design of solid and hollow shafts based on strength, rigidity and critical speed id flexible couplings.	- Key	vs and	l CO2						
UNIT III	DESIGN OF TEMPORARY AND PERMANENT JOINTS			12						
Threaded fastener Fillet and parallel joints for structure	s - Bolted joints including eccentric loading, Knuckle joints, Cotter joints - Welded j transverse fillet welds - welded joints subjected to bending, torsional and eccentric lo es - theory of bonded joints.	joints. bads, ri	Butt	, I CO3						
UNIT IV	DESIGN OF ENERGY STORING ELEMENTS AND ENGINE COMPONENT	S		12						
Types of springs, springs - Flywhee flywheels - conne	design of helical and concentric springs- surge in springs, Design of laminated sprin ls considering stresses in rims and arms for engines and punching machines - Solid ar cting rods and crank shafts.	ıgs - r nd Rir	ubber	CO4						
UNIT V	DESIGN OF BEARINGS AND MISCELLANEOUS ELEMENTS			12						
Sliding contact ar & Boyd graphs, S	nd rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number, Selection of Rolling Contact bearings - Design of Seals and Gaskets.	, Rain	nondi	CO						
	ТОТА	AL: 60) PEI	RIODS						
TEXTBOOKS	 S									

1. Bhandari V B, "Design of Machine Elements", 4th Edition, Tata McGraw-Hill Book Co, 2016.

2. Joseph Shigley, Richard G. Budynas and J. Keith Nisbett "Mechanical Engineering Design", 10th Edition, Tata McGraw-Hill, 2015.

REFERENCE BOOKS

1. Ansel C Ugural, "Mechanical Design – An Integral Approach", 1st Edition, Tata McGraw-Hill Book Co, 2004.

2. Merhyle Franklin Spotts, Terry E. Shoup, and Lee Emrey Hornberger, "Design of Machine Elements" 8th Edition, Printice Hall, 2004.

3. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine component Design", 6th Edition, Wiley, 2017.

4. Sundararajamoorthy T. V. and Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2003.

5. Design of Machine Elements | SI Edition | Eighth Edition | By Pearson by M. F. Spotts, Terry E. Shoup, et al. | 25 March 2019

COURSE OUTCOMES

Upon	Upon completion of the course, students will be able to					
CO1	Explain the design machine members subjected to static and variable loads.					
CO2	Apply the concepts design to shafts, key and couplings.					
CO3	Apply the concepts of design to bolted, Knuckle, Cotter, riveted and welded joints.					
CO4	Apply the concept of design helical, leaf springs, flywheels, connecting rods and crank shafts.					
CO5	Apply the concepts of design and select sliding and rolling contact bearings, seals and gaskets.					

COs			PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	-	-	-	-	1	1	-	-	2	3	2
CO2	2	2	3	-	-	-	-	1	1	-	-	2	3	2
CO3	2	2	3	-	-	-	-	1	1	-	-	2	3	2
CO4	2	2	3	-	-	-	-	1	1	-	-	2	3	2
CO5	2	2	3	-	-	-	-	1	1	-	-	2	3	2

NAE 4502		L	Т	Р	C	
NIE4502	THEORY OF MACHINES	3	0	0	3	
COURSE OBJ	ECTIVES:					
 To provide 	he knowledge of basics of mechanism, machines and its velocity and acceleration	analy	sis			
 To provide 	he knowledge of kinematics of cam and gear mechanism					
 To provide 	he knowledge of force analysis and balancing					
 To provide 	he knowledge of basics of vibration and forced vibration and its control					
UNIT I	BASICS OF MECHANICSM AND KINEMATIC ANALYSIS				9	
Basics of Mecha	nisms – Terminology and definitions – Degrees of freedom – Kinematics Inver	sions	of for	ır		
oar and slide crank chain – Kinematics analysis in simple mechanisms using relative velocity method – Velocity and Acceleration polygons– Graphical Method.						
UNIT II	KINEMATICS OF CAMS, GEARS & GEAR TRAINS				9	
Cams – Classifi motion. Spur ge undercutting in 1	cations – Displacement diagrams - Layout of plate cam profiles – Derivatives ear – Law of toothed gearing – Involute gearing – Gear Tooth action - Inte nvolute Gears - Gear trains – Parallel axis gears trains – Simple Epicyclic gear t	s of f erferei trains	ollow	er 1d C	C O2	
UNIT III	DYNAMIC FORCE ANALYSIS AND BALANCING OF ROTATING M	IASS			9	
Dynamic force a – Gas forces - B mass rotating in	nalysis – Inertia force - D Alembert's principle –Dynamic Analysis in reciproca earing loads – Crank shaft torque - Balancing of Rotating masses – Balancing of different planes – Applications – Balancing machines	ting e f Seve	engine eral	s (C O 3	
UNIT IV	FREE VIBRATION ANALYSIS				9	
Free vibrations subjected to mu vibration – Torsi	 Equations of motion – Natural Frequency – Free Vibration analysi Itiple loading - Bending - Critical speed of simple shaft - Damped Vibratio Itiple vibration of geared system. 	is of n–To	beam orsion	ıs al (C O 4	
UNIT V	FORCED VIBRATION AND GYROSCOPIC COUPLE				9	
Response of on	e degree freedom systems to periodic forcing – Harmonic disturbances –Distur Support motion –transmissibility – Vibration isolation vibration measurement. ces and torques – Gyroscopic stabilization – Gyroscopic effects in Automobil	bance Gyros es, sh	cause copes tips at	ed — C nd	C O 5	
by unbalance – Gyroscopic for airplanes.						

TEXTBOOKS

- 1. Rattan, S.S, "Theory of Machines", 4th Edition, Tata McGraw-Hill, 2014.
- 2. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 4th Edition, Oxford University Press, 2014.

REFERENCE BOOKS

- 1. Cleghorn. W. L, "Mechanisms of Machines", Oxford University Press, 2014.
- 2. Khurmi, R.S.,"Theory of Machines", 14th Edition, S Chand Publications, 2005.

COURSE OUTCOMES

Upon	completion of the course, students will be able to
CO1	To study the basic components of mechanisms, analyzing the simple mechanism with respect to velocity and acceleration at any point in a link of a mechanism.
CO2	To study the basic kinematics of cam and gear mechanism
CO3	To study the force analysis on engine mechanism and balancing of rotating mass
CO4	To study the free vibration analysis of various mechanical systems
CO5	To study the forced vibration caused and to study the gyroscopic effects.

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	3	3	2	-	2	-	-	-	2	-	2	3	3		
CO2	3	3	3	2	-	2	-	-	-	2	-	2	3	3		
CO3	3	3	3	2	-	2	-	-	-	-	-	2	3	3		
CO4	3	3	3	2	-	2	-	-	-	-	-	2	3	3		
CO5	3	3	3	2	-	2	-	-	-	1	-	2	3	3		

METROLOGY AND DYNAMICS LABORATORY

OBJECTIVES

- ◆ 1. To study the different measurement equipment and use of this industry for quality inspection.
- ◆ 2. To supplements the principles learnt in dynamics of machinery.
- ◆ 3 .To understand how certain measuring devices are used for dynamic testing.

METROLOGY LABORATORY 30 LIST OF EXPERIMENTS 1. Calibration and use of linear measuring instruments – Vernier caliper, micrometer, Vernier height gauge, depth micrometer, bore gauge, telescopic gauge, Comparators. 2. Measurement of angles using bevel protractor, sine bar, autocollimator, precision level. 3. Measurement of assembly and transmission elements - screw thread parameters - Screw thread Micrometers, Three wire method, Toolmaker's microscope. 4. Measurement of gear parameters – Micrometers, Vernier caliper, Gear tester. 5. Measurement of features in a prismatic component using Coordinate Measuring Machine (CMM), Programming of CNC Coordinate Measuring Machines for repeated measurements of identical components. **CO1** 6. Non-contact (Optical) measurement using Measuring microscope / Profile projector and Video measurement system. 7. Surface metrology - Measurement of form parameters - Straightness, Flatness, Roundness, Cylindricity, Perpendicularity, Runout, Concentricity – in the given component using Roundness tester. 8. Measurement of Surface finish in components manufactured using various processes (turning, milling, grinding, etc.,) using stylus based instruments. **DYNAMICS LABORATORY** 30 LIST OF EXPERIMENTS 1. Study of gear parameters. 2. Epicycle gear Train. 3. Determination of moment of inertia of flywheel and axle system. 4. Determination of mass moment of inertia of a body about its axis of symmetry. 5. Undamped free vibrations of a single degree freedom spring-mass system. 6. Torsional Vibration (Undamped) of single rotor shaft system. 7. Dynamic analysis of cam mechanism. CO₂ 8. Experiment on Watts Governor. 9. Experiment on Porter Governor. 10. Experiment on Proell Governor. 11. Experiment on motorized gyroscope. 12. Determination of critical speed of shafts.

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS METROLOGY

Sl. No.	Name of the Equipment	Qty.
1.	Micrometer	5 Nos
2.	Vernier Caliper	5 Nos
3.	Vernier Height Gauge	2 Nos
4.	Vernier Depth Gauge	2 Nos
5.	Slip Gauge Set	1 Nos
6.	Gear Tooth Vernier	1 Nos
7.	Sine Bar	1 Nos
8.	Floating Carriage Micrometer	1 Nos
9.	Profile Projector / Tool Makers Microscope	1 Nos
10.	Mechanical / Electrical / Pneumatic Comparator	1 Nos
11.	Autocollimator	1 Nos
12.	Coordinator Measuring Machine	1 Nos
13.	Surface finish Measuring Equipment	1 Nos
14.	Bore Gauge	1 Nos
15.	Telescope Gauge	1 Nos
IST OF	EQUIPMENTS FOR A BATCH OF 30 STUDENTS	
YNAM	ICS	
Sl. No.	Name of the Equipment	Qty.
1.	Cam follower setup	1No.
2.	Motorised gyroscope	1No.
3.	Governor apparatus – Watt, Porter, Proell and Hartnell governors	1No.
4.	Whirling of shaft apparatus	1No.
		1 N I
5.	Dynamic balancing machine	INO.
5. 6.	Dynamic balancing machine Spring mass vibration system	1No. 1No.
5. 6. 7.	Dynamic balancing machine Spring mass vibration system Torsional Vibration of single rotor system setup	1No. 1No. 1No.
5. 6. 7. 8.	Dynamic balancing machine Spring mass vibration system Torsional Vibration of single rotor system setup Gear Models	1No. 1No. 1No. 1No.
5. 6. 7. 8. 9.	Dynamic balancing machine Spring mass vibration system Torsional Vibration of single rotor system setup Gear Models Kinematic Models to study various mechanisms	1No. 1No. 1No. 1No. 1No.
5. 6. 7. 8. 9. 10.	Dynamic balancing machine Spring mass vibration system Torsional Vibration of single rotor system setup Gear Models Kinematic Models to study various mechanisms Turn table apparatus	1No. 1No. 1No. 1No. 1No. 1No. 1No. 1No.

TOTAL: 60 PERIODS

COU	RSE OUTCOMES
Upon	completion of the course, students will be able to
CO1	The students able to calibrate instruments and to measure the gear tooth dimensions, angle using sine bar and straightness.
CO2	Determine mass moment of inertia of mechanical element, governor effort and range of Sensitivity, the natural frequency and damping coefficient, critical speeds of shafts.

COs				PR	ROGRA	M OU	тсом	ES (PC	Ds)				PROG SPEC OUTCO (PSO	RAM SIFIC OMES OS)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	2	2	3	-	2	2	-	-	-	2	2	3	2
CO2	-	2	2	3	-	2	2	-	-	-	2	2	3	2

MF4508							
					2		
OBJECTIVES							
To show t	the practical knowledge in handling 2D drafting and 3D modelling software syste	ems.					
 To design drawing 	the 3 - Dimensional geometric model of parts, sub-assemblies, assemblies and e	xpor	ting i	t to			
To explor	to the features of CNC Machine Tools.						
To use the	e various types of to modern control systems (Fanuc)						
To know	the application of various CNC machines like CNC lathe, CNC Vertical Machini	ng ce	entre.				
3D GEOMETRIC	CMODELLING				30		
1. Introduction of	3D Modelling software						
Creation of 3D a	ssembly model of following machine elements using 3D Modelling software						
2. Flange C	Coupling						
3. Plummer	r Block						
4. Screw Ja	nck			C	01		
5. Universa	al Joint				01		
6. Machine	Vice			C	02		
7. Stuffing	box						
8. Connect	ing rod						
9. Piston							
10. Cranks	haft						
MANUAL PART	PROGRAMMING.			2	20		
(i) Part Pi	rogramming - CNC Machining Centre						
(a)	Linear Cutting.						
(b)	Circular cutting						
(c)	Cutter Radius Compensation.						
(d)	Canned Cycle Operations.				~~		
(ii) Part P	Programming - CNC Turning Centre				03 04		
(a)	Straight, Taper and Radius Turning.						
(b)	Thread Cutting.						
(c)	Rough and Finish Turning Cycle.						
(d)	Drilling and Tapping Cycle						
STUDY ON COM	IPUTER AIDED PART PROGRAMMING				10		
(a) CL Data and	Post process generation using CAM packages.			C	05		
(b) Application	of CAPP in Machining and Turning Centre.				05		
	ΤΟΤΑ	L: 6	0 PE	RIO	DS		
TEXTBOOKS							
1. Gopalakri	ishna K.R., —Machine Drawing, 22nd Edition, Subhas Stores Books Corner, Ba	ngal	ore, 2	2017			

REFERENCE BOOKS

1. N. D. Bhatt and V.M. Panchal, -Machine Drawing, 48th Edition, Charotar Publishers, 2016

2. 2. K.L. Narayana, P. Kannaiam and K. Venkata Reddy, Machine Drawing, published by New Age International Publishers, 2019.

COUH	COURSE OUTCOMES					
Upon completion of the course, students will be able to						
CO1	Explore to the different 3D modelling features available in the CAD System.					
CO2	Design the 3 - Dimensional geometric part and assembly models.					
CO3	Detail the 3 - Dimensional geometric model of parts, sub-assemblies, assemblies into to production drawings.					
CO4	Apply the fundamental working principle of CNC machine tools.					
CO5	Program using G & M Codes and simulate the CNC program. CO6 Generate part programming data through CAM software					

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S. No	Description of the Equipment	Quantity							
Hardware									
1.	Computer Server	1 No							
2.	Computer nodes or systems s (High end CPU with at least 1 2. GB main memory) networked to the server	30 Nos							
3.	A3 size plotter	30 Nos							
4.	Laser Printer	1 No							
5.	CNC Lathe	1 No							
6.	CNC milling machine	1 No							
	Software								
7.	Any High-end integrated modeling and manufacturing CAD / CAM software	30 Nos							
8.	CAM Software for machining centre and turning centre (CNC Programming and tool path simulation for FANUC)	30 Nos							
9.	Licensed operating system	Adequate							

		L	Т	Р	С							
ME4601	HEAT AND MASS TRANSFER	3	1	0	4							
OBJECTI	VES		I									
🚸 Uno	derstanding the steady and transient heat conduction.											
 Comprehending the principles of convective heat transfer. 												
 Outlining the facets of heat transfer for designing a heat exchanger 												
 Inf 	erring the fundamental concepts of radiation heat transfer.											
🔅 Ana	Analyzing the relation between heat and mass transfer											
UNIT I	CONDUCTION			9.	+3							
General Diff	erential equation - Cartesian, Cylindrical and Spherical Coordinates - One Dimensiona	l Ste	ady									
State Heat C	onduction — plane and Composite Systems – Conduction with Internal Heat Generation	n										
Extended Su	rfaces – Unsteady Heat Conduction – Lumped Analysis – Semi Infinite and Infinite Sol	ids –	-Use	С	01							
of Heisler's	nares Chores from Conservation Damped - manyons Some manual and and some		0.50									
	CONVECTION	. D1-4		9.	+3							
Conservation	i Equations, Boundary Layer Concept – Forced Convection: External Flow – Flow over	Plat	es,									
Cylinders Sp	heres and Bank of tubes. Internal Flow – Entrance effects. Free Convection –Flow over	· Ver	tical	C	J2							
Plate, Horizo	ontal Plate, Inclined Plate, Cylinders and Spheres.											
UNIT III	PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS			9	+3							
Nusselt's the	ory of condensation- Regimes of Pool boiling and Flow boiling, correlations in boiling	and										
condensation	n. Heat Exchanger Types - Overall Heat Transfer Coefficient – Fouling Factors. LMTD	and		C	503							
NTU method	ls. Introduction to TEMA Standards.			C	03							
UNIT IV	RADIATION			9	+3							
Radiation lav	vs, Black Body and Gray body Radiation. Shape Factor. Electrical Analogy. Radiation	shield	ds.	C								
				C	J 4							
UNIT V	MASS TRANSFER			9	+3							
Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Molecular Diffusion. Convective Mass Transfer – Momentum, Heat and Mass Transfer Analogy – Convective Mass Transfer												
	ΤΟΤΑ	L: 60	0 PE	RIO	DS							
<u> </u>												

TEXTBOOKS

1. R.C. Sachdeva, "Fundamentals of Engineering Heat & Mass transfer", New Age International Publishers, 2009 2. Yunus A. Cengel, "Heat Transfer A Practical Approach" – Tata McGraw Hill, 5thEdition –2013

REFERENCE BOOKS

1. Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2010

2. Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Delhi, 2012

COUR	COURSE OUTCOMES									
Upon completion of the course, students will be able to										
CO1	Summarize the mechanism of heat conduction under steady and transient conditions.									
CO2	Elucidate the principles of convective heat transfer.									
CO3	Design a heat exchanger for any specific application									
CO4	Adopt the concept of radiation heat transfer in real time systems									
CO5	Develop solutions to problems involving combined heat and mass transfer									

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	-	-	-	-	-	-	3	-	-
CO2	3	3	3	3	-	-	-	-	-	-	-	3	-	-
CO3	3	3	3	3	3	-	-	-	-	-	-	3	-	-
CO4	3	3	3	3	-	-	-	-	-	-	-	3	-	-
CO5	3	3	3	3	-	-	-	-	-	-	-	3	-	-

CS4655 C PROCRAMMING AND RASICS OF DATA STRUCTURES	С											
$\begin{array}{c c} C F KOGRAMINING AND BASICS OF DATA STRUCTURES \\ 3 & 0 & 0 \\ \end{array}$	3											
COURSE OBJECTIVES:												
 To introduce the basics of C programming language. 												
✤ To learn the concepts of advanced features of C.												
 To learn the concepts of advanced features of C. 												
 To know the concepts of non-linear data structure and hashing. 												
To familiarize the concepts of sorting and searching techniques												
UNIT I BASICS OF C PROGRAMMING	9											
Introduction to programming paradigms – Applications of C Language - Structure of C program - C programming: Data Types - Constants – Enumeration Constants - Keywords – Operators: Precedence and Associativity - Expressions – Input /Output statements, Assignment statements – Decision making statements - Switch statement - Looping statements – Preprocessor directives - Compilation process.	C O 1											
UNIT II ARRAYS, STRINGS AND FUNCTIONS	9											
Introduction to Arrays: Declaration, Initialization – One dimensional array – Two dimensional arrays - String operations: length, compare, concatenate, copy – linear and binary search. Modular programming - Function prototype, function definition, function call, Built-in functions (string functions, math functions) – Recursion, Binary Search using recursive functions.	C O2											
UNIT III POINTERS	9											
Pointers – Pointer operators – Arrays and pointers – Array of pointers – Parameter passing: Pass by value, Pass by reference. Pointer and Structures-Dynamic memory allocation-Files – Types of file processing: Sequential access, Random access – Sequential access file - Random access file - Command line arguments.	CO3											
UNIT IV STACKS, QUEUES AND LISTS	9											
Linked list implementation – Singly linked lists – Circularly linked lists – Doubly-linked lists –Stack ADT – Operations – Applications – Infix to Postfix conversion – Function Calls – Queue ADT – Operations – Circular Oueue – Dequeue.												
UNIT V SEARCH TREES, SEARCHING, SORTING AND HASHING TECHNIQUES	9											
B-Tree – B+ Tree – Types of Graphs – Breadth-first traversal – Depth-first traversal -Dijkstra's algorithm – Minimum Spanning Tree – Prim's algorithm – Kruskal's algorithm- Sorting – Selection sort – Insertion sort –. Merge Sort – Hashing – Hash Functions – Separate Chaining – Open Addressing – Rehashing – Extendible Hashing												
TOTAL: 45 PERIO)DS											
TEXTBOOKS												

1. Reema Thareja, "Programming C", Second Edition, Oxford University Press, 2016.

2. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Second Edition, Pearson Education, 1997.

REFERENCE BOOKS

1. "Fundamentals of data structure in C" Horowitz, Sahani & Freed, Computer Science Press.

2. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson

Education,1983

COURSE OUTCOMES

Upon	Upon completion of the course, students will be able to								
CO1	Develop C programs for any real world/technical application.								
CO2	Apply advanced features of C in solving problems.								
CO3	Write functions to implement linear and non-linear data structure operations.								
CO4	Suggest and use appropriate linear/non-linear data structure operations for solving a given problem.								
CO5	Appropriately use sort and search algorithms for a given application. And apply appropriate hash functions that result in a collision free scenario for data storage and retrieval.								

COs		PROGRAM SPECIFIC OUTCOMES (PSOs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2	3	3	1	1	3	0	0	2	1	-	-
CO2	2	1	1	1	1	0	3	3	1	1	2	1	-	-
CO3	1	2	2	0	0	3	1	0	3	1	1	3	-	-
CO4	3	1	2	2	0	0	1	3	1	3	1	1	-	-
CO5	2	1	1	1	2	0	3	0	1	1	3	1	-	-

C PROGRAMMING AND DATA STRUCTURES LABORATORY

L P Т С 4 2 0 0

OBJECTIVES

- To introduce the basics of C programming language.
 Implement various basic data structures and its operations.
 Implement various sorting and searching algorithms.

LIST OF	EXPERIMENTS	
1. Basics		
a.	Write a program to print sample strings like "hello world", "Welcome to C Programming" with	
	different formats using escape sequences.	
b.	Write a Program to demonstrate arithmetic operators. (+,-,*,/,%)	
с.	Write a Program to demonstrate logical operators. (logical AND, logical OR).	
2. Decision	Statements	COL
a.	Write a Program to read marks of a student in six subjects and print whether pass or fail (using	001
1	if-else).	
b.	Write a Program to calculate electricity bill.	
C.	Write a Program to display names of days in a Week using switch case.	
d.	Write a program to display multiplication tables from 1 to 10 except 3 and 5 using loops.	
3. Arrays		
a.	Write a program to store 10 elements in the 1-D array and print sum of the array.	
b.	Write a program to count no. of positive numbers, negative numbers and zeros in the array.	
с.	Write a program to search the given element by using linear search.	
d.	Write a program to perform matrix multiplication by checking the compatibility.	
4. Strings		
a.	Write a program to verify the given string is palindrome or not (without built-in functions, with	
	using built-in functions).	
b.	Write a program to concatenate two strings using arrays.	CO2
5. Function		
a.	Write a program to read values from keyboard and find the values using	
	abs(),sqrt(),floor(),ceil()and pow().	
b.	Write a program to find difference of two numbers using functions without arguments, with	
	return type.	
с.	Write a program to calculate factorial, gcd using recursion and non-recursion functions.	
d.	Write a program which copies the contents of one file to another file using command line	
	arguments.	
6. Impleme	entation of stacks using linked lists.	
7. Impleme	ent stacks and queue.	
8. Graph tr	aversal	1
1.	DFS	
2.	BFS	CO2
9. Impleme	ntation of minimum spanning tree	03
10. Sorting	Algorithm	
a.	Selection sort	
b.	Insertion sort	
C.	Merge sort	
	TOTAL: 60 PI	ERIODS
L		

COURSE OUTCOMES

Upon completion of the course,	, students will be able to
--------------------------------	----------------------------

CO1	Able to implement concepts of C programming
CO2	Ability to perform the basic data structure and its operations
CO3	Ability to solve minimum spanning tree

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	1	3	0	3	3	2	3	3	2	0	1	-	-	
CO2	3	2	3	1	2	3	0	3	2	3	0	1	-	-	
CO3	2	3	0	0	3	0	1	2	3	0	0	0	-	-	

ME4608

HEAT TRANSFER AND REFRIGERATION AND AIR-CONDITIONING LABORATORY

L	Т	Р	C
0	0	4	2

TOTAL: 60 PERIODS

COURSE OBJECTIVES:

• To study the heat transfer phenomena, predict the relevant coefficient using implementation

• To study the performance of refrigeration cycle / components

LIST OF EXPERIMENTS - HEAT TRANSFER LAB

- 1. Thermal conductivity measurement of pipe insulation using lagged pipe apparatus.
- 2. Determination of heat transfer coefficient under natural convection from a vertical cylinder.
- 3. Determination of heat transfer coefficient under forced convection from a tube.
- 4. Determination of Thermal conductivity of composite wall.
- 5. Heat transfer from pin-fin apparatus (natural & amp; forced convection modes)
- 6. Determination of Stefan Boltzmann constant.
- 7. Determination of emissivity of a grey surface.

8. Effectiveness of Parallel / counter flow heat exchanger.

REFRIGERATION AND AIR CONDITIONING LAB

- 1. Determination of COP of a refrigeration system
- 2. Performance test on a reciprocating air compressor
- 3. Performance test in Cooling Tower

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

S. No	Name of the Equipment	Qty					
1	Lagged pipe apparatus	1 Set					
2	Natural convection-vertical cylinder apparatus	1 No.					
3	Forced convection inside tube apparatus	1 No.					
4	Composite wall apparatus	1 No.					
5	Pin-fin apparatus	1 No.					
6	Stefan-Boltzmann apparatus	1 No.					
7	Emissivity measurement apparatus	1 No.					
8	Parallel/counter flow heat exchanger apparatus	1 No.					
9	Refrigeration test rig	1 No					
10	Air-conditioning test rig	1 No					
11	HC Refrigeration System	1 No.					
12	Fluidized Bed Cooling Tower	1 No					
COURSE OUTCOMES Upon completion of the course, students will be able to							

CO1	Ability to determine the thermal conductivity, heat transfer coefficient, Stefan Boltzmann constant and emissivity of a grey surface
CO2	Ability to determine the effectiveness of a heat exchanger

CO3 Ability to determine the COP of an AC and refrigeration system

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	1	-	-	-	-	1	-	-	1	2	1	
CO2	3	2	1	1	-	-	-	-	1	-	-	1	2	1	
CO3	3	2	1	1	-	-	-	-	1	-	-	1	2	1	

DESIGN AND FABRICATION PROJECT

OBJECTIVES

To give an opportunity to the student to get hands on training in the fabrication of one or more components of a complete working model, which is designed by them.

The students in a group of 2 to 4 works on a topic approved by the Head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

COUR	COURSE OUTCOMES						
Upon c	Upon completion of the course, students will be able to						
CO1	Use of design principles and develop conceptual and engineering design of any components.						
CO2	Fabricate any components using different manufacturing tools and demonstrate the working model of the machine element or the mechanical product.						

COs		PROGRAM OUTCOMES (POs)										PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1	-	-	-	3	-	2	2	-	3	3
CO2	3	3	2	1	-	-	-	3	-	2	2	-	3	3

	ME4701 MECHATRONICS		L	Т	Р	С	
-			3	0	0	3	
OB	JECTIVE	rt knowledge about the elements and techniques involved in Mechatron ch essential to understand the emerging field of automation.	ics sy	stems	s whic	ch are	
	UNIT I	INTRODUCTION				12	
Intro – Er dyn Edd	oduction to N merging area amic Charac y current ser	Mechatronics – Systems – Concepts of Mechatronics approach – Need for s of Mechatronics – Classification of Mechatronics. Sensors and Transducteristics of Sensor, Potentiometers – LVDT – Capacitance sensors – nsor – Hall effect sensor – Temperature sensors – Light sensors	or Me acers: Strain	chatro Statio gaug	onics c and ges –	CO1	
	UNIT II	8085 MICROPROCESSOR AND 8051 MICROCONTROLLER				10	
Intr diag	oduction – A gram of 8085	Architecture of 8085 – Pin Configuration – Addressing Modes –Instruct 5 – Concepts of 8051 microcontroller – Block diagram	tion se	et, Ti	ming	CO2	
I	UNIT III	PROGRAMMABLE PERIPHERAL INTERFACE				8	
Intro inte	oduction – A rface, Temp	Architecture of 8255, Keyboard interfacing, LED display –interfacing, erature Control – Stepper Motor Control – Traffic Control interface.	ADC	and l	DAC	CO3	
I	UNIT IV	PROGRAMMABLE LOGIC CONTROLLER				7	
Introduction – Basic structure – Input and output processing – Programming – Mnemonics – Timers counters and internal relays – Data handling – Selection of PLC.							
	UNIT V	ACTUATORS AND MECHATRONIC SYSTEM DESIGN				8	
Typ Disa – C Aut	es of Stepp advantages. I ase studies omatic car p	per and Servo motors – Construction – Working Principle – A Design process-stages of design process – Traditional and Mechatronics of Mechatronics systems – Pick and place Robot – Engine Manage ark barrier.	dvant design ement	tages n con syste	and cepts em –	CO5	
		T	OTA	L: 45	PER	IODS	
TE	XTBOOKS						
1. 2.	Bolton, "Mo Ramesh S C Edition, Pre	echatronics", Printice Hall, 2019, 6th Edition. Gaonkar, "Microprocessor Architecture, Programming, and Applications entice Hall, 2008.	s with	the 8	3085"	5th	
RE	FERENCE	BOOKS					
1.	Michael B.I McGraw H	Histand and Davis G.Alciatore, "Introduction to Mechatronics and Meas ill International edition, 2007.	surem	ent s	ystem	IS",	
2.	Bradley D.A	A, Dawson D, Buru N.C and Loader A.J, "Mechatronics", Chapman and	l Hall	, 199	3.		
3.	Smaili.A an	nd Mrad.F, "Mechatronics Integrated Technologies for Intelligent Mach Press 2007	ines"	, Oxf	ord		
4.	Devadas Sh 2007.	netty and Richard A. Kolk, "Mechatronics Systems Design", PWS publi	shing	com	pany,		
5.	Krishna Ka Silva, "Mec	nt, "Microprocessors & Microcontrollers", Prentice Hall of India, 2007. hatronics" CRC Press, First Indian Re-print, 2013	6. Cl	arenc	æ W,	de	
COURSE OUTCOMES

Upon	comple	tion of	the cou	rse, stu	idents	will be	able to	•						
CO1	Discuss the con	s the int trol of l	erdiscip Mechan	olinary a ical, El	applicat ectronic	tion of l c Syster	Electron	nics, Ele Sensor	ectrical, technol	, Mecha ogy	inical ai	nd Com	puter sys	tems for
CO2	Discus: Microc	s the arc ontrolle	chitectur er and N	re of M licropro	icrocon ocessor	troller :	and Mic	croproc	essor, F	in diag	ram, Ac	ldressin	g modes	of
CO3	Discus	s progra	mmabl	e peripl	neral In	terface	Archite	cture of	f 8255 I	PPI and	various	device	interfaci	ng.
CO4	Explair and cha	n the arc allenges	hitectu in area	re, prog of mec	rammii hatroni	ng and a cs Engi	applicat neering	ion of I ^{g.}	Progran	nmable	Logic c	ontrolle	ers to pro	blems
CO5	Discuss course	s variou and also	s actuat o from g	tors and given ca	l mecha ase stud	tronics lies.	system	s using	the kno	wledge	and sk	ills acqu	ired thro	ough the
				MA	PPINO	G OF C	Os WI	ГН РО	s AND	PSOs				
	PROGRAM OUTCOMES (POs) PROGRAM SPECIFIC OUTCOMES (PSOs)													
COs				PF	ROGRA	AM OU	ТСОМ	IES (PO	Os)				PROC SPEC OUTC (PS	GRAM CIFIC OMES Os)
COs	PO1	PO2	PO3	PR PO4	ROGRA PO5	AM OU PO6	TCOM PO7	IES (PO	Ds) PO9	PO10	PO11	PO12	PROC SPEC OUTC (PS PSO1	GRAM CIFIC OMES Os) PSO2
COs CO1	PO1 3	PO2 -	PO3 3	PF PO4 -	ROGRA PO5 -	AM OU PO6 -	TCOM PO7 -	IES (PO PO8 -	Ds) PO9 -	PO10 -	PO11 -	PO12 2	PROC SPEC OUTC (PS PSO1 2	GRAM CIFIC OMES OS) PSO2 3
COs CO1 CO2	PO1 3 3	PO2 - -	PO3 3 3	PR PO4 -	ROGRA PO5 - -	AM OU PO6 - -	TCOM PO7 - -	IES (PO PO8 - -	Ds) PO9	PO10 - -	PO11 - -	PO12 2 1	PROC SPEC OUTC (PS PSO1 2 2	GRAM CIFIC OMES OS) PSO2 3 3
COs CO1 CO2 CO3	PO1 3 3 3	PO2 - - -	PO3 3 3 3	PR PO4 - - -	ROGRA PO5 - - -	AM OU PO6 - - -	TCOM PO7 - -	IES (PO PO8 - - -	Ds) PO9	PO10 - - -	PO11 - - -	PO12 2 1 1	PROC SPEC OUTC (PS PSO1 2 2 2 2	GRAM CIFIC OMES OS) PSO2 3 3 3
COs CO1 CO2 CO3 CO4	PO1 3 3 3 3 3	PO2 2	PO3 3 3 3 3	PF PO4 - - - -	PO5 3	AM OU PO6 - - - -	TCOM PO7 - - - -	IES (PC PO8 - - - -	Ds) PO9	PO10 2	PO11	PO12 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PROC SPEC OUTC (PS PSO1 2 2 2 2 2 2	GRAM CIFIC OMES OS) PSO2 3 3 3 3 3

		T.	Т	Р	С
ME4702	COMPUTER INTEGRATED MANUFACTURING	3	0	0	3
OBIECTIVES	<u> </u>	5	0	U	5
◆ 7	, To understand the application of computers in various aspects of Manufacturing	g viz.,	,		
1	Design, Proper planning, Manufacturing cost, Layout & Material Handling syst	em.			1
UNIT I	INTRODUCTION				9
Brief introducti CAD/CAM – C production - Ma problems – Ma of Automation manufacturing.	ion to CAD and CAM – Manufacturing Planning, Manufacturing control- I Concurrent Engineering-CIM concepts – Computerized elements of CIM syst anufacturing models and Metrics – Mathematical models of Production Perform nufacturing Control – Simple Problems – Basic Elements of an Automated sy – Lean Production and Just-In-Time Production. Introduction to 3D print	ntrod em – ance stem ing a	uctio Type – Sir – Le nd si	n to es of nple evels mart	CO1
IINIT II	PRODUCTION PLANNING AND CONTROL AND COMPUTERISED)			0
	PROCESS PLANNING				9
Process plannin Planning – Ag planning – Ca Manufacturing	gregate Production Planning and the Master Production Schedule – Material apacity Planning- Control Systems-Shop Floor Control-Inventory Contro Resource Planning-II (MRP-II) & Enterprise Resource Planning (ERP) - Simp	Aideo Reg – – Le Pro	l Pro uirer Brief oblen	cess nent on ns.	CO2
UNIT III	CELLULAR MANUFACTURING				9
Coding system cell design and Arranging Mac	ogy(G1), Part Families – Parts Classification and coding – Simple Problems – Production flow Analysis – Cellular Manufacturing – Composite part conce layout – Quantitative analysis in Cellular Manufacturing – Rank Order Cluste hines in a GT cell – Hollier Method – Simple Problems.	in C ept – ring	Mac Meth	Part hine od -	CO3
UNIT IV	FLEXIBLE MANUFACTURING SYSTEM (FMS) AND AUTOMATED GUIDED VEHICLE SYSTEM (AGVS)				9
Types of Flexib Quantitative an Application – V	ility - FMS – FMS Components – FMS Application & Benefits – FMS Planning alysis in FMS – Simple Problems. Automated Guided Vehicle System (AG Vehicle Guidance technology – Vehicle Management & Safety.	g and VS)	Cont – AC	rol– GVS	CO4
UNIT V	INDUSTRIAL ROBOTICS				9
Robot Anatomy Sensors in Rob Programming –	v and Related Attributes – Classification of Robots- Robot Control systems – E potics – Robot Accuracy and Repeatability - Industrial Robot Applications Robot Accuracy and Repeatability – Simple Problems.	nd Ei – Ro	ffecto	ors – Part	CO5
	TO	TAL:	45 F	PERI	ODS
TEXTBOOK	S				
 Mikell.P.G. of India, 20 Radhakrish Internationa REFERENCI Kant Vajpay Gideon Hale London, 19 	roover "Automation, Production Systems and Computer Integrated Manufactur 008. nan P, Subramanyan S.and Raju V., "CAD/CAM/CIM", 2nd Edition, New Ag al (P) Ltd, New Delhi, 2000. E BOOKS yee S, "Principles of Computer Integrated Manufacturing", Prentice Hall India, 200 evi and Roland Weill, "Principles of Process Planning – A Logical Approach" Cha 095.	ring"; e 03. upmai	, Prer	ntice I	Hall
3. Rao. P, N T 2000.	ewari &T.K. Kundra, "Computer Aided Manufacturing", Tata McGraw Hill Publi	shing	Con	npany	,

COURSE OUTCOMES

Upon completion of the course, students will be able to:

CO1	Understand the elements of CIM and CIM Concept
CO2	Understand Computers in process planning and use in CIM
CO3	Understand the uses of Cellular Manufacturing in CIM
CO4	Understand the purpose of FMS and AGV in CIM
CO5	Understand the Robotic fundamentals in CIM

COs				Pŀ	ROGRA	AM OU	TCOM	IES (PO	Os)				PROC SPEC OUTC (PS	GRAM CIFIC COMES SOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	2	-	-	3	3	3	2	1	2
CO2	I	-	-	-	-	2	-	-	3	3	3	2	1	0
CO3	-	-	-	-	-	2	-	-	3	3	3	2	1	0
CO4	-	-	-	-	-	2	-	-	3	3	3	2	1	2
CO5	-	-	-	-	-	2	-	-	3	3	3	2	1	2

		Т	Т	р	С				
GE4791	HUMAN VALUES AND ETHICS	L 3	0	0	3				
OBJECTIVES ↔ To enable t and Social	he students to create an awareness on Engineering Ethics and Human Value. Values and Loyalty and to appreciate the rights of others.	s, to :	insti	ll Mo	oral				
UNIT I	HUMAN VALUES				10				
Morals, values and Living peacefully - Empathy – Self-co professional excell	Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Co nfidence – Character – Spirituality – Introduction to Yoga and meditation fo ence and stress management.	for o mmi r	thers tmer	s – 1t –	со				
UNIT II	ENGINEERING ETHICS				9				
Senses of 'Enginee Autonomy – Kohll roles - Theories ab	ering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas berg's theory – Gilligan's theory – Consensus and Controversy – Models of out right action – Self-interest – Customs and Religion – Uses of Ethical The	– M f prot eorie	oral fessi s.	onal	CO				
UNIT III	ENGINEERING AS SOCIAL EXPERIMENTATION				9				
Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.									
UNIT IV	SAFETY, RESPONSIBILITIES AND RIGHTS				9				
Safety and Risk – A Authority – Colle Professional Right	Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk - active Bargaining – Confidentiality – Conflicts of Interest – Occupation s – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.	Resp Resp al C	pect Crime	for e –	CO				
UNIT V	GLOBAL ISSUES				8				
Multinational Corp as Managers – Cor Code of Conduct –	oorations – Environmental Ethics – Computer Ethics – Weapons Developmen nsulting Engineers – Engineers as Expert Witnesses and Advisors – Moral - Corporate Social Responsibility.	it – E Leac	ngin lersh	ieers iip –	CO5				
	TO	ΓAL	: 45	PER	IODS				
TEXTBOOKS									
 Mike W. M Govindaraj Delhi, 2004 	Iartin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, I an M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall 4.	New of Ir	Dell ndia,	ni, 20 New	03.				
REFERENCE B	OOKS								
1. Charles B.	Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 200	4.							
2. Charles E. Cases", Cer	Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – C ngage Learning, 2009.	once	epts a	and					
3. John R Boa	atright, "Ethics and the Conduct of Business", Pearson Education, New Delh	i, 20	03						
4. Edmund G	Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Et	ngine	ers"	, Oxf	ford				
University	Press, Oxford, 2001.								
5. Laura P. Ha	artman and Joe Desjardins, "Business Ethics: Decision Making for Personal	Integ	grity	and					
Social Resp	ponsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2013.								

6. World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 2011.

COUF	RSE OU	JTCON	1ES											
Upon	comple	tion of	the cou	ırse, stı	idents	will be	able to							
CO1	Studen society	ts shoul	d be ab	le to ap	ply ethi	cs in sc	ociety, a	and real	lize the	respons	sibilities	s and rigl	hts in the	•
CO2	Studen	ts shoul	d be ab	le to dis	scuss th	e ethica	al issues	s related	l to eng	ineering				
CO3	Unders	tood the	e core v	alues th	nat shap	e the et	hical be	ehaviou	r of an	enginee	er			
CO4	Expose	d aware	eness or	n profes	sional e	ethics a	nd hum	an valu	es					
CO5	Known	their ro	ole in te	chnolog	gical de	velopm	ient							
				MA	PPING	OF C	Os WI	ГН РО	s AND	PSOs				
COs				Pl	ROGR	AM OU	JTCON	AES (P	Os)				PROG SPEC OUTC (PS	RAM CIFIC OMES Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	2	2	3	2	-	-	2	-	-
CO2	-	-	-	-	-	2	2	3	2	-	-	2	-	-

COs		PROGRAM OUTCOMES (POs)											SPEC OUTC (PS	CIFIC OMES Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	2	2	3	2	-	-	2	-	-
CO2	-	-	-	-	-	2	2	3	2	-	-	2	-	-
CO3	-	-	-	-	-	2	2	3	2	-	-	2	-	-
CO4	-	-	-	-	-	2	2	3	2	-	-	2	-	-
CO5	-	-	-	-	-	2	2	3	2	-	-	2	-	-

SIMULATION AND ANALYSIS LABORATORY

L	Т	Р	С
0	0	4	2

CO2

CO1

CO2

CO1

OBJECTIVES

- To develop the student's skills in proper modeling, meshing, and setting up material properties, loads, and constraints for computer simulation and analysis
- To give exposure to software tools needed to analyze engineering problems
- ✤ To expose the students to different applications of simulation and analysis tools
- ✤ To provide the analysis skills to interpret and draw conclusion the results of computer analysis

LIST OF EXPERIMENTS

- 1. Analysis of bar element under axial loads and thermal loads.
- 2. Analysis of truss structure.
- 3. Analysis of beams with point load, UDL, UVL, plotting shear force and bending moment diagrams.
- 4. Analysis of a Plate with various Boundary conditions.
- 5. Stress analysis of an Axi-symmetric component.

6. Modal Analysis of Beam and Plate Elements.

7. Harmonic Analysis of Beam and Plate Elements.

8. Analysis of Column with Buckling Loads.

9. Steady state heat transfer analysis of composite wall.

10. Vibration analysis of spring-mass systems.

11. Coupled field analysis of a solid object.

12. Fluid flow analysis on circular pipe.

13. Analysis of Joints and Springs.

14. Case Study - Structural/Thermal Analysis.

15. Case Study - Fluid Analysis.

TOTAL: 60 PERIODS

COUI	RSE OU	JTCON	AES											
Upon	comple	tion of	the cou	ırse, stı	idents	will be	able to							
CO1	Analyz	e and si	imulate	the stat	ic solid	and str	uctural	mechai	nics pro	blems u	ising FI	EA soft	ware	
CO2	Under	stand he	eat trans	sfer and	dynam	ic analy	ysis.							
				MA	APPIN	G OF C	COs WI	TH PC)s AND	PSOs				
COs				PF	ROGRA	AM OU	TCOM	IES (PO	Os)				PRO SPE OUT (PS	GRAM CIFIC COMES SOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	-	2	2	-	-	1	-	-	2	3	2
CO2	2	3	2	-	2	2	-	-	2	-	-	2	3	2

	L	Т	Р	С					
ME4708 MECHATRONICS LABORATORY	0	0	4	2					
OBJECTIVES									
To know the method of programming the microprocessor and also the design, modeling & electrical, hydraulic & pneumatic Systems which enable the students to understand mechatronics.	ana the	lysis coi	s of t ncep	oasi ot o					
LIST OF EXPERIMENTS									
1. Assembly language programming of 8085 – Addition – Subtraction – Multiplication – Div Sorting – Code Conversion.	visio	on –							
2. Stepper motor interface.			C	D2					
3. Traffic light interface									
4. Speed control of DC motor.									
5. Study of various types of transducers.									
6. Study of hydraulic, pneumatic and electro-pneumatic circuits.			C	D1					
7. Modelling and analysis of basic hydraulic, pneumatic and electrical circuits using Software.									
8. Study of PLC and its applications.			C	~~					
9. Study of image processing technique.			C	52					
ΤΟΤΑΙ	L: 6	0 PE	RIO	DS					

COURSE OUTCOMES

Upon completion of the course, students will be able to:

CO1	Demonstrate the functioning of mechatronics system with various pneumatic, hydraulic and electrical systems.

CO2 Demonstrate the functioning of control systems with the help of PLC and microcontrollers.

COs		PROGRAM OUTCOMES (POs)												
000	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	-	-	3	-	-	-	-	-	-	-	2	3
CO2	2	-	-	-	3	-	-	-	-	-	-	-	2	3

GE4792	INDUSTRIAL MANAGEMENT	L 3	Т 0	P	C 3
OBJECTIVES * To enable the management	he students to study the evolution of Management, to study the functions and nt and to learn the application of the principles in an organization.	prir	ciple	es of	
UNIT I	INTRODUCTION				9
Management - De Development of M Individual Owners Undertakings, Cor –Trade Union	efinition – Functions – Evolution of Modern Management – Scientific M Management Thought. Approaches to the study of Management, Forms of Or ship – Partnership – Joint Stock Companies – Co- operative Enterprises – P porate Frame Work – Share Holders – Board of Directors – Committees – Chie	Mana gani ublic ef Ex	agem zatio c Sec kecut	ent n – ctor ive	CO1
UNIT II	FUNCTIONS OF MANAGEMENT				9
Planning – Nature Making – Organ Decentralization – appraisal – Career – Communication operations manage	e and Purpose – Objectives – Strategies – Policies and Planning Premises izing – Nature and Process – Premises – Departmentalization – Line - Organizational culture, Staffing - selection and training – Placement – I Strategy – Organizational Development. Leading – Managing human factor – n, Controlling - Process of Controlling – Controlling techniques, produ- ement – Preventive control, Industrial Safety.	– I and Perfo - Lea uctiv	Decis staff orman aders ity a	ion f – nce hip and	CO2
UNIT III	ORGANIZATIONAL BEHAVIOUR				9
Definition – Orga behaviour – cause Implications. Pers Satisfaction, Learn	anization – Managerial Role and functions – Organizational approaches es – Environmental Effect – Behavior and Performance, Perception – Or onality – Contributing factors - Dimension – Need Theories – Process The ning and Behavior – Learning Curves, Work Design and approaches.	, Ine gani eorie	divid zatio es – .	ual nal Job	CO3
UNIT IV	GROUP DYNAMICS				9
Group Behavior – communication – Grid – Leadership – Types – Causes – decentralization – Development – Ch	Groups – Contributing factors – Group Norms, Communication – Process - Effective communication, leadership – formal and informal characteristics – styles – Group Decision Making – Leadership Role in Group Decision, Gro – Conflict Resolution – Inter group relations and conflict, Organization centra - Formal and informal – Organizational Structures – Organizational G hange Process – Resistance to Change – Culture and Ethics.	– Ba - Ma up C aliza Char	rriers nagen Confli tion a nge a	s to rial icts and and	CO4
UNIT V	MODERN CONCEPTS				9
Management by C for Future directio – Business Proce Management (SCN	Dejectives (MBO), Management by Exception (MBE), Strategic Management n – SWOT Analysis – Information technology in management – Decisions sup ess Re-engineering (BPR) – Enterprises Resource Planning (ERP) – Su M) – Activity Based Management (ABM).	it - F opor ipply	lann t syst 7 Ch	ing em ain	CO5
	ТОТ	AL:	45 I	PER	IODS
TEXTBOOKS					
 Herald Kno 2010. Stephen P. 1 	ttz and Heinz Weihrich, "Essentials of Management", Tata McGraw Hill Edu Robbins, "Organization Behaviour", Pearson Education Inc., 13 edition, 2010	ıcati).	on P	vt. L	.td.,
REFERENCE BO	OOKS				
1. Joseph J, M	assie, "Essentials of Management" Prentice Hall of India Pvt. Ltd. 1985.				

- 2. Ties, AF, Stoner and R.Edward Freeman, "Management" Prentice Hall of India Pvt. Ltd. New Delhi 110 011, 1992
- 3. Tripathi. P.C. & P.N. Reddy, "Principles of Management", Tata McGraw Hill, 2006.

COUR	RSE OU	TCON	1ES		. .										
Upon	comple	tion of	the cou	irse, sti	idents	will be	able to								
CO1	Know about Evolution of Modern Management and Forms of Organization.														
CO2	Understand the need for planning and controlling activities in the organisation														
CO3	Learn about the individuals and group behaviours in the organisation														
CO4	Know about the effect Leadership roles and Organizational Structures														
CO5	5 Understand the different modern concepts to evaluate the management activities.														
	MAPPING OF COs WITH POs AND PSOs														
	Os PROGRAM OUTCOMES (POs) PROGRAM OUTCOMES (POs)												PROG SPEC	GRAM ECIFIC COMES PSOs)	
COs				PRO	JGRAN		COMP	ES (POs	5)				OUTC (PS	OMES Os)	
COs	PO1	PO2	PO3	PRO PO4	PO5	PO6	PO7	ES (POs PO8	s) PO9	PO10	PO11	PO12	OUTC (PS PSO1	OMES Os) PSO2	
COs CO1	PO1 -	PO2 -	PO3 -	PR(PO4 -	PO5 -	PO6	P07 -	2S (POs PO8 -	PO9 3	PO10 3	PO11 3	PO12 2	OUTC (PS PSO1 -	OMES Os) PSO2	
COs CO1 CO2	PO1 - -	PO2 - -	PO3 - -	PR(PO4 - -	PO5 - -	PO6 2 2	PO7 - -	PO8 - -	PO9 3 3	PO10 3 3	PO11 3 3	PO12 2 2	OUTC (PS PSO1 - -	OMES Os) PSO2 - -	
COs CO1 CO2 CO3	PO1 - -	PO2 - - -	PO3 - - -	PR0 PO4 - -	PO5 - - -	PO6 2 2 2 2	P07 - - -	PO8 - - -	PO9 3 3 3 3	PO10 3 3 3	PO11 3 3 3	PO12 2 2 2 2	OUTC (PS PSO1 - -	OMES Os) PSO2 - - -	
COs CO1 CO2 CO3 CO4	PO1	PO2 - - - -	PO3	PR0 PO4 - - - -	PO5 - - - - -	PO6 2 2 2 2 2 2 2 2 2	P07 - - - -	PO8 - - - -	PO9 3 3 3 3 3 3	PO10 3 3 3 3 3	PO11 3 3 3 3	PO12 2 2 2 2 2 2	OUTC (PS - - - -	OMES Os) PSO2 - - - - -	

ME4807

PROJECT WORK

OBJECTIVES

- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.
- ✤ To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 2 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

COUR	COURSE OUTCOMES											
Upon completion of the course, students will be able to												
CO1	Take up any challenging practical problems and find solution by formulating proper methodology.											
CO2	Design engineering solutions to complex problems utilizing a systems approach and conduct an engineering project and communicate with engineers and the community at large in written and oral forms.											

COs		PROGRAM OUTCOMES (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	-	-	-	3	-	2	2	1	3	3
CO2	3	3	3	3	-	-	-	3	-	2	2	1	3	3

MX4001

INTRODUCTION TO WOMEN AND GENDER STUDIES

OBJECTIVES

- To enhance social sensitivity, sensibility and responsibility thereby instilling the life skills among students, through applied learning.
- To upgrade knowledge and comprehension of gender issues for attitudinal and behavioural changes among marginalized groups to claim the right to life with dignity and equality through extension and collaborative activities.
- To evolve inclusive approach for holistic development in order to promote women empowerment

INTRODUCTION TO WOMEN'S STUDIES 9 UNIT I Key concepts in Gender studies - Need, Scope and challenges of Women's Studies – Women's Studies as an academicdiscipline - Women's Studies to Gender Studies - Need for Gender Sensitization - Women's **CO1** Movements – global and local: Pre-independence - Post-independence and Contemporary Debates -National Committees and Commissions for Women. UNIT II FEMINIST THINKERS AND THEORIES 9 Liberal Feminism - Marxist Feminism - Radical Feminism - Socialist Feminism - Indian Feminism - Black Feminism - Eco-Feminism - New Feminist Debates- Post Colonial /Post Modern - Masculinity Studies -**CO2** Contemporary Contestations – Intersex and Transgender Movements. Feminist thinkers in 18th, 19th, 20th and 21st Century. UNIT III GENDER AND EDUCATION 9 Women's Education – Gender diversities and disparities in enrolment, Curriculumcontent, Dropouts, profession and Gender - Gendered Education- Family, Culture, Gender roles, Gender Identities -Education **CO3** for the Marginalized Women - Recent Trends in Women's Education – Committees and Commissions on Education - Vocational education and skill Development for women. UNIT IV WOMEN, WORK AND EMPLOYMENT 9 Theoretical Perspective: Fredrick Engels, Rosa Luxemburg, Sandra Whiteworth, BoserupEsther -Concept of Work – Productive and non – productive work – Use value and market value - Gender Division of Labour **CO4** - Mode of Production – Women in organized and unorganized sector - New Economic Policy and its impact on Women's Employment – Globalization –Structural Adjustment Programs. UNIT V GENDER AND ENTREPRENEURSHIP 9 Concept and meaning, Importance of Entrepreneurship, Entrepreneurial traits, Factors contributing to Entrepreneurship, enabling environment, small Enterprises, women in agri-business - Gender and emerging Technology – Impact - Self-help Groups and Micro Credit - Gender mainstreaming, Gender budgeting, **CO5** planning and Analysis. **TOTAL: 45 PERIODS**

TEXT BOOKS

- 1. Jaya Kothari Pillai- 1995, Women and Empowerment, New Delhi: Gyan Publishing House
- 2. JoRoland-: 1997, Questioning Empowerment, Oxfam Oxford.
- 3. Janet Townsend etal-: 1999, Women and Power, Fighting Patriarchy and Poverty. Zed Books, London.
- 4. Naila Kabeer: 1996, Reversed Realities, Kali for women, New Delhi.

-	
COU	RSE OUTCOMES
Upon	completion of the course, students will be able to
CO1	To enhance the social sensitivity, sensibility and responsibility thereby instilling the life skills among students.
CO2	To upgrade knowledge and comprehension of gender issues for attitudinal and behavioural change among men, women and transgender etc. to claim the right to life with dignity and equality.
CO3	To bring social, economic, political and cultural empowerment and gender equality in personal as well Professional life.
CO4	To crystallize the teaching of Women's Studies in term of teaching, research and extension. in order
CO5	To create more gender equality and equity world by education, sensitization and empowerment.

COs				PROG	RAM (OUTCO	OMES	(POs)					PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	-	-	-	-	-	1	-	1	-	-	-	1	-	-	
CO2	-	-	-	-	-	1	-	1	-	-	-	1	-	-	
CO3	-	-	-	-	-	1	-	1	-	-	-	1	-	-	
CO4	-	-	-	-	-	1	-	1	-	-	-	1	-	-	
CO5	-	-	-	-	-	1	-	1	-	-	-	1	-	-	

			L	т	Р	С
M	X4002	ELEMENTS OF LITERATURE	3	0	0	0
OBJI	ECTIVE	ES	5	0	0	0
1.	To unc	lerstand the recent contexts, concepts and ideologies.				
2.	To acq	uaint themselves with the major generic divisions in English literature.				
3.	To ack	nowledge the conventions of literary research and documentation.				
UNIT	ГІ	KEY ELEMENTS OF LITERATURE				9
Langua	age - Plo	t - Setting/Milieu - Character - Theme - Point of View - Tone/Mood.			C	01
UNIT	ГII	PROSE				9
The f	orm of p	rose - written and spoken prose - individual and common style - simplicity and				
orname	entation	- abstract and concrete - realism, romance and unreality - the science of rhetoric.			C	:02
UNI	T III	POETRY				9
The im	portance	e of form - the physical form of poetry - metre - variation - rhyme - internal pattern	- log	gical	С	03
sequen	ice - the	use of associations - patterns of imagery the main types of poetry.				
UNIT	ΓIV	NOVEL				9
The c	concept of	f fiction - verisimilitude - the point of view - plot - character - character revealed -			С	04
conver	sation -	scene and background - dominant themes - the experimental novel.				
UNI	ΓV	DRAMA				9
UNIT Live li	ΓV iterature	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue	e and			9
UNIT Live li conver	F V iterature sation -	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue verse and prose - types of drama - drama and history - use of notes – interpretation	e and		C	9
UNIT Live li conver	F V iterature sation -	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue verse and prose - types of drama - drama and history - use of notes – interpretation TOTAL	e and L : 4 !	5 PE	C	9 205 205
UNIT Live li conver TEX	F V iterature rsation - T BOOI	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue verse and prose - types of drama - drama and history - use of notes – interpretation TOTAI XS	e and L : 4 !	5 PE	C	9 205 205
UNIT Live If conver TEX 1. B	F V iterature sation - T BOOI arnet Sy	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue verse and prose - types of drama - drama and history - use of notes – interpretation TOTAI KS lvan, Types of Drama; Plays and Essays, Boston, Little Brown, 1981.	e and L : 4 !	5 PE	C	9 205 205
UNIT Live E conver TEX 1. B 2. B	F V iterature sation - T BOOI arnet Sy rooks, P	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue verse and prose - types of drama - drama and history - use of notes – interpretation TOTAI XS Ivan, Types of Drama; Plays and Essays, Boston, Little Brown, 1981. eter, Reading for the Plot; Design and Intention in Narrative, Oxford, Clarendon Pr	e and L : 4 !	5 PE 1984	C RIO	9 105 DDS
UNIT Live E conver TEX 1. B 2. B 3. H	F V iterature sation - T BOOI arnet Sy rooks, P ardings	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue verse and prose - types of drama - drama and history - use of notes – interpretation TOTAI XS Ivan, Types of Drama; Plays and Essays, Boston, Little Brown, 1981. eter, Reading for the Plot; Design and Intention in Narrative, Oxford, Clarendon Pr D.W., Words Into Rhythm; English Speech, OUP, New Delhi, 1976.	e and L : 4!	5 PE	C RIO	9 205 DDS
UNIT Live E conver TEX 1. B 2. B 3. H 4. M	F V iterature sation - T BOOI arnet Sy rooks, P ardings Iurfin, R	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue verse and prose - types of drama - drama and history - use of notes – interpretation TOTAI XS Ivan, Types of Drama; Plays and Essays, Boston, Little Brown, 1981. eter, Reading for the Plot; Design and Intention in Narrative, Oxford, Clarendon Pr D.W., Words Into Rhythm; English Speech, OUP, New Delhi, 1976. oss, and Supriya M. Ray. The Bedford Glossary of Critical and Literary Terms. Ne	e and L : 4: ress,	5 PE 1984 prk:	C RIO	9 205 DDS
UNITI Live I: conver TEX' 1. B 2. B 3. H 4. M M	T V iterature sation - T BOOI arnet Sy rooks, P fardings furfin, R facmillar	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue verse and prose - types of drama - drama and history - use of notes – interpretation TOTAI XS Ivan, Types of Drama; Plays and Essays, Boston, Little Brown, 1981. eter, Reading for the Plot; Design and Intention in Narrative, Oxford, Clarendon Pr D.W., Words Into Rhythm; English Speech, OUP, New Delhi, 1976. oss, and Supriya M. Ray. The Bedford Glossary of Critical and Literary Terms. Ne n Press Ltd., 1997.	e and L : 4! ress,	5 PF 1984 ork:	C RIC	9 205 DDS
UNITI Live I: conver TEX' 1. B 2. B 3. H 4. M 5. Pa	T V iterature sation - T BOOI arnet Sy rooks, P fardings furfin, R facmillar aul, Popl	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue verse and prose - types of drama - drama and history - use of notes – interpretation TOTAI XS Ivan, Types of Drama; Plays and Essays, Boston, Little Brown, 1981. eter, Reading for the Plot; Design and Intention in Narrative, Oxford, Clarendon Pr D.W., Words Into Rhythm; English Speech, OUP, New Delhi, 1976. oss, and Supriya M. Ray. The Bedford Glossary of Critical and Literary Terms. Ne n Press Ltd., 1997. lawski, ed. English Literature in Context. London: CUP,2008.	e and L : 4 ress,	5 PE 1984 ork:	C RIC	9 205 DDS
UNITI Live I: conver TEX' 1. B 2. B 3. H 4. M 5. Pa	T V iterature sation - T BOOI arnet Sy rooks, P ardings furfin, R facmillan aul, Popl	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue verse and prose - types of drama - drama and history - use of notes – interpretation TOTAI XS Ivan, Types of Drama; Plays and Essays, Boston, Little Brown, 1981. eter, Reading for the Plot; Design and Intention in Narrative, Oxford, Clarendon Pr D.W., Words Into Rhythm; English Speech, OUP, New Delhi, 1976. oss, and Supriya M. Ray. The Bedford Glossary of Critical and Literary Terms. Ne n Press Ltd., 1997. awski, ed. English Literature in Context. London: CUP,2008.	e and L : 4 ress,	5 PE 1984 ork:	C RIC	9 205 DDS
UNIT Live I: conver TEX' 1. B 2. B 3. H 4. M 5. P: COUF	F V iterature sation - T BOOI arnet Sy rooks, P fardings furfin, R facmillat aul, Popl RSE OU complet	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue verse and prose - types of drama - drama and history - use of notes – interpretation TOTAI XS Ivan, Types of Drama; Plays and Essays, Boston, Little Brown, 1981. eter, Reading for the Plot; Design and Intention in Narrative, Oxford, Clarendon Pr D.W., Words Into Rhythm; English Speech, OUP, New Delhi, 1976. oss, and Supriya M. Ray. The Bedford Glossary of Critical and Literary Terms. Ne n Press Ltd., 1997. awski, ed. English Literature in Context. London: CUP,2008. TCOMES ion of the course, students will be able to	e and L : 4! ress,	5 PE 1984 ork:	L.	9 205 DDS
UNIT Live I: conver TEX' 1. B 2. B 3. H 4. M 5. P: COUF Upon CO1	T V iterature sation - T BOOI arnet Sy rooks, P fardings furfin, R facmillat aul, Popl RSE OU complet Compre	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue verse and prose - types of drama - drama and history - use of notes – interpretation TOTAI XS Ivan, Types of Drama; Plays and Essays, Boston, Little Brown, 1981. eter, Reading for the Plot; Design and Intention in Narrative, Oxford, Clarendon Pr D.W., Words Into Rhythm; English Speech, OUP, New Delhi, 1976. oss, and Supriya M. Ray. The Bedford Glossary of Critical and Literary Terms. Ne n Press Ltd., 1997. lawski, ed. English Literature in Context. London: CUP,2008. TCOMES ion of the course, students will be able to hend various forms of literature like prose, poetry, drama and fiction.	e and L : 4! ress,	5 PE 1984 ork:		9 205 DDS
UNIT Live I: conver TEX' 1. B 2. B 3. H 4. M 5. Pa COUF Upon CO1 CO2	F V iterature sation - T BOOI arnet Sy rooks, P fardings furfin, R facmillar aul, Popl RSE OU complet Compre Interpre	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue verse and prose - types of drama - drama and history - use of notes – interpretation TOTAI TOTAI KS Ivan, Types of Drama; Plays and Essays, Boston, Little Brown, 1981. eter, Reading for the Plot; Design and Intention in Narrative, Oxford, Clarendon Pr D.W., Words Into Rhythm; English Speech, OUP, New Delhi, 1976. oss, and Supriya M. Ray. The Bedford Glossary of Critical and Literary Terms. Ne n Press Ltd., 1997. awski, ed. English Literature in Context. London: CUP,2008. TCOMES ion of the course, students will be able to hend various forms of literature like prose, poetry, drama and fiction. t and appreciate the didactic purpose in literature.	e and L : 4!	5 PE 1984 ork:		9 005 0DS
UNIT Live 1: conver TEX 1. B 2. B 3. H 4. M 5. Pa COUF Upon CO1 CO2 CO2 CO3	F V iterature sation - T BOOI arnet Sy rooks, P fardings furfin, R facmillan aul, Popl RSE OU complet Compre Interpre Identify	DRAMA - action - plots - conventional divisions - direct experience of characters - dialogue verse and prose - types of drama - drama and history - use of notes – interpretation TOTAI XS Ivan, Types of Drama; Plays and Essays, Boston, Little Brown, 1981. eter, Reading for the Plot; Design and Intention in Narrative, Oxford, Clarendon Pr D.W., Words Into Rhythm; English Speech, OUP, New Delhi, 1976. oss, and Supriya M. Ray. The Bedford Glossary of Critical and Literary Terms. Ne n Press Ltd., 1997. awski, ed. English Literature in Context. London: CUP,2008. TCOMES ion of the course, students will be able to hend various forms of literature like prose, poetry, drama and fiction. t and appreciate the didactic purpose in literature. the poetic devices to the connection of poems.	e and L : 4: ress, ew Y	5 PF 1984 ork:		9 305 DDS

CO5 Define the various types of novels with their structure

COs		PROGRAM OUTCOMES (POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	-	-	-	-	-	1	-	1	-	-	-	1	-	1		
CO2	-	-	-	-	_	1	-	1	-	-	-	1	-	1		
CO3	-	-	-	-	_	1	-	1	-	-	-	1	-	1		
CO4	-	-	-	-	_	1	-	1	-	-	-	1	-	1		
CO5	-	-	-	-	-	1	-	1	-	-	-	1	-	1		

MX4003	PERSONALITY DEVELOPMENT THROUGH LIFE	L	Т	Р	С				
11111111111000	ENLIGHTENMENT SKILLS	3	0	0	0				
OBJECTIVES									
To deve	lop inter personal skills and be an effective goal-oriented team player.								
To deve	lop professionals with idealistic, practical and moral values.								
To deve	lop communication and problem-solving skills.								
✤ To re-er	ngineer attitude and understand its influence on behavior								
UNIT I					9				
Neetisatakam-H	olistic development of personality I								
Verses- 19,20,21,22 (wisdom), Verses- 29,31,32 (pride & heroism), Verses- 26,28,63,65 (virtue)									
UNIT II					9				
Neetisatakam-H	olistic development of personality II								
Verses- 52,53,59	9 (don'ts), Verses- 71,73,75,78 (do's)			(C O 1				
				_					
UNIT III					9				
Approach to day Shrimad Bhagw Verses 5,13,17, 2	7-to-day work and duties. ad Geeta: Chapter 2-Verses 41, 47,48, Chapter 3-Verses 13, 21, 27, 35, Chapter 23, 35, Chapter 18-Verses 45, 46, 48.	6-		C	02				
UNIT IV					9				
Statements of ba Shrimad Bhagw	asic knowledge. ad Geeta: Chapter2-Verses 56, 62, 68, Chapter 12 -Verses 13, 14, 15, 16,17, 18			C	202				
UNIT V					9				
Personality of Ro Shrimad Bhagwa Chapter18 – Vers	ble model. ad Geeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, ses 37,38,63.	38,	,39,	С	203				
	ТОТА	LP	ERIC	DDS	: 45				
TEXT BOOKS									

- 1. "Srimad Bhagavad Gita" by Swami Swarupananda, Advaita Ashram (Publication Department), Kolkata
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

COU	RSE OUTCOMES								
Upon completion of the course, students will be able to									
CO1	Study of Shrimad Bhagwad Geeta will help the student in developing his personality and achieve the highest goal in life.								
CO2	The person who has studied Geeta will lead the nation and mankind to peace and prosperity.								
CO3	Study of Neetishatakam will help in developing versatile personality.								

MAPPING OF COs WITH POs AND PSOs

Т

Т

1

COs		PROGRAM OUTCOMES (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	1	-	1	-	-	-	1	-	1
CO2	-	-	-	-	-	1	-	1	-	-	-	1	-	1
CO3	-	-	-	-	-	1	-	1	-	-	-	1	-	1

MX4004	DISASTER MANAGEMENT	L	Т	Р	С				
		3	0	0	0				
 OBJECTIVES ✤ To prov. ♥ To ensurpreventi ♥ To gain ♦ To enha ♥ To deve where they 	ide students an exposure to disasters, their significance and types. re that students begin to understand the relationship between vulnerability, disaster ion and risk reduction. a preliminary understanding of approaches of Disaster Risk Reduction (DRR) nce awareness of institutional processes in the country and lop rudimentary ability to respond to their surroundings with potential disaster res live, with due sensitivity	ers, c	lisast se in	ter area	s				
UNIT I INTRODUCTION TO DISASTERS									
Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters									
UNIT II	APPROACHES TO DISASTER RISK REDUCTION (DRR)				9				
Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake- holders- Institutional Processess and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.									
UNIT III	INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT	Г			9				
Factors affectin embankments, c context of India	g Vulnerabilities, differential impacts, impact of Development projects such anges in Land-use etc Climate Change Adaptation- IPCC Scenario and Sce - Relevance of indigenous knowledge, appropriate technology and local resources	ch a nario s.	ıs da os in	ams, the	CO3				
UNIT IV	DISASTER RISK MANAGEMENT IN INDIA				9				
Hazard and Vul Health, Waste Management Ac Information Tec Disaster – Disas	nerability profile of India, Components of Disaster Relief: Water, Food, Sanitati Management, Institutional arrangements (Mitigation, Response and Preparedne et and Policy - Other related policies, plans, programmes and legislation – Role hnology Components in Preparedness, Risk Assessment, Response and Recover ter Damage Assessment	on, ss, I of C y Pł	Shelt Disas GIS & nases	ter, ster and s of	CO4				
UNIT V	DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AN WORKS	D F	IEL	D	9				
WORKS Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.									
	TOTA	\L: (45 P]	ERIC	DDS				
TEXTBOOKS									
1. Singhal J.P.	"Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN	-13:	978-						

9380386423

2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361]

3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011

4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, NewDelhi, 2010.

REFERENCE BOOKS

1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005

2. Government of India, National Disaster Management Policy,2009.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Differentiate the types of disasters, causes and their impact on environment and society
CO2	Assess vulnerability and various methods of risk reduction measures as well as mitigation
CO3	Draw the hazard and vulnerability profile of India, Scenarios in the Indian context,
CO4	Know about the relief measures, Disaster damage assessment and management.
CO5	Learn through case studies about the damages caused due to various disasters.

COs		PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOME (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	-	-	3	-	-	3	3	-	-	-	-	2	-	2	
CO2	-	-	3	-	-	3	3	-	-	-	-	2	-	2	
CO3	-	-	3	-	-	3	3	-	-	-	-	2	-	2	
CO4	-	-	3	-	-	3	3	-	-	-	-	2	-	2	
CO5	-	-	3	-	-	3	3	-	-	-	-	2	-	2	

MX4005	WELL BEING WITH TRADITIONAL PRACTICES L T 3 0	P C				
OBJEC * *	3 0 CIVES Explaining the purpose of well being and impact it has on their work and life Co teach basic methods used in the systems of Ayurveda, Siddha and Yoga dentify key factors that contribute to work place burnout and sustainability.	0 0				
UNI	Γ I HEALTH AND HAPPINESS	9				
Mental a achiever	nd physical health, physical and emotional safety, and a feeling of belonging, sense of purpose, ent and success. Need for Managing Self, Positive Psychology and Yoga.	CO1				
UNI	TII WELL BEING	9				
Health a – Metho	d Wellbeing: Perspectives from Positive Psychology, Yoga and Ayurveda, Attaining Wellbeing ls, Obstacles, Realms and Types of Interventions for Managing Self and Career	CO2				
UNI	III YOGA PRACTICES	9				
Definition for mind	ns of Eight parts of yoga.(Ashtanga). Asan and Pranayam - Various yoga poses and their benefits & body - Regularization of breathing techniques and its effects-Types of pranayam	CO3				
UNI	IV AYURVEDA PRACTICS	9				
Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation.Ayurveda and allied disciplines –Approach to health disease in Ayurveda						
UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE						
Principles of Siddha- the five natural elements and three humours, Physical constituents.						
	TOTAL:45 PER	IODS				
IEXTE1. Men2. Yog3. Text4. Sidd	al health and well being in workplace by Gillhassan and Donna Butler. c Asanas for Group Training - Part- I'': Janardan Swami Yogabhyasi Mandal, Nagpur. book of Ayurveda: Volume 1 - Fundamental Principles of Ayurveda by Dr Vasant Lad. na medicine handbook of raditional remedies by Paul Joseph					
REFER	ENCE BOOKS					
1.The Social Psychology of Mental Health: Basic Mechanisms and Applications by Diane N Ruble 2."Raja yoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama Publication Department), Kolkata.						
COURS Upon co	E OUTCOME npletion of the course, students will be able					
CO1	To create awareness about health and happiness					
CO2	To develop healthy mind in a healthy body thus improving social health also					
CO3	To educate the importance of various yoga asanas					
CO4	To know the values of ayurveda system					

MAPPING OF COs WITH POs

COs		PROGRAM OUTCOMES (POs)														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	-	-	-	-	-	2	2	-	-	-	-	1				
CO2	-	-	-	-	-	2	2	-	-	-	-	1				
CO3	-	-	-	-	-	2	2	-	-	-	-	1				
CO4	-	-	-	-	-	2	2	-	-	-	-	1				
CO5	-	-	-	-	-	2	2	-	-	-	-	1				

		,						
MX4006	HISTORY OF SCIENCE AND TECHNOLOGY IN INDIA		T	P	<u>C</u>			
OBIECTIVE	20	3	0	0	0			
• To pr	by the an exposure to the development of science and technology in India							
• To im	part authentic knowledge of India's scientific and technological traditions.							
• To pr	ovide an understanding of the socio-cultural and philosophical context in which	h scien	ice ar	nd				
techno	plogy developed.							
• To he	lp in repositioning India's contributions in science and technology							
UNIT I	INTRODUCTION			9	9			
Logic and met overview of In	hodology of Indian sciences - An overview of Indian contributions to sciences - An dian contributions to technology	n		C	01			
UNIT II	ASTRONOMY			ļ	9			
Development Indian planeta	of astronomy in India- Pancanga: Indian calendrical computations- The distinct ry models- Computation of eclipses: Its simplicity- elegance and efficiency- Obs	feature servatio	s of onal	C	01			
astronomy in India								
UNIT III	MATHEMATICS			9)			
An overview of the development of mathematics in India – Mathematics contained in Sulbasutras – combinatorial aspects of the Chandassastra – Solutions to the first and second order indeterminate equations- Weaving mathematics into beautiful poetry: Bhaskaracarya – The evolution of sine function in India – The discovery of calculus by Kerala astronomers.								
UNIT IV	UNIT IV AYURVEDA							
History of Ay and allied dis	History of Ayurveda – Rational foundations of Ayurveda – Textual sources in Ayurveda – Ayurveda and allied disciplines –Approach to health disease in Ayurveda – Approach to diet and nutrition in							
Ayurveda – A	yurveda and modern medicine – Ayurveda and Yoga							
UNIT V	TECHNOLOGICAL DEVELOPMENT IN INDIA			ļ	9			
Agriculture: C Water mana Medieval Wat	Drigin and development- Ancient crops- Traditional practices agement: Overview- Harappan water management- Other case er structures	stud	ies-					
Pottery: Overview- Technical aspects Silpasastra: Architecture and Construction: An introduction to Silpasastra- Construction Technology Metallurgy: Copper/Bronze/Zinc- Iron and Steel Technology in India								
	TOI	'AL: 4	5PE	RIO	DS			
TEXT BOOP	KS							
 Suvobrat Francis, NeeraMi Prittam I 	a Sarkar, History of Science, Technology, Environment, and Medicine in India London sra, Sabareesh P.a. 2022, A Brief History of Science in India, Garuda Prakasha Dutta 2021, WHAT IS ASTRONOMY ?, Notion Press	ı, Tayl ın Priv	or & ate L	imit	ed.			
REFERENC	E BOOKS							
1. D. P. Cha	tpathayaya, History of science, philosophy, and culture in India civilization, Un	na das	Gup	ota,				
Pearson E 2. Bryan Bu	ducation. nch, Bryan H. Bunch, Alexander Hellemans, The History of Science and Tech	nology	, Hoi	ughte	on			
Mifflin. 3. Projit Bih University	ari Mukharji · 2016, Doctoring Traditions-Ayurveda, Small Technologies, and	Braid	ed Sc	cienc	æs,			

COUR Upon o	SE OUTCOME completion of the course, students will be able to:
CO1	Gain knowledge on Indian sciences
CO2	Able to understand the evolution of stars as well as of the large scale structure of the Universe
CO3	Can use to solve problems involved in arithmetic, algebra, geometry, and other fields of mathematics
CO4	Helps in understanding each individual at a very subtle, personal level and gives a detailed protocol for diet, daily routines and activities to be followed.
CO5	Gain knowledge on origin of agriculture, technical aspects of pottery and silpasastra

MAPPING OF COs WITH POs

	PROGRAM OUTCOMES (POs)											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	1	-	-	2	2	-	-	-	2
CO2	2	2	1	1	1	2	2	1	-	-	1	3
CO3	3	3	2	1	1	-	-	-	1	-	1	2
CO4	1	-	-	-	-	3	3	1	-	-	-	3
CO5	2	2	1	1	2	3	3	1	-	-	-	2

AM OUTCOMES

	POLITICAL AND ECONOMIC THOUGHT FOR HUMANE	? T	C					
NIX400 /	SOCIETY) 0	0					
OBJECTIVES ♦ To understat	nd the concept of political science and theories of political science.	I						
✤ To know the	types of political socialization and their role.							
✤ To explore	various theories of economic thought.							
 To learn the 	importance of human values of life.							
UNIT I	POLITICAL THOUGHTS		9					
Political science: Definition, Nature & Scope; Relation of Political Science with other Social Sciences; Traditional approaches to the study of Political Science: Normative, Empirical and Feminist-State: Definition; Elements; Relation with other organizations; Theories of origin of state (Theory of Divine, Force, and Evolutionary); Sovereignty- definition and characteristics.								
UNIT II	POLITICAL CULTURE AND POLITICAL SOCIALIZATION		9					
Meaning and dimensions of political culture, meaning and types of political socialization agencies of political socialization and their role-Meaning and types of political participation, political apathy – reasons for political apathy, Determinants of political participation – psychological, social and political.								
UNIT III	HISTORY OF ECONOMIC THOUGHT							
Nature and Importance of Economic thought – Approaches of Economic Thought – Scholastics – Mercantilism, French and English – Thomas Munn – Scientific Method and the French Physiocrats – Quesnay – The Classical School – Adam Smith – Division of Labour – Ricardo and Theory of Rent – Comparative Cost Theory – Stationary State – Malthus and Theory of Population and Theory of Gluts.								
UNIT IV	ECONOMIC BEHAVIOUR AND MORAL SENTIMENTS							
Importance of ethics in economics; Outcomes of ethical analysis; Duties, rules and virtues; Economic behaviour: Self-interest and rational behaviour- Adam Smith and self-interest - Social Philosophy (Naturalism, Optimism, Self Interest, Invisible hand, Laisseze faire); Economic ideas: Wealth, Labour								
Importance of et behaviour: Self- (Naturalism, Op & Division of la	hics in economics; Outcomes of ethical analysis; Duties, rules and virtues; Economic interest and rational behaviour- Adam Smith and self-interest - Social Philosophy timism, Self Interest, Invisible hand, Laisseze faire); Economic ideas: Wealth, Labour bour, Value, Distribution.	C	9 04					
Importance of et behaviour: Self- (Naturalism, Op & Division of la UNIT V	thics in economics; Outcomes of ethical analysis; Duties, rules and virtues; Economic interest and rational behaviour- Adam Smith and self-interest - Social Philosophy timism, Self Interest, Invisible hand, Laisseze faire); Economic ideas: Wealth, Labour bour, Value, Distribution. HUMAN VALUES	C	9 04 9					
Importance of et behaviour: Self- (Naturalism, Op & Division of la UNIT V Value Education Validation- as th basic Human As of aspirations of understanding a	 thics in economics; Outcomes of ethical analysis; Duties, rules and virtues; Economic interest and rational behaviour- Adam Smith and self-interest - Social Philosophy timism, Self Interest, Invisible hand, Laisseze faire); Economic ideas: Wealth, Labour bour, Value, Distribution. HUMAN VALUES n, Self-Exploration - its content and process; 'Natural Acceptance' and Experiential ne mechanism for self-exploration, Continuous Happiness and Prosperity- A look at spirations, Right understanding, Relationship - the basic requirements for fulfillment 'every human being with their correct priority, Method to fulfill the human Values, nd living in harmony at various levels. 		9 04 9 05					
Importance of et behaviour: Self- (Naturalism, Op & Division of la UNIT V Value Education Validation- as th basic Human As of aspirations of understanding at	 thics in economics; Outcomes of ethical analysis; Duties, rules and virtues; Economic interest and rational behaviour- Adam Smith and self-interest - Social Philosophy timism, Self Interest, Invisible hand, Laisseze faire); Economic ideas: Wealth, Labour bour, Value, Distribution. HUMAN VALUES n, Self-Exploration - its content and process; 'Natural Acceptance' and Experiential ne mechanism for self-exploration, Continuous Happiness and Prosperity- A look at spirations, Right understanding, Relationship - the basic requirements for fulfillment i every human being with their correct priority, Method to fulfill the human Values, nd living in harmony at various levels. 	C	9 04 9 05 DS					
Importance of et behaviour: Self- (Naturalism, Op & Division of la UNIT V Value Education Validation- as th basic Human As of aspirations of understanding at TEXT BOOKS 1. Bhargava, Introductio	Adam Self Interest, Outcomes of ethical analysis; Duties, rules and virtues; Economic interest and rational behaviour- Adam Smith and self-interest - Social Philosophy timism, Self Interest, Invisible hand, Laisseze faire); Economic ideas: Wealth, Labour bour, Value, Distribution. HUMAN VALUES n, Self-Exploration - its content and process; 'Natural Acceptance' and Experiential ne mechanism for self-exploration, Continuous Happiness and Prosperity- A look at spirations, Right understanding, Relationship - the basic requirements for fulfillment i every human being with their correct priority, Method to fulfill the human Values, and living in harmony at various levels. TOTAL : 45 PI R. (2008) 'What is Political Theory', in Bhargava, R and Acharya, A. (eds.) Political Theory.	C(C(C(C(C(C(9 04 9 05 DS :: An					
Importance of et behaviour: Self- (Naturalism, Op & Division of la UNIT V Value Education Validation- as th basic Human As of aspirations of understanding at TEXT BOOKS 1. Bhargava, Introductio 2. Olivier Bla	thics in economics; Outcomes of ethical analysis; Duties, rules and virtues; Economic interest and rational behaviour- Adam Smith and self-interest - Social Philosophy timism, Self Interest, Invisible hand, Laisseze faire); Economic ideas: Wealth, Labour bour, Value, Distribution. HUMAN VALUES n, Self-Exploration - its content and process; 'Natural Acceptance' and Experiential ne mechanism for self-exploration, Continuous Happiness and Prosperity- A look at spirations, Right understanding, Relationship - the basic requirements for fulfillment ² every human being with their correct priority, Method to fulfill the human Values, nd living in harmony at various levels. R . (2008) 'What is Political Theory', in Bhargava, R and Acharya, A. (eds.) Political Tn. New Delhi: Pearson Longman. nchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 2017.	Cu Cu Cu ERIO heory	9 04 9 05 DS :: An					

REFERENCE BOOKS

- 1. O.P.Gauba, (2015) An Introduction to Political Theory, New Delhi: Mayur Publishers.
- 2. Ashaf, Ali and Sharma B.N. 2001. Political Sociology, University Press, Hyderabad.
- 3. Jonathan Conlin, Great Economic Thinkers: From Adam Smith to Amartya Sen, Speaking Tiger Publishing, 2018.
- 4. Linda Yueh, The Great Economists: How Their Ideas Can Help Us Today, Viking, 2018.
- 5. B P Banerjee, 2005, Foundations of Ethics and Management, Excel Book.
- 6. B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.
- 7. Irene van Staveren, The Values of Economics: An Aristotelian Perspective, London: Routledge, 2001

COUF Upon	COURSE OUTCOMES Upon completion of the course, students will be able to						
CO1	To explain the traditional approached of political science and theories of state.						
CO2	To identify the political culture, socialization, participation and apathy.						
CO3	To understand the importance of economic thought and their approaches.						
CO4	To explore the economic behaviour and moral sentiments of the individuals.						
CO5	To learn the human values for harmony and to build better relationships.						

COs	PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	-	-	-	-	-	1	1	1	2	2	1	2		
CO2	-	-	-	-	-	2	1	1	2	2	1	2		
CO3	-	-	-	-	-	2	1	2	2	2	1	2		
CO4	-	-	-	-	-	2	3	2	2	3	1	2		
CO5	-	-	-	-	-	1	3	3	3	3	1	2		

MX4008

INDUSTRIAL SAFTEY

9

9

9

9

9

OBJECTIVE

◆ To impart knowledge on safety engineering fundamentals and safety management practices.

UNIT I INTRODUCTION

Evolution of modern safety concepts – Fire prevention – Mechanical hazards – Boilers, Pressure vessels, Electrical Exposure.

UNIT II CHEMICAL HAZARDS

Chemical exposure – Toxic materials – Ionizing Radiation and Non-ionizing Radiation - Industrial Hygiene – Industrial Toxicology.

UNIT III ENVIRONMENTAL CONTROL

Industrial Health Hazards – Environmental Control – Industrial Noise - Noise measuring instruments, Control of Noise, Vibration, - Personal Protection.

UNIT IV HAZARD ANALYSIS

System Safety Analysis – Techniques – Fault Tree Analysis (FTA), Failure Modes and Effects Analysis (FMEA), HAZOP analysis and Risk Assessment CO4

UNIT V INDUSTRIAL SAFETY

Explosions – Disaster management – catastrophe control, hazard control, Safety education and training -Factories Act, Safety regulations Product safety – case studies.

TOTAL: 45 PERIODS

TEXTBOOKS

1. John V.Grimaldi, "Safety Management", AITB S Publishers, 2003.

REFERENCE BOOKS

1. Safety Manual, "EDEL Engineering Consultancy", 2000.

2. David L.Goetsch, "Occupational Safety and Health for Technologists", 5th Edition, Engineers and Managers, Pearson Education Ltd., 2005

COURSE OUTCOMES

Upon co	Upon completion of the course, students will be able to:							
CO1	Understand the modern safety concepts and Mechanical hazards							
CO2	Identify the effects of Chemical exposure and Toxic materials							
CO3	Understand the Industrial Health Hazards due to environment							
CO4	Understand the System Safety Analysis Techniques							
CO5	Understand the Factories Act, Safety regulations							

COs		PROGRAM OUTCOMES (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	3	-	-	3	2	2	-	-	-	3	2	2
CO2	-	-	3	-	-	3	2	2	-	-	-	3	2	2
CO3	-	-	3	-	-	3	2	2	-	-	-	3	2	2
CO4	-	-	3	-	-	3	2	2	-	-	-	3	2	2
CO5	-	-	3	-	-	3	2	2	-	-	-	3	2	2

		Т	т	р	C
ME4511	VALUE ENGINEERING	L 2	1	r 0	2
OBJECTIVES		3	0	0	3
 To Know the advance 	we the concepts of value engineering, operation in maintenance, repair activities antages, applications	an	d to	iden	ıtify
UNITI	INTRODUCTION				9
Value engineeri for comparison,	ing concepts, advantages, applications, problem recognition, and role in productiv elementof choice.	ity,	crite	eria	
Level of value e quantitative eva	engineering in the organization, size and skill of VEstaff, small plant, VE activity, luation of	unio	que	and	CO1
UNITII	VALUE ENGINEERING JOB PLAN				9
Introduction, or value engineering engineering me vs. unnecessary function, evalua	ientation, information phase, speculation phase, analysis phase. Selection and Eving Projects, Project selection, methods selection, value standards, application thodology. Anatomy of the function, use esteem and exchange values, basic vs. functions. Approach of function, Evaluation of function, determining function, ation ofcosts, evaluation of worth, determining worth, evaluation of value.	alua n o sec clas	atior f va cond ssify	n of Ilue ary ing	CO2
UNITIII	VALUE ENGINEERING TECHNIQUES				9
and evaluating decision making make or buy, r Analysis System	function(s) assigning rupee equivalents, developing alternate means to required g for optimum alternative, use of decision matrix, queuing theory and Monte Ca neasuring profits, reporting results, Follow up, Use of advanced technique like n	fur fur rlo e F	min netic metl unct	ing ons, hod ion	CO3
UNITIV	VERSATILITY OF VALUE ENGINEERING				9
Value engineerin Initiating a value specialties.	ng operation in maintenance and repair activities, value engineering in non-hardwa eengineering programme Introduction, training plan, careerdevelopment for value e	re p ngi	roje neer	cts. ing	CO4
UNITV	VALUE ENGINEERING LEVEL OF EFFORT				9
Value engineeri contracts, value	ing team, co-coordinator, designer, different services, definitions, construction material engineering case studies.	ana	gem	ent	CO5
	ΤΟΤΑ	4L:	:45P	'ERI	ODS
TEXTBOOKS					
 Anil Kumar M Publications2010 Alphonse Dell' Operations", R S I 	Aukhopadhyaya, "Value Engineering: Concepts Techniques and applications", SA). Isola, "Value Engineering: PracticalApplications for Design, Construction, Maintena Means Co., 1997.	.GF] &		
REFERENCEB	OOKS				
1. Richard Park, " 2. Del L. Younker 3. Miles, L.D., "T	Value Engineering: A Plan for Invention", St. Lucie Press, 1999. r, "Value Engineering analysis andmethodology", Marcel Dekker Inc, New York, 200 echniques of Value Analysis andEngineering", McGraw Hill second Edition, 1989.)4.			

COURSEOUTCOMES

Uponc	complet	tionof t	hecours	se,stude	entswill	l beable	e to							
CO1	Discuss the concepts of value engineering, identify the advantages, applications.													
CO2	Discuss various phases of value engineering. Analyze the function, approach of function and evaluation of function. Determine the worth and value.													
CO3	Discuss queuing theory.													
CO4	Apprai	Appraise the value engineering operation in maintenance and repair activities												
CO5	Create the value engineering team and discuss the value engineering case studies													
MAPPINGOFCOsWITHPOsANDPSOs														
COs					PRO	GRAM	IOUTO	COMES	S(POs)				PRO SPE OUTCO	GRAM CIFIC MES(PSO s)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	-	-	-	-	-	-	-	2	-	2
CO2	3	2	2	2	-	-	-	-	-	-	-	2	-	2
CO3	3	2	2	2	-	-	-	-	-	-	-	2	-	2

COs															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1		
CO1	3	2	2	2	-	-	-	-	-	-	-	2	-		
CO2	3	2	2	2	-	-	-	-	-	-	-	2	-		
CO3	3	2	2	2	-	-	-	-	-	-	-	2	-		
CO4	3	2	2	2	-	-	-	-	-	-	-	2	-		
CO5	3	2	2	2	-	-	-	-	-	-	-	2	-		

		L	Т	Р	С			
ME4512	CAD/CAM	3	0	0	3			
OBJECTIVE	ES							
To In	troduce and understand the Basic of Design.							
To stu	dy the two dimensional drafting and bill of material creation							
✤ To le	arn three dimensional modelling and its advantages.							
♦ To st	udy the basic and purpose of assembling modeling.							
				0				
UNIT I Understandin	BASICS OF DESIGNS	tle Rl	lock	9	,			
readings Day	g of Hojections, Seales, units, OD & 1, its 14 symbols, Special characteristics - Th		IUCK					
readings. Rev	ision / ECN status of drawings – Customer Specific requirements Drawing Grid			co	1			
reading				CU	1			
UNIT II	2D DRAFTING			9)			
Projection vie	ews - Orthographic view, Auxiliary view, Full & Half Section views, Broken Secti	on vi	iew,	-				
Offset Section	n view – Title Block creation – BOM Creation – Notes creation – Ballooning of 2D	draw	ving					
and its feature	es for Inspection reporting		C	CO	2			
					0			
Conversion o	5D MODELING f Views 2D to 2D & 2D to 2D Decemptric and Non Decemptric Modeling Tree	foot	uros		,			
Conversion of Views – 2D to 3D & 3D to 2D – Parametric and Non-Parametric Modeling – Tree features								
of 3D Mode	ling and its advantages – Surface Modeling – BIW (Body in White) – Solid M	lodel	ing,					
Boolean oper	ations like Unites, Subtraction, Intersect, etc.							
UNIT IV	ASSEMBLY MODELING				9			
Basics of As	sembly modeling, Purpose of Assembly modeling & its advantages - Top to Do	wn	&					
Bottom Up m	odeling approaches - Analysis of Clearances - Undercuts - Interferences - Stack up) anal	ysis					
-Cumulative	effect of Tolerances in after assembly conditions - motion analysis			CO	4			
UNIT V	CAM			ļ	9			
Basics of CN	C Machining – 3, 4 & 5 Axis machines - CNC and Part Programing, CAM programi	ng 2I	D &					
3D. Elements	s of CAM Orientation, Boundary Creation, Cutter Path Selection, Cutter Comper	isatio	on –		_			
Machining St	ocks, Roughing, Re-roughing, Semi Finishing & Finishing – Tool Path Generation, I	[s]		CO	15			
and Milling P	rograming. Machining program simulation, integration of program with machine; Est	timati	ion					
of CNC Cycle	e time. – Post Process NC Code conversion and Setup Sheet Preparation.							
		AL:4	5PE	RIO	DS			
TEXT BOOI	<u>XS</u>				_			
1. Ibrahim Zeio	d "CAD/CAM – Theory and Practice" Tata McGraw-Hill Publishing Co.2007	rentic	ър Н	م الد	f			
India, 2008.	, reconnución, rioductión Systems and computer integrated manufacturing, r				•			
REFERENC	E BOOKS							
1. Donald Hear	n and M. Pauline Baker "Computer Graphics"". Prentice Hall, Inc., 1992.							

- 2. Foley, Wan Dam, Feiner and Hughes "Computer graphics principles & practice" Pearson Edu. -2003
- 3. William M Neumann and Robert F.Sproul "Principles of Computer Graphics", McGraw Hill Book Co. Singapore, 1989.

4.Radhakrishnan P, Subramanyan S., Raju V., "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, New Delhi,2000.

COUI	COURSEOUTCOMES						
Upon completion of the course, students will be able to							
CO1	Discuss the basics of the design and concepts.						
CO2	Develop the two dimensional drafting and projection views.						
CO3	Discuss the three dimensional modeling, parametric and Non-parametric modeling						
CO4	Discuss the assembly modeling and top down, bottom up approaches.						
CO5	Develop the computer aided machining and writing part programming.						

COs		PROGRAM OUTCOMES(POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			
CO1	3	2	2	2	2	-	-	-	1	-	-	1	3	3			
CO2	3	2	2	2	2	-	-	-	1	-	-	1	3	3			
CO3	3	2	2	2	2	-	-	-	1	-	-	1	3	3			
CO4	3	2	2	2	2	-	-	-	1	-	-	1	3	3			
CO5	3	2	2	2	2	-	-	-	1	-	-	1	3	3			

ME4513	EDCONOMICS IN DESIGN	L	Т	Р	С					
NIE4515	ERGONOMICS IN DESIGN	3	0	0	3					
OBJECTIVE	S posed the principles of ergonomics. rn the mechanics of muscle physiology. e familiar with the mathematical models, analysis and design of biomedical devices	s usin	g ca	se stu	ıdies.					
UNITI	VISUAL AND AUDITORY ERGONOMICS				9					
Process of seeing - visual capabilities-factors affecting visual acuity and contrast sensitivity - human factor aspects of hard copy text and computer screen text, factors in selecting graphic representations symbols, qualitative visual display - process of hearing-principles of auditory display.										
UNITII	ANTHROPOMETRY				9					
Anthropometry - anthropometric design principles - work space envelope- factors in design of work space surfaces - principles of seat design - principles of control panel. Organization classification of human errors theories of accident causation - reducing accidents by altering behavior.										
UNITIII	CONTROLS AND DISPLAYS				9					
Spatial compatil rotar displays m control response	bility physical arrangement of displays and controls- movement capability- rotary ovement of displays orientation of the operator and movement relationships contras- human limitations in tracking task.	/ con rol or	trols ders	and and	CO3					
UNITIV	MUSCLE PHYSIOLOGY				9					
Muscle physiology -muscle metabolism-respiratory response-joint motion study- measure of physiological in-efficiency and energy consumption-work rest cycles-aspects of manual and posture study, materialhandling (MMH) Bio-mechanical recommended limits of MMH.										
UNITV	CASE STUDIES				9					
Case Study 1: computer design, control panel design of an electronic instrument, computer key board, hand drill etc. Case Study 2: Biomedical Application, Design optimization of Medical Equipment.										
	TOTAL:45PERIODS									

TEXT BOOKS

1. Pascale Carayon, Handbook of Human Factors and Engineering, Second Edition, CRC Press, 2011

2. Robert.N. Bailey, Human Performance Engineering, Third Edition, 1996

REFERENCEBOOKS

1. Shrawan Kumar, Biomechanics in Ergonomics, Second Edition, CRC Press 2007.

2. Stephen Pheasant, Christine M. Haslegrave, Bodyspace: Anthropometry, Ergonomics and the Design of Work, CRC Press, Third Edition, 2016.

3. Martin Helander, Guide to Human Factors and Ergonomics, Second Edition, CRC Press, 2005

COURSEOUTCOMES

Uponcompletion of the course, students will beable to						
CO1	Understand the principles of ergonomics.					
CO2	Understand the muscle physiology.					
CO3	Understand the displays and controls of physical arrangement.					
CO4	Understand the anthropometry.					
CO5	Design biomedical devices.					

COs		PROGRAM OUTCOMES (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	-	-	-	-	-	-	-	-	-	-	3	1
CO2	3	3	-	-	-	-	-	-	-	-	-	-	3	1
CO3	3	3	-	-	-	-	-	-	-	-	-	-	3	1
CO4	3	3	-	-	-	-	-	-	-	-	-	-	3	1
CO5	3	3	-	-	-	-	-	-	-	-	-	-	3	1

MAPPINGOFCOsWITHPOsANDPSOs

ME4514	NEW PRODUCT DEVELOPMENT	L	T	P	C 2			
ODIECTIVES		3	0	0	3			
 This condevelop 	urse aims at introducing the students to the basic concepts of engineering design and p ment with focus on the front end processes.	rodu	ct					
At the e product	nd of this course the student is expected to demonstrate an understanding of the overv development processes and knowledge of concept generation and selection tools.	iew o	of all	the				
UNITI	INTRODUCTION				9			
Need for develo relevance of pro engineering des for products –es	ping products – the importance of engineering design – types of design –the design j oduct lifecycle issues in design –designing to codes and standards- societal consider ign –generic product development process – various phases of product development- tablishing markets- market segments- relevance of market research.	proce ratior -plan	ess – ns in ning	СС)1			
UNITII	CUSTOMER NEEDS			9	9			
Identifying customer needs –voice of customer –customer populations- hierarchy of human needs- need gathering methods – affinity diagrams – needs importance- establishing engineering characteristics- competitive benchmarking- quality function deployment- house of quality- product design specification-case studies								
UNITIII	CREATIVE THINKING				9			
Creative thinking –creativity and problem solving- creative thinking methods- generating design concepts- systematic methods for designing –functional decomposition – physical decomposition – functional representation –morphological methods-TRIZ- axiomatic design								
UNITIV DECISION MAKING AND PRODUCT ARCHITECTURE								
Decision making selection method product architec	g –decision theory –utility theory –decision trees –concept evaluation methods –Pugh d- weighted decision matrix –analytic hierarchy process – introduction to embodiment ture – types of modular architecture –steps in developing product architecture& sketchi	1 con desig	cept gn –	СС)4			
UNITV	DESIGN AND COST ANALYSIS				9			
Industrial desig environment – based costing –	n – human factors design –user friendly design – design for serviceability – de prototyping and testing – cost evaluation –categories of cost – overhead costs – methods of developing cost estimates – manufacturing cost –value analysis in costi TOT	esign - acti ng AL:4	for vity	CO	5 DDS			
TEXTBOOKS								
1. Anita Goyal, K McGraw-Hill Edu	arl T Ulrich, Steven D Eppinger, "Product Design and Development ", 7th Edition, 202 acation, ISBN-10-007-14679-9	20, T	ata					
2. Kevin Otto, Kr	istin Wood, "Product Design", Indian Reprint 2015, Pearson Education, ISBN 9788177:	5882	17					
REFERENCEB	OOKS							
1. Clive L.Dym, H 2009, ISBN 978-0	Patrick Little, "Engineering Design: A Project-based Introduction", 3rd Edition, JohnW)-470-22596-7.	iley d	& So	ns,				
2. George E.Dieter, Linda C.Schmidt, "Engineering Design", McGraw-Hill International Edition, 4 th Edition, 2009, 1978-007-127189-9.								
3. Yousef Haik, T 0495668141	M. M. Shahin, "Engineering Design Process", 2nd Edition Reprint, CengageLearning	g, 201	10, IS	BN				
4. Donald A. Nor	man, "The Design of Everyday Things"MIT Press, 2013							

COU	COURSEOUTCOMES						
Upon	completionof thecourse, students will beable to						
CO1	Understand and discuss key concepts and principles concerning the role of product and service						
COI	innovation and their contribution to generate competitive advantage in firms.						
CO2	Understand and discuss key concepts and principles concerning the activities and competencies involved						
CO2	in new product development.						
CO3	Understand and discuss key concepts and principles concerning- the range of tools and methods that are						
005	used to manage new product development.						
CO4	Analyze the set of potential innovation triggers and strategically select those opportunities that fit with						
04	the organizational resources and strategies.						
COF	Critically evaluate the role of design in product development, and the ability to address costs issues						
CO5 t	through better design decisions.						

MAPPINGOFCOsWITHPOsANDPSOs

COs				PROGRAM SPECIFIC OUTCOMES(PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	-	-	-	-	-	-	-	-	-	3	3
CO2	3	3	-	-	-	-	-	-	-	-	-	-	3	2
CO3	3	3	-	-	-	-	-	-	-	-	-	1	3	2
CO4	3	3	-	-	-	-	-	-	-	-	-	1	3	3
CO5	3	2	-	-	-	-	-	-	-	-	-	-	2	2

ME4515	ME4515 PRODUCT LIFECYCLE MANAGEMENT 2									
 OBJECTIVES * To learn about increasing product revenues, reducing product-relatedcosts, maximizing the value of the portfolio 										
✤ To maximize the value of current and future products for both customersand shareholders										
 To reduce time to market, improve product quality, reduce prototypingcosts, identify potential sales opportunities 										
* 10	maintain and sustain operational serviceability, and reduceenvironmental impacts at end-o	of-life								
UNITI Intro du sti se	A DIM Need for DIM emperaturities of DIM Different views of DIM. Engineer		Data		9					
Management (EDM), Product Data Management (PDM), Collaborative Product Definition Management (CPDM), Collaborative Product Commerce (CPC), Product Lifecycle Management (PLM). PLM/PDM Infrastructure – Network and Communications, Data Management, Heterogeneous data sources and applications.										
UNITII	PLM/PDM FUNCTIONS AND FEATURES				9					
User Functions – Data Vault and Document Management, Workflow and Process Management, Product Structure Management, Product Classification and Programme Management. Utility Functions – Communication and Notification, data transport, data translation, image services, system administration and application integration.										
UNITIII	ROLE OF PLM IN INDUSTRIES				9					
Case studies on PLM selection and implementation (like auto: aero, electronic) - other possible sectors, PLM visioning, PLM strategy, PLM feasibility study, change management for PLM, financial justification of PLM, barriers to PLM implementation, ten step approach to PLM, benefits of PLM for-business, organization, users, product or service, process performance										
UNITIV	UNITIV DETAILS OF MODULES IN A PDM/PLM SOFTWARE									
Case studies based on top few commercial PLM/PDM tools – Teamcenter, Windchill, ENOVIA, Aras PLM, SAP PLM, Arena, Oracle Agile PLM and Autodesk Vault.										
UNITV	BASICS ON CUSTOMISATION/INTEGRATION OF PDM/PLM SOFTWARE	C			9					
PLM Customization, use of EAI technology (Middleware), Integration with legacy data base, CAD, SLM and ERP										
	ТОТ	AL:4	15PE	RIO	DS					
ТЕХТВОС	DKS									
 AnttiSaaksvuori and AnselmiImmonen, "Product Lifecycle Management", Springer Publisher, 2008. Michael Grieves, "Product Life Cycle Management", Tata McGraw Hill, 2006. ArioKarnial and Yoram Baich, Managing the Dynamics of New Product Davalonment Processos: A New Product 										
Lifecycle Management Paradigm, Springer,2011.										
KEFEREN	CEBUUKS	to M	anac	amor						
and Software ConfigurationManagement", Artech House Publishers, 2003.										
4. JohnStark Publisher,20	r, "GlobalProduct:Strategy,Product LifecycleManagementandtheBillionCustomer Question" 007.	", Spi	ringei	ſ						
5. JohnStark, "ProductLifecycleManagement:21stCenturyParadigmforProductRealisation", Springer Publisher,2011										

COURSEOUTCOMES Uponcompletionof thecourse, students will beable to									
CO1	Explain the history, concepts and terminology of PLM.								
CO2	Apply the functions and features of PLM/PDM.								
CO3	Apply different modules offered in commercial PLM/PDM tools.								
CO4	Implement PLM/PDM approaches for industrial applications.								
CO5	Integrate PLM/PDM with legacy data bases, CAx& ERP systems.								

MAPPINGOFCOsWITHPOSANDPSOs

COs	PROGRAMOUTCOMES(POs)													PROGRAM SPECIFIC OUTCOMES(PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	3	2	3	3	3	2	2	3	3	3	3	
CO2	2	2	3	3	3	3	3	2	2	2	2	2	3	3	
CO3	2	3	3	2	3	3	3	3	2	2	2	2	3	3	
CO4	3	3	2	3	3	2	3	3	2	3	3	3	3	3	
CO5	2	3	3	2	3	2	2	3	2	3	3	3	3	3	
		L	Т	Р	С										
---	---	----------------------------	----------------	------------	-------										
ME4521	SENSORS AND INSTRUMENTATION	3	0	0	3										
OBJECTIVE	ZS:														
 To und 	erstand the concepts of measurement technology.														
To lear	n the various sensors used to measure various physical parameters.														
 To lear mechat 	n the fundamentals of signal conditioning, data acquisition and communication syste ronics system development	ms us	sed in	1											
To lear	n about the optical, pressure and temperature sensor														
To und	erstand the signal conditioning and DAQ systems														
UNIT I	INTRODUCTION				9										
Basics of Me of transducer techniques –	asurement – Classification of errors – Error analysis – Static and dynamic chars – Performance measures of sensors – Classification of sensors – Sensor Sensor Output Signal Types.	aract [.] cali	erist brati	ics ion	CO1										
UNIT II	MOTION, PROXIMITY AND RANGING SENSORS				9										
Motion Sens	ors – Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive,	Capa	aciti	ve.											
LVDT – RV	DT – Synchro – Microsyn, Accelerometer – GPS, Bluetooth, Range Se	nsors	s —]	RF	CO2										
beacons. Ult	rasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR).														
UNIT III	FORCE, MAGNETIC AND HEADING SENSORS				9										
Strain Gage, resistive – Ha	Load Cell, Magnetic Sensors –types, principle, requirement and advantage all Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinome	es: M eters.	lagn	eto	CO3										
UNIT IV	OPTICAL, PRESSURE AND TEMPERATURE SENSORS				9										
Photo condu	active cell, photo voltaic, Photo resistive, LDR - Fiber optic sensors -	Pres	sure	; —											
Diaphragm,	Bellows, Piezoelectric – Tactile sensors, Temperature – IC, Thermi	stor.	RT	D,	CO4										
Thermocoup	e. Acoustic Sensors – flow and level measurement. Radiation Sensors - Sma	rt Se	nsor	·s -	001										
Film sensor.	MEMS & Nano Sensors, LASER sensors.														
					0										
	SIGNAL CONDITIONING AND DAQ SYSTEMS	14:	1		9										
data acquisitie Environmenta	n – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and m on – Data logging - applications - Automobile, Aerospace, Home appliances, Ma l monitoring	inufa	chan cturi	ng,	CO5										
	ΤΟ΄	TAL	: 45	PEF	RIODS										
TEXT BOO	KS														
1. C. Sujatha 2001.	a Dyer, S.A., Survey of Instrumentation and Measurement, John Wiley & S	Sons,	C	anac	la,										
2. Hans Kur	t Tönshoff (Editor), Ichiro, "Sensors in Manufacturing" Volume 1, Wiley-VC	CHA	pril	200	1.										
REFEREN	CE BOOKS														
1. John Tur	ner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford S	cienc	e												
Publications	,1999.														

2. Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2011.

3. Richard Zurawski, "Industrial Communication Technology Handbook" 2nd edition, CRC Press, 2015.

COL	
COUR	RSE OUTCOMES
Upon	completion of the course, students will be able to
CO1	Recognize with various calibration techniques and signal types for sensors.
CO2	Describe the working principle and characteristics of force, magnetic, heading, pressure and temperature, smart and other sensors and transducers.
CO3	Apply the various sensors and transducers in various applications.
CO4	Select the appropriate sensor for different applications.
CO5	Acquire the signals from different sensors using Data acquisition systems

MAPPING OF COs WITH POs AND PSOs

Т

COs				Pŀ	ROGRA	AM OU	TCOM	IES (PO	Os)				PRO SPE OUTC (PS	GRAM CIFIC COMES SOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	-	-	-	-	-	-	-	3	3	-
CO2	3	2	2	-	-	-	-	-	-	-	-	3	3	-
CO3	3	2	2	-	-	-	-	-	-	-	-	3	3	-
CO4	3	2	2	-	-	-	-	-	-	-	-	3	3	-
CO5	3	2	2	-	-	-	-	-	-	-	-	3	3	-

		L	Т	Р	С
ME4522	ELECTRICAL DRIVES AND ACTUATORS	3	0	0	3
OBJECTIV	ES				
✤ 1. To	familiarize a relay and power semiconductor devices				
✤ 2. To	get a knowledge on drive characteristics				
✤ 3. To	o obtain the knowledge on DC motors and drives.				
✤ 4. Τα	o obtain the knowledge on AC motors and drives.				
✤ 5. Το	o obtain the knowledge on Stepper and Servo motor				
UNIT I	RELAY AND POWER SEMI-CONDUCTOR DEVICES				9
Study of Sw	itching Devices - Relay and Types, Switching characteristics -BJT, SCR, T	RIAC	, G.	ΓО,	
MOSFET, IC	BT and IGCT-: SCR, MOSFET and IGBT - Triggering and commutation circuit	- Intro	oduct	ion	CC
to Driver and	snubber circuits				
UNIT II	DRIVE CHARACTERISTICS				9
Electric driv	e – Equations governing motor load dynamics – steady state stability – m	ulti q	uadr	ant	
Dynamics: a	cceleration, deceleration, torque, and Direction starting & stopping – Selection o	of mote	or.		CC
UNIT III	DC MOTORS AND DRIVES				ļ
DC Servomo	tor - Types of PMDC & BLDC motors - principle of operation- emf and torque	equati	ons	-	
characteristic	s and control - Drives- H bridge - Single and Three Phases - 4 quadrant	t oper	ation	n –	C
Applications					
UNIT IV	AC MOTORS AND DRIVES				ļ
Introduction -	- Induction motor drives - Speed control of 3-phase induction motor - Stator vol	tage c	ontro	ol –	cc
Stator frequen	ncy control - Stator voltage and frequency control - Stator current control - Static re	otor re	sista	nce	
control – Slip	power recovery control.				1
UNIT V	STEPPER AND SERVO MOTOR				ļ
Stepper Mot	or: Classifications- Construction and Principle of Operation – Modes of Exc	citatio	n-Dr	rive	
System Logi	c Sequencer - Applications. Servo Mechanism – DC Servo motor-AC Se	ervo n	noto	r –	CC
Applications					1
	ТО	TAL	: 45]	PER	loi
TEXTBOOI	KS				
1. Bimbł	ara B.S., "Power Electronics", 5th Edition, Kanna Publishers, New Delhi, 2012.				
2. Mehta	V.K. & Rohit Mehta, "Principles of Electrical Machines", 2nd Edition, S.Chand	l& Co	. Ltc	1., N	ew
Delhi,	2016.				
EFERENCI	E BOOKS			_	_
1. Gobal	K. Dubey, "Fundamentals of Electrical Drives", 2nd Edition, Narosal Publishing Ho	ouse, N	New		
Delhi,	2001.				
2. Therai	a B.L. &Theraja A.K., "A Text Book of Electrical Technology", 2nd Edition. S.Cha	ınd& (Co. L	.td.,	
New Г	Delhi, 2012.	-		7	
3 Singh	M D & Kanchandhani K B "Power Flectronics" McGraw Hill New Delbi 2007				
0					

COUI	RSE OU	UTCON	AES											
Upon	comple	etion of	the cou	urse, st	udents	will be	able to)						
CO1	CO1 Recognize the principles and working of relays, drives and motors.													
CO2	Explain the working and characteristics of various drives and motors.													
CO3	Apply Driver	the soli	d state s	switchin	ng circu	iits to o	perate v	various	types o	f Motor	rs and			
CO4	Interpr	et the p	erforma	ance of	Motors	and Dr	rives.							
CO5	Sugges	t the M	otors a	nd Driv	ers for	given a	pplicati	ons.						
				M	APPIN	GOF	COs W	ITH PO	Os ANI	D PSOs	5			
COs	PROGRAM OUTCOMES (POs)												PROC SPEC OUTC (PS	FRAM CIFIC OMES Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	2	2	-	-	-	-	-	-	2	2	-

-

-

-

-

3

3

3

3

CO2

CO3

CO4

CO5

2

2

2

2

1

1

1

1

2

2

2

2

2

2

2

2

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2

2

2

2

2

2

2

2

-

-

-

-

					1
MF1593	EMBEDDED SVSTEMS & DDOCDAMMINC	L	Т	Р	C
NIE4525	ENIDEDDED SYSTEMS & PROGRAMMING	3	0	0	3
OBJECTIV	ES				
 Build 	ling Blocks of Embedded System				
 Vario 	ous Embedded Development Strategies				
✤ Bus	Communication in processors, Input/output interfacing.				
✤ Vario	bus processor scheduling algorithms.	<i>.</i> .			1
* Basic	es of Real time operating system and example tutorials to discuss on one real time operation	erating	g syste	m too	DI
UNIT I	INTRODUCTION TO EMBEDDED SYSTEMS				9
Introduction	to Embedded Systems -Structural units in Embedded processor, selection of	proce	essor	&	
memory dev	vices- DMA - Memory management methods- Timer and Counting devices	s, Wa	tchdo	g a	°01
Timer, Real	Time Clock, In circuit emulator, Target Hardware Debugging.				
UNIT II	EMBEDDED NETWORKING			+	9
Embedded	Networking: Introduction, I/O Device Ports & Buses- Serial Bus con	nmun	icatio	m	
protocols R	S232 standard – RS422 – RS 485 - CAN Bus -Serial Peripheral Interface ((SPI)	– Inte	er (°O2
Integrated C	Circuits (I2C) –need for device drivers.				
				+	0
	EMBEDDED FIRMWARE DEVELOPMENT ENVIRONMENT				9
Embedded P	roduct Development Life Cycle- objectives, different phases of EDLC, Modelli	ng of	EDL	<u>};</u>	CO3
issues in Ha	rdware-software Co-design, Data Flow Graph, state machine model, Sequen	tial P	rogra	m `	
Model, conc	urrent Model, object oriented Model.				
UNIT IV	RTOS BASED EMBEDDED SYSTEM DESIGN				9
Introduction	to basic concepts of RTOS- Task, process & threads, interrupt routine	s in	RTO	3,	
Multiprocess	sing and Multitasking, Preemptive and non-preemptive scheduling, Task con	nmur	icatio	m	
shared mem	ory, message passing-, Inter process Communication – synchronization betwee	en pro	cesse	s- (CO4
semaphores,	Mailbox, pipes, priority inversion, priority inheritance.				
UNIT V	EMBEDDED C PROGRAMMING				9
Introduction		ches-	Addin	g	-
Structure to	the code-Generating a minimum and maximum delay-Example: Creating	gan	ortab	le	
hardware de	elay- Timeout mechanisms-Creating loop timeouts-Testing loop timeout	s- ha	rdwa		CO5
timeouts-Te	sting a hardware timeout.				
	TO	TAL	: 45 P	ERI(ODS

TEXTBOOKS

- 1. Peckol, "Embedded system Design", John Wiley & Sons,2010
- 2. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013

REFERENCE BOOKS

- 1. Raj Kamal, 'Embedded System-Architecture, Programming, Design', Mc Graw Hill, 2013.
- 2. C.R.Sarma, "Embedded Systems Engineering", University Press (India) Pvt. Ltd, 2013.
- 3. Tammy Noergaard, "Embedded Systems Architecture", Elsevier, 2006.
- 4. Han-Way Huang, "Embedded system Design Using C8051", Cengage Learning, 2009.
- 5. Shibu. K.V, "Introduction to Embedded Systems", 2e, Mcgraw Hill, 2017

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand and analyze Embedded systems.
CO2	Suggest an embedded system for a given application.
CO3	Operate various Embedded Development Strategies.
CO4	Study about the bus Communication in processors.
CO5	Acquire knowledge on various processor scheduling algorithms & programming.

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1	-	2	-	-	1	2	-	3	-	1	2	2	2	
CO2	1	-	2	-	-	1	2	-	3	-	1	2	2	2	
CO3	1	-	2	-	-	1	2	-	3	-	1	2	2	2	
CO4	1	-	2	-	-	1	2	-	3	-	1	2	2	2	
CO5	1	-	2	-	-	1	2	-	3	-	1	2	2	2	

ME4524	ROBOTICS	L 2	T	P	C 2
OB IECTIVES.		3	0	0	3
OBJECTIVES:	ad the functions of the basic components of a Robot				
\bullet To understant	use of various types of End of Effectors and Sensors				
 To study the To impart ki 	nowledge in Robot Kinematics and Programming				
	towiedge in Robot Rinematics and Frogramming				
	Sot safety issues and economics.				
UNIT I	FUNDAMENTALS OF ROBOT				9
Robot - Definition	- Robot Anatomy - Coordinate Systems, Work Envelope Types and Cla	assifi	catio	on-	
Specifications-Pit	ch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load- Robot Par	ts ar	nd th	eir	
Functions-Need for	or Robots-Different Applications.				CO1
UNIT II	ROBOT DRIVE SYSTEMS AND END EFFECTORS				9
Pneumatic Drive	s-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Serv	vo N	Aoto	ors,	
Stepper Motors,	A.C. Servo Motors-Salient Features, Applications and Comparison of	of al	1 the	ese	
Drives, End Ef	fectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic-	G	ippe	ers,	CO2
Magnetic Grippe	rs, Vacuum Grippers; Two Fingered and Three Fingered Gripper	rs; I	nter	nal	02
Grippers and Exte	ernal Grippers; Selection and Design Considerations.				
UNIT III	SENSORS AND MACHINE VISION				9
Requirements of a	sensor. Principles and Applications of the following types of sensors-Posi	tion	sens	ors	-
- Piezo Electric S	Sensor, LVDT, Resolvers, Optical Encoders, pneumatic Position Sens	sors.	Rar	ige	
Sensors Triangular	tions Principles Structured Lighting Approach Time of Flight Range Fu	nder	s La	ser	
Range Meters To	uch Sensors binary Sensors Analog Sensors Wrist Sensors Compliar	nce S	enso	ors	CO 2
Slip Sensors Cam	era Frame Grabber Sensing and Digitizing Image Data- Signal Conver	reion	Ime	are	003
Storage Lighting	Techniques Image Processing and Analysis-Data Reduction Segmentat	ion	Feat	ure	
Extraction Object	t Recognition Other Algorithms Applications Inspection Identificat	ion,	Vie	uie ual	
Serving and Navio	ration	lion,	v 15	uai	
	DODOT KINEMATICS AND DODOT DDOCDAMMINC				0
	ROBOT KINEMATICS AND ROBOT PROGRAMMING				9
Forward Kinemati	cs, Inverse Kinematics and Difference; Forward Kinematics and Reverse	Kine	emat	1CS	
of manipulators w	ith Two, Three Degrees of Freedom (in 2 Dimension), Four Degrees of fr	eedo	m (i	n 3	
Dimension) Jaco	obians, Velocity and Forces-Manipulator Dynamics, Trajectory	Gei	nerat	or,	
Manipulator Mec	hanism Design-Derivations and problems. Lead through Programm	ing,	Ro	bot	CO4
programming Lan	guages-VAL Programming-Motion Commands, Sensor Commands, E	nd E	Effec	tor	
commands and sir	nple Programs.				
UNIT V	IMPLEMENTATION AND ROBOT ECONOMICS				9
RGV, AGV; Imr	plementation of Robots in Industries-Various Steps; Safety Consideration	s for	Ro	bot	
Operations - Econo	mic Analysis of Robots.				
					CO5
	TO	ГAL	: 45	PEF	RIODS

TEXTBOOKS

- 1. Groover M.P., "Industrial Robotics Technology Programming and Applications", McGraw Hill, 2012.
- 2. Klafter R.D., Chmielewski T.A and Negin M., "Robotic Engineering An Integrated Approach", Prentice Hall, 2003.

REFERENCE BOOKS

1. Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.

2. Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill Book Co., 2013.

3. Fu.K.S., Gonzalz R.C. and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book Co., 1987.

4. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.

5. Koren Y., "Robotics for Engineers", Mc Graw Hill Book Co., 1992.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Explain the concepts of industrial robots, classification, specifications and coordinate systems. Also summarize the need and application of robots in different sectors.
CO2	Illustrate the different types of robot drive systems as well as robot end effectors.
CO3	Apply the different sensors and image processing techniques in robotics to improve the ability of robots.
CO4	Develop robotic programs for different tasks and familiarize with the kinematics motions of robot.
CO5	Examine the implementation of robots in various industrial sectors and interpolate the economic analysis of robots.

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	-	-	-	-	-	-	-	-	3	3	-	
CO2	3	2	2	-	-	-	-	-	-	-	-	3	3	-	
CO3	3	2	2	-	-	-	-	-	-	-	-	3	3	-	
CO4	3	2	2	-	-	-	-	-	-	-	-	3	3	-	
CO5	3	2	2	-	-	-	-	-	-	-	-	3	3	-	

		L	Т	Р	С						
ME4525	AUTOMATION IN MANUFACTURING	3	0	0	3						
 COURSE OBJECTIVES: To give a brief exposure to automation principles and control technologies. To introduce the concept of fixed automation using transfer lines. To train the students in the programmable automation such as CNC and industrial robotics. To provide knowledge on the use of automated material handling, storage and data captures. 											
UNIT I	MANUFACTURING OPERATIONS				9						
Automation in production systems, principles and strategies, Product/production relationships, Production concepts and mathematical models, manufacturing economics.											
UNIT II	CONTROL TECHNOLOGIES				9						
Automated systems – elements, functions, levels, Continuous Vs discrete control, Computer process control, Sensors, Actuators, ADC, DAC, Programmable logic controllers – ladder logic diagrams.											

UNIT III TRANSFER LINES

Automated production lines – applications, Analysis – with and without buffers, automated assembly systems, line unbalancing concept.

UNIT IV NUMERICAL CONTROL AND ROBOTICS

NC - CNC – Part programming – DNC – Adaptive control – Robot anatomy – Specifications –End effectors – Industrial applications.

UNIT V AUTOMATED HANDLING AND STORAGE

Automated guided vehicle systems, AS/RS, Carousel storage, Automatic data capture - Bar code technology.

TOTAL: 45 PERIODS

9

CO3

9

CO4

9

CO5

TEXTBOOKS

1.Mikell P.Groover, Automation, "Production Systems and Computer Integrated Manufacturing" PHI, 2008. 2.Automation, Production Systems and Computer Integrated Manufacturing by Mikell P. Groover, P.H.I. Learning Private Limited.

REFERENCE BOOKS

1.Mikell P.Groover, Emory W. Zimmers, Jr., "CAD/CAM: Computer - Aided Design and Manufacturing", PHI, 2007

2.Industrial Automation and Robotics by Er. A. K. Gupta and S. K. Arora, University Science Press, Laxmi Publishing Pvt. Ltd.

Upon	Upon completion of the course, students will be able to							
CO1	Ability to understand the requirements of automation in manufacturing systems.							
CO2	Knowledge in the techniques of machinery automation, shop floor automation.							
CO3	Gaining Knowledge about the Automation production lines and Automated Assembly system							
CO4	Gaining basic knowledge in CAD systems, NC and CNC part Programming.							
CO5	Selection of material handling systems for automated industries.							

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	3	2	-	-	-	-	-	-	3	3	2	2		
CO2	3	2	3	2	-	-	-	-	-	-	3	3	2	2		
CO3	3	2	3	2	-	-	-	-	-	-	2	3	2	2		
CO4	3	2	3	2	-	-	-	-	-	-	2	3	2	2		
CO5	3	2	3	2	-	-	-	-	-	-	2	3	2	2		

NE 4521		L	Т	P	С			
NIE4531	NON-DESTRUCTIVE TESTING TECHNIQUES	3	0	0	3			
OBJECTIVES								
 To intr 	oduce need and scope of failure analysis and fundamental sources of failures.							
 To lear 	n about non-destructive testing and basic principles of visual inspection.							
 To stud 	dy about magnetic testing and principles, techniques.							
 To lear 	n the principle of radiography testing and its inspection techniques and method	ods.						
✤ To stud	ly the acoustic testing principle and technique and instrumentation.							
UNIT I	INTRODUCTION				9			
Introduction and ne	eed and scope of failure analysis. Engineering Disasters and understanding fail	lure a	analys	sis.				
Fundamental sourc FMEA.	es of failures. Deficient design. Improper Manufacturing & Assembly. Tree	diag	ram a	nd	CO1			
UNIT II	VISUAL INSPECTION				9			
Introduction to Non-Destructive Testing: An Introduction, Visual examination, Basic Principle, The Eye, Optical aids used for visual inspection, Applications. Liquid Penetrant Testing: Physical principles, Procedure for penetrant testing, Penetrant testing materials, Penetrant testing methods, Sensitivity, Applications, Limitations and Standards								
UNIT III	MAGNETIC TESTING				9			
Equipment Used f Instrumentation fo	for magnetic particle testing, Sensitivity, Limitations. Eddy Current Testing r eddy current testing Techniques. Sensitivity Advanced Eddy Current Testing tations.	g: Pri est N	incipl Incipl	es, ds,	CO3			
UNIT IV	RADIOGRAPHY TESTING			-	9			
Radiography, U attenuation in th Applications of Neutron radiogr Inspection metho Flaw characteriz Testing, Applica	Ultrasonic Testing: Basic principle, Electromagnetic radiation, Sources, ne specimen. Effect of radiation in film, Radiographic imaging, Inspection te radiographic inspection, Limitations, Safety in Industrial Radiography, S raphy. Ultrasonic Testing: Basic properties of sound beam, Ultrasonic tra- ods, Techniques for Normal Beam Inspection, Techniques for Angle Beam In- zation techniques, Ultrasonic flaw detection equipment, Modes of Display, I ations of Ultrasonic Testing, Advantages, Limitations	Radi echni Stanc ansdu nspec mme	ation ques, lards, lcers, ction, rsion		CO4			
UNIT V	ACOUTISTIC TESTING				9			
Acoustic Emission Testing: Principle of Acoustic Emission Testing, Technique, Instrumentation, Sensitivity, Applications, Standards. Thermograph: Basic Principles, Detectors and Equipment, Techniques, Applications, Codes and Standards. In Situ Metallographic Examination: Approach to the Selection of Site for Metallographic examination, Replication process, Significance of Microstructure observation, Decision making, Applications, Codes and Standards.(digital signal process)								
	TOI	TAL:	45 P	ERI	ODS			
TEXTBOOKS								
1. Baldev Raj	, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Naros	a Put	olishir	ng				

2. Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers, 2010

REFERENCE BOOKS

- 1. ASM Metals Handbook," Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.
- 2. ASNT, American Society for Non Destructive Testing, Columbus, Ohio, NDT Handbook, Vol. 1, Leak Testing, Vol. 2, Liquid Penetrant Testing, Vol. 3, Infrared and Thermal Testing Vol. 4, Radiographic Testing, Vol. 5, Electromagnetic Testing, Vol. 6, Acoustic Emission Testing, Vol. 7, Ultrasonic Testing
- 3. Charles, J. Hellier," Handbook of Nondestructive evaluation", McGraw Hill, New York 2001.
- 4. 4. Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, 2 nd Edition New Jersey, 2005

COURSE OUTCOMES

Upon	Upon completion of the course, students will be able to							
CO1	Discuss the need and scope of failure analysis and fundamental sources of failures.							
CO2	Describe about non-destructive testing and basic principles of visual inspection.							
CO3	Explain about magnetic testing and principles, techniques.							
CO4	Explain the principle of radiography testing and its inspection techniques and methods							
CO5	Describe the acoustic testing principle and technique and instrumentation.							

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	-	1	-	-	-	-	2	2	-
CO2	3	3	2	2	2	-	1	-	-	-	-	2	2	-
CO3	3	2	2	2	2	-	1	-	-	-	-	2	2	-
CO4	3	2	2	2	2	-	1	-	-	-	-	2	2	-
CO5	3	2	2	2	2	-	1	-	-	-	-	2	2	-

ME4532

PLANT LAYOUT AND MATERIAL HANDLING

OBJECTIVE

* To explain the basic principles in facilities planning, location, layout designs and material handling systems

PLANT LOCATION **UNIT I** 9 Introduction, Factors affecting location decisions, Location theory, Qualitative models, Semi-Quantitative models -Composite measure, Brown & Gibbs model, Break-Even analysis model, Single facility location **CO1** problems - Median model, Gravity location model, Mini-Max model, Multifacility location problems, Network and warehouse location problems. **UNIT II** PLANT LAYOUT DESIGN 9 Need for Layout study, Factors influencing plant layout, Objectives of a good facility layout, Classification of layout, Layout procedure - Nadler's ideal system approach, Immer's basic steps, Apple's layout procedure, Reed's layout procedure -Layout planning - Systematic Layout Planning - Information **CO2** gathering, flow analysis and activity analysis, relationship diagram, space requirements and availability, designing the layout. Utilities planning **UNIT III COMPUTERIZED LAYOUT PLANNING** 9 Concepts, Designing process layout - CRAFT, ALDEP, CORELAP - Trends in computerized layout, **CO3** Algorithms and models for Group Technology. UNIT IV **DESIGN PRODUCT LAYOUT** 9 Line balancing - Objectives, Line balancing techniques - Largest Candidate rule- Kilbridge and Wester **CO4** method- RPW method- COMSOAL., UNIT V MATERIAL HANDLING AND PACKAGING 9 Objectives and benefits of Material handling, Relationship between layout and Material handling, Principles of material handling, Unit load concept, Classification of material handling equipments, Equipment **CO5** selection, Packaging. **TOTAL: 45 PERIODS**

TEXTBOOKS

1. Francis, R.L., and White, J.A, "Facilities layout and Location", Prentice Hall of India, 2002.

2. Tompkins, White et al., "Facilities planning", John Wiley & Sons, inc. 2003.

REFERENCE BOOKS

1. Pannerselvam.R, "Production and Operations Management", PHI, 2nd Edition, 2005

2. James, Apple, "Material Handling System design", Ronald Press, 1980.

COURSE OUTCOMES

Upon o	Upon completion of the course, students will be able to							
CO1	Apply and evaluate appropriate location models for various facility types							
CO2	Effectively design and analyze various facility layouts							
CO3	Apply and analyze various computerized techniques while designing a layout							
CO4	Effectively design and analyze a layout using grouping techniques							
CO5	Implement smooth and cost effective system in the material handling process							

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	-	3	3	3	3	-	-	-	-	-	-	-	-	-		
CO2	-	3	3	3	-	-	-	-	-	-	-	-	-	-		
CO3	-	-	3	3	3	3	-	-	-	-	3	-	-	-		
CO4	-	-	3	3	3	-	-	-	-	-	3	-	-	-		
CO5	-	-	3	3	-	-	-	-	-	-	-	-	-	-		

ME4533 SAFETY IN MATERIAL HANDLING	P C					
OBJECTIVE						
✤ To learn about the safety handling of ropes, hoops etc.						
To gain the knowledge about the conveying mechanisms.						
✤ To gain the knowledge about hoisting mechanism.						
✤ To learn about the heavy equipment.						
✤ To gain the knowledge about goods and equipment.						
UNIT I MATERIAL HANDLING	9					
General safety consideration in material handling - Ropes, Chains, Sling, Hoops, Clamps, Arresting gears – Prime movers.	CO1					
UNIT II ERGONOMICS OF CONVEYING MECHANISMS	9					
Ergonomic consideration in material handling, design, installation, operation and maintenance of Conveying equipment, hoisting, traveling and slewing mechanisms.	CO2					
UNIT III ERGONOMICS OF HOISTING MECHANISMS	9					
Ergonomic consideration in material handling, design, installation, operation and maintenance of driving gear for hoisting mechanism – Traveling mechanism.	CO3					
UNIT IV HANDLING OF HEAVY EQUIPMENTS	9					
Selection, operation and maintenance of Industrial Trucks – Mobile Cranes – Tower crane – Checklist – Competent persons.	CO4					
UNIT V STORAGE OF GOODS AND EQUIPMENTS	9					
Storage and Retrieval of common goods of various shapes and sizes in a general store of a big industry. Safety in Manual Material Handling – Ergonomics consideration in manual material handling -OSHA Lifting Equation.	CO5					
TOTAL: 45 PER	RIODS					

TEXTBOOKS
1. "Handbook of industrial and system engineering", 2nd edition, Adedeji B. Badiru – 2017.
2. Material Handling Handbook, volume 1 – Raymond - 2009.
REFERENCE BOOKS
1. Accident Prevention Manual for Industrial Operations, NSC, Chicago.

2. James, Apple, "Material Handling System design", Ronald Press, 1980.

2. James, Apple,	Matchai Handing System design , Konalu 11688, 1960.	

COURS Upon co	COURSE OUTCOMES Upon completion of the course, students will be able to							
CO1	Know about the general safety in material handling.							
CO2	Obtain knowledge about the ergonomic hazards due to conveyer machines							
CO3	Obtain knowledge about the ergonomic hazards due to hoisting.							
CO4	Understand the operations of handling equipment.							
CO5	Know about the storage and safe handling of goods.							

MAPPING	OF	COs	WITH	POs	AND	PSOs
---------	----	-----	------	-----	-----	-------------

COa		PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	-	3	3	3	3	-	-	-	-	-	-	-	-	-	
CO2	-	3	3	3	-	-	-	-	-	-	-	-	-	-	
CO3	-	-	3	3	3	3	-	-	-	-	3	-	-	-	
CO4	-	-	3	3	3	-	-	-	-	-	3	-	-	-	
CO5	-	-	3	3	-	-	-	-	-	-	-	-	-	-	

ME4534

PROCESS EQUIPMENT DESIGN

L	Т	Р	С		
3	0	0	3		

9

9

9

9

9

OBJECTIVES

- ✤ To learn about the procedure for design of piping,
- ✤ To know the relevant process design for application for Flow meters and Thermal equipment.

UNIT I PROCESS DESIGN OF PIPING, FLUID MOVING DEVICES AND FLOW METERS

Introduction, Process design of piping, NPSHA &NPSHR, Power required by pump, evaluation of Centrifugal pump performance when handling viscous liquids, Power required in Fan, Blower and adiabatic compressor, flow meters, Process design of Orifice meter, Rotameter etc.

UNIT II PROCESS DESIGN OF HEAT EXCHANGERS

Shell & Tube heat exchangers, Functions of various parts of shell & Tube Heat exchanger, General design method of shell & tube heat exchanger, Criteria of selection among Fixed Tube sheet, U Tube & Floating Head heat exchanger, Process design of without phase change heat exchanger, Process design of condenser, Criteria of selection for Horizontal and vertical condenser, Process design of Kettle type & Thermosyphon Reboilers and vaporizes, Tinker's flow model, Air cooled heat exchangers and air heaters, plate heat exchangers, etc.

UNIT III PROCESS DESIGN OF DISTILLATION COLUMN

Introduction, Criteria of selection, Selection of equipment for distillation, Distillation column design, Selection of key components for multicomponent distillation, Determination of operating pressure for distillation column, Advantages & disadvantages of vacuum distillation, Determination of nos. of theoretical stages for binary distillation by McCabe Thiele method Determination of nos. of theoretical stages for multi-component distillation by Fenskey- Underwood-Gilliland's method, Selection of trays, Calculations for tower diameter & pressure drop of sieve tray tower, Checking of conditions for weeping, down comer flooding, liquid entrainment, etc, tray efficiency, Jet Flooding & down comer Flooding, Different types of weirs & down comers of tray tower, their selection criteria

UNIT IV PROCESS DESIGN OF ABSORBERS

Introduction, Criteria for selection among different types of absorption equipment, Process Design of packed tower type absorber: Determination of actual amount of solvent, Selection of packing, Determination of tower diameter & pressure drop, Determination of NtoG, HtoG & height of packing, Process design & selection criteria of liquid distributors, redistributors & packing support, Process design of Spray chamber or spray tower type absorber, Venturi Scrubber.

UNIT V PROCESS DESIGN OF EXTRACTOR

Industrial applications of liquid-liquid extraction, choice of solvent, Process design of counter current multistage extractor, Selection criteria among different types of extractor, Process design of mixer-settler type extractor, Guidelines for the design of other types of extractors

TOTAL: 45 PERIODS

TEXTBOOKS

1. Ray Sinnott, Gavin Towler, Chemical Engineering Design - Principles, Practice and Economics of Plant and Process Design, Butterworth - Heinemann, 2008.

2. Introduction to Process Engineering and Design by S B Thakore and B I Bhatt, Tata McGraw Hill, 1st Edition, 2007.

REFERENCE BOOKS

1. Brownell and Young, Process Vessel Design, Wiley Eastern, 1977.

2. M. S. Peters and K. D. Timmerhaus, Plant Design and Economics for Chemical Engineers, 4th ed., McGraw - Hill, New York, 1991.

3. Ludwig, E. E., Applied process design for chemical and petrochemical plants , volume 1,2 & 3, Third Edition, Butterworth- Heinemam, 1997

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Design process equipment and modify the design of existing equipment to new process conditions or new required capacity.

CO2 Build a bridge between theoretical and practical concepts used for designing the equipment in any process industry.

CO3 Create understanding of equipment design.

CO4 Review the importance of design concepts in process industry.

CO5 Design Calculation related to heat exchange equipment and their performance criteria.

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	2	-	-	-	-	I	2	I	2	2	-	
CO2	3	2	2	2	-	-	-	-	-	2	-	2	2	-	
CO3	3	2	2	2	-	-	-	-	-	2	-	2	2	-	
CO4	3	2	2	2	-	-	-	-	-	2	-	2	2	-	
CO5	3	2	2	2	-	-	-	-	-	2	-	2	2	-	

ME4535	DESIGN OF PRESSURE VESSELS	L 2	T	P	C 2			
		3	0	0	3			
OBJECTIVES								
 To under To under 	stand the Mathematical knowledge to design pressure vessels and piping							
UNITI	INTRODUCTION				3			
Methods for det	ermining stresses - Terminology and Ligament Efficiency - Applications.				CO1			
UNIT II	STRESSES IN PRESSURE VESSELS				15			
Introduction - Str Vessel - Cylindr vessels.	resses in a circular ring, cylinder - Dilation of pressure vessels, Membrane stre- ical, spherical and, conical heads - Thermal Stresses - Discontinuity stress	ess An ses in	alysi press	s of sure	CO2			
UNIT III	DESIGN OF VESSELS				15			
Design of Tall cylindrical self-supporting process columns - Supports for short vertical vessels - Stress concentration at a variable Thickness transition section in a cylindrical vessel, about a circular hole, elliptical openings. Theory of Reinforcement - Pressure Vessel Design.								
UNIT IV	BUCKLING AND FRACTURE ANALYSIS IN VESSELS				8			
Buckling phenomenon - Elastic Buckling of circular ring and cylinders under external pressure - collapse of thick walled cylinders or tubes under external pressure - Effect of supports on Elastic Buckling of Cylinders - Buckling under combined External pressure and axial loading.								
UNIT V	PIPING				4			
Introduction - F	low diagram - piping layout and piping stress Analysis.				CO5			
	ТО	TAL:	: 45 P	'ER	IODS			
TEXTBOOKS								
1. John F. Harv	rev. "Theory and Design of Pressure Vessels". CBS Publishers and							
Distributors, 1987	7.							
2. Henry H. Bedn	er, "Pressure Vessels, Design Hand Book", CBS publishers and Distributors, 1987	7.						
REFERENCE B	BOOKS							
 Stanley, M. Wales, "Chemical process equipment, selection and Design". Buterworths series in Chemical Engineering, 1988. William. J., Bees, "Approximate Methods in the Design and Analysis of Pressure Vessels and Piping", Pre ASME Pressure Vessels and Piping Conference, 1997. 								
3. Sam Kannapan, "Introduction to Pipe Stress Analysis". John Wiley and Sons, 1985.								

Upon completion of the course, students will be able to

CO1	Know the methods to determine stresses.
CO2	Determine the stresses in the pressure vessels and pipes.
CO3	Apply the mathematical fundamental for the design of pressure vessels and pipes.
CO4	Analyse and design of pressure vessels and piping.
CO5	Know about the stress analysis of pipings.

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	-	-	-	-	-	-	-	-	-	3	1	
CO2	3	3	2	-	-	-	-	-	-	-	-	-	3	1	
CO3	3	3	2	-	-	-	-	-	-	-	-	-	3	1	
CO4	3	3	2	-	-	-	-	-	-	-	-	-	3	1	
CO5	3	3	2	-	-	-	-	-	-	-	-	-	3	1	

		L	Т	P C		
ME4541	AUTOMOBILE ENGINEERING	3	0	0 3		
OBJECTIVES						
✤ To unders	stand the construction and working principle of various parts of an automo-	bile.				
✤ To have	the practice for assembling and dismantling of engine parts and transmission	on sy	vstem	1.		
UNIT I	VEHICLE STRUCTURE AND ENGINES			9		
Types of automo	biles, vehicle construction and different layouts, chassis, frame and body,	Vehi	icle			
aerodynamics (v	various resistances and moments involved), IC engines -components function	ions	and	CO1		
materials, variab	le valve timing (VVT).					
UNIT II	ENGINE AUXILIARY SYSTEMS			9		
Electronically co	ontrolled gasoline injection system for SI engines, Electronically controlle	ed die	esel			
injection system	(Unit injector system, Rotary distributor type and common rail direct i	nject	ion			
system), Electro	onic ignition system (Transistorized coil ignition system, capacitive di	ischa	irge	CO2		
ignition system)	, Turbo chargers (WGT, VGT), Engine emission control by three way of	catal	ytic			
converter system, Emission norms (Euro and BS).						
UNIT III	TRANSMISSION SYSTEMS			9		
Clutch-types and	d construction, gear boxes- manual and automatic, gear shift mechanism	ns, O	ver			
drive, transfer b	ox, fluid flywheel, torque converter, propeller shaft, slip joints, universa	ıl joi	nts,			
Differential and	rear axle, Hotchkiss Drive and Torque Tube Drive.			CO3		
UNIT IV	STEERING, BRAKES AND SUSPENSION SYSTEMS			9		
Steering geomet	ry and types of steering gear box-Power Steering, Types of Front Axle, 7	Гурея	s of			
Suspension Syst	ems, Pneumatic and Hydraulic Braking Systems, Antilock Braking System	ı (AB	3S),			
electronic brake	force distribution (EBD) and Traction Control.			CO4		
UNIT V	ALTERNATIVE ENERGY SOURCES			9		
Use of Natural	Gas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol and Hydr	roger	ı in			
Automobiles- En	gine modifications required –Performance, Combustion and Emission Charac	cteris	stics	CO5		
of SI and CI engi	nes with these alternate fuels - Electric and Hybrid Vehicles, Fuel Cell Note:	Pract	ical	005		
Training in dismantling and assembling of Engine parts and Transmission Systems should be given to						
the students.						
TOTAL: 45 PERI						
1. Kirpal Singh, "Automobile Engineering", Vol 1 & 2, Seventh Edition, Standard Publishers, New De 1997.						
2. Jain K.K. and 2002.	Asthana .R.B, "Automobile Engineering" Tata McGraw Hill Publishers, N	Jew I	Delhi	i,		

REFERENCE BOOKS

1. Newton ,Steeds and Garet, "Motor Vehicles", Butterworth Publishers,1989.

2. Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals," The Good heart –Will Cox Company Inc, USA ,1978.

Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA, 1998.
 Ganesan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.

COUR	COURSE OUTCOMES							
Upon	Upon completion of the course, students will be able to							
CO1	Understand the various vehicle structure and Components of IC engine.							
CO2	Gain Knowledge in various auxiliary systems used in an automobile.							
CO3	Understand the principle and application of Transmission systems in an automobile.							
CO4	Demonstrate the use of steering, braking and suspension systems in an automobile							
CO5	Apply the advantages of various alternative energy sources.							

COs		PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	1	-	-	-	-	-	-	-	-	2	-	-
CO2	3	-	1	-	-	-	-	-	-	-	-	2	-	-
CO3	3	-	1	-	-	-	-	-	-	-	-	2	-	-
CO4	3	-	1	-	-	-	-	-	-	-	-	2	_	-
CO5	3	-	1	-	-	2	3	-	-	-	-	2	-	-

ME4542

AUTOMOTIVE MATERIALS, COMPONENTS, DESIGN AND TESTING

L	Т	Р	С		
3	0	0	3		

9

9

9

9

9

COURSE OBJECTIVES:

- To understand basics of automotive components and automotive materials.
- ✤ To understand the automotive design, testing and validation

UNIT I ENGINEERING MATERIALS AND MATERIALS FOR ENGINE AND TRANSMISSION

Classes of engineering materials – the evolution of engineering materials, Definition of materials properties, displaying material properties using materials selection charts, Forces for change in materials selection and design, Materials and the environment-selection of materials for automotive applications. Materials selection for IC engines: Piston, piston rings, cylinder, Engine block, Connecting rod, Crank shaft, Fly wheels, Gear box, Gears, Splines, Clutches.

UNIT II ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLICATION

Materials for sensors and electronic devices meant for Engine Speed and Crank Position, Throttle position sensor, Manifold Absolute Pressure, Temperature Sensor, Oxygen Sensor, Piezoelectric Sensor, Ultrasonic Sensor and Dew Sensor. Sensor Materials and Technologies.

UNIT III AUTOMOTIVE COMPONENTS

Engine block - Cylinder head Crank shaft, Connecting rod, Camshaft, Cylinder Liners, Piston ring - Clutchtypes and construction, gear boxes- manual and automatic, gear shift mechanisms, Over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints - Differential - Steering geometry and types of steering gear box-Power Steering, Types of Front Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, Antilock Braking System (ABS), electronic brake force

UNIT IV VEHICLE BODY DESIGN

Types of Car body – Saloon, convertibles, Limousine, Estate Van, Racing and Sports car -car body terminology – Visibility- regulations, driver's visibility, improvement in visibility and tests for visibility. Driver seat design -Car Body Construction – Various panels in car bodies. Safety: Safety design, safety equipment for cars. Types of commercial vehicle bodies – Light commercial vehicle body. Construction details of Flat platform body, Tipper body and Tanker body – Dimensions of driver's seat in relation to controls -Drivers cab design.

UNIT V VEHICLE TESTING

Wind tunnel test requirements - Ground boundary simulation - wind tunnel selection and Reynolds number capability, model details, mounting of model, Test procedure. Body test - Dynamics simulation sled testing - Dolly roll over test - Dolly roll over fixture - vehicle roof strength test - Door system crash test.

TOTAL: 45 PERIODS

TEXTBOOKS

W.H. course& D.L. Anglin, "Automotive Mechanics" TMG publishing company, 2004
 Gladius Lewis, "Selection of Engineering Materials", Prentice Hall Inc. New Jersey USA, 1995.

REFERENCE BOOKS

Automotive Handbook, Bosch. Website: www.mainindia.com/Draft, AIS standards.
 ASM Handbook. "Materials Selection and Design", Vol. 20- ASM Metals Park Ohio.USA, 1997.

Upon	Upon completion of the course, students will be able to						
CO1	To understand the basics of materials and materials for engine and transmission						
CO2	To understand the electronic materials used in automotive applications						
CO3	To understand the basic automotive components						
CO4	To understand the basic design on vehicle body and interiors						
CO5	To understand the vehicle testing and validation						

COs					PRO	GRAM	I OUT(COME	S (POs)			PROG SPEC OUTCO (PS	RAM IFIC OMES Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	1	-	-	-	-	1	-	1	3	2	3
CO2	3	1	2	2	2	2	2	-	1	-	1	3	2	3
CO3	3	1	2	1	-	-	-	-	-	-	1	3	2	3
CO4	3	1	2	1	_	-	-	-	-	-	1	3	2	3
CO5	3	1	2	2	1	2	3	-	1	-	1	3	2	3

					1
ME4543	POWER PLANT ENGINEERING	L 3	T	P	C 3
	N/FS	3	0	0	3
◆ Provi main	ding an overview of Power Plants and detailing the role of Mechanical Engineers in the tenance	r ope	ratio	n an	d
UNIT I	COAL BASED THERMAL POWER PLANTS				9
Rankine c Turbines, Draught sy	ycle - improvisations, Layout of modern coal power plant, Super Critical Boilers, FBC Condensers, Steam & Heat rate, Subsystems of thermal power plants – Fuel and ash ystem, Feed water treatment. Binary Cycles and Cogeneration systems	C Bo hand	ilers, lling,	(201
UNIT II	DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS				9
Otto, Diese power plant	, Dual & Brayton Cycle - Analysis & Optimization. Components of Diesel and Gas Tur s. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems.	bine		(CO2
UNIT III	NUCLEAR POWER PLANTS				9
Basics of N Reactors : I reactor (CA Power plan	uclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nucle Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANDU Deuterium- NDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Safety measures for Nu ss.	ar Uran ıcleai	ium r	(203
UNIT IV	POWER FROM RENEWABLE ENERGY				9
Hydro Elec Principle, C Thermal, B	tric Power Plants – Classification, Typical Layout and associated components including onstruction and working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Geogas and Fuel Cell power system.	Turb ว	ines.	(CO4
UNIT V	ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLAN	NTS			9
Power tariff merits & de including W	E types, Load distribution parameters, load curve, Comparison of site selection criteria, remerits, Capital & Operating Cost of different power plants. Pollution control technologies Vaste Disposal Options for Coal and Nuclear Power Plants.	elativ es	e	(CO5
	ТОТА	L: 4	5 PE	RIC	DS
теутр					
1. El-Waki 2. Thomas Standard H REFERI	 I. M.M., "Power Plant Technology", Tata McGraw – Hill Publishing Company Ltd., 20 C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second Editandbook of McGraw – Hill, 1998. ENCE BOOKS 	010. tion,			
1. Nag. P.I	K., "Power Plant Engineering", Third Edition, Tata McGraw – Hill Publishing Company	Ltd.	, 200	8.	
COURSE Upon con	OUTCOMES apletion of the course, students will be able to				
$CO1 \begin{bmatrix} A^{T} \\ an \end{bmatrix}$	bility to comprehend the Layout of modern coal power plant and its major components, a d Cogeneration systems.	Bina	ry Cy	cles	
CO2 A	ble to understand the concept of Otto, Diesel, Dual & Brayton Cycle - Analysis & optimi opponents of Diesel and Gas Turbine power plants	zatio	n and	1	
CO3 W	bility to know the Basics of Nuclear Engineering, Layout and subsystems of Nuclear Po orking of Nuclear Reactors : BWR, PWR, CANDU, Breeder, Gas Cooled and Liquid M	wer H letal ('lants Coole	, ed	

Reactors. Safety measures for Nuclear Power plantsAbility to comprehend the concept of Hydro Electric Power Plants – Classification, Typical Layout andassociated components including Turbines. Principle, Construction and working of Wind, Tidal, SPV,Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.

To understand the concept of Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants.
 Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants

COs P CO1 CO2 CO3 CO4 CO5]	PROG	RAM	OUTC	COME	S (PO	s)			PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3	-	-	-	3	-	1	1	2	3	2	
CO2	3	3	3	3	-	-	-	3	-	1	1	2	3	2	
CO3	3	3	3	3	-	-	-	3	-	1	1	2	3	2	
CO4	3	3	3	3	-	-	-	3	-	1	1	2	2	3	
CO5	3	3	3	3	-	-	-	3	-	1	1	2	3	3	

r					
ME4544	REFRICERATION AND AIR CONDITIONING	L	Т	Р	С
1112-12-17	KEF KIGERA HON AND AIK CONDITIONING	3	0	0	3
COURSE OB. To und and con	IECTIVES: erstand the underlying principles of operations in different Refrigeration & Air mponents.	condi	tionir	ng sys	tems
					0
UNITI	INTRODUCTION				9
Introduction to F – Classification	Refrigeration - Unit of Refrigeration and C.O.P.– Ideal cycles- Refrigerants Des - Nomenclature - ODP & GWP.	irable	prope	erties	CO1
UNIT II	VAPOUR COMPRESSION REFRIGERATION SYSTEM				9
Vapor compres heating- effects refrigeration - devices, Evapor	sion cycle: p-h and T-s diagrams - deviations from theoretical cycle – subco of condenser and evaporator pressure on COP- multipressure system - 1 Cascade systems – problems. Equipment's: Type of Compressors, Conden ators	ooling low te sers,	and emper Expa	super ature nsion	CO2
UNIT III	OTHER REFRIGERATION SYSTEMS				9
Working princip Ejector refrigera tube refrigeration	bles of Vapour absorption systems and adsorption cooling systems – Steam jet r ation systems- Thermoelectric refrigeration- Air refrigeration - Magnetic - Vorte n systems.	efrige ex and	ration l Puls	1- e	CO3
UNIT IV	PSYCHROMETRIC PROPERTIES AND PROCESSES				9
Properties of me Relative humidit Psychrometric cl	bist Air-Gibbs Dalton law, Specific humidity, Dew point temperature, Degree y, Enthalpy, Humid specific heat, Wet bulb temperature Thermodynamic wet be hart; Psychrometric of air-conditioning processes, mixing of air streams.	ee of ulb ter	satura npera	ation, ature,	CO4
UNIT V	AIR CONDITIONING SYSTEMS AND LOAD ESTIMATION				9
Air conditionin Electrical appli comfort & IAQ Classifications Temperature, F	g loads: Outside and inside design conditions; Heat transfer through structure, ances, Infiltration and ventilation, internal heat load; Apparatus selection; fresh principles, effective temperature & chart, calculation of summer & winter air co Layout of plants; Air distribution system; Filters; Air Conditioning Systems ressure and Humidity sensors, Actuators & Safety controls.	Solar air lo onditions with	radia ad, hu oning Con	ation, uman load; trols:	CO5
	T	OTAI	.: 45	PERI	ODS
·					

TEXTBOOKS

- 1. Arora, C.P., "Refrigeration and Air Conditioning", 3rd edition, McGraw Hill, New Delhi, 2010.
- 2. Stoecker, W.F. and Jones J. W., "Refrigeration and Air Conditioning", McGraw Hill, New Delhi, 1986.

REFERENCE BOOKS

- 1. ASHRAE Hand book,
- 2. Fundamentals, 2010 2. Jones W.P., "Air conditioning engineering", 5th edition, Elsevier Butterworth-Heinemann, 2007
- 3. Roy J. Dossat, "Principles of Refrigeration", 4th edition, Pearson Education Asia, 2009.

Upon	completion of the course, students will be able to:
CO1	Explain the basic concepts of Refrigeration
CO2	Explain the Vapor compression Refrigeration systems and to solve problems
CO3	Discuss the various types of Refrigeration systems.
CO4	Calculate the Psychrometric properties and its use in Psychrometric processes
CO5	Explain the concepts of Air conditioning and to solve problems

COs				PRO	OGRAN	A OUT	COME	ES (POs	5)				PRO SPE OUTC (PS	GRAM CIFIC COMES SOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	-	-	-	-	-	-	-	1	2	1
CO2	3	2	1	1	-	-	-	-	-	-	-	1	2	1
CO3	3	2	1	1	-	-	-	-	-	-	-	1	2	1
CO4	3	2	1	1	-	-	-	-	-	-	-	1	2	1
CO5	3	2	1	1	-	-	-	-	-	-	-	1	2	1

ME4545

MEASUREMENTS AND CONTROLS

9

9

9

9

9

OBJECTIVES

- To understand the concepts of measurement technology
- ✤ To understand the concept of mathematical modeling using block diagram and signal flow graph techniques
- ✤ To study time response and frequency response of closed loop control systems
- ✤ To learn operating principle of mechanical sensors and transducers used to measure mechanical parameters
- ✤ To familiarize with the principle of various temperature and pressure measurement techniques

UNIT I INTRODUCTION

Static and dynamic characteristics of measurement systems - standards and calibration - error and uncertainty analysis-statistical analysis of data-and curve fitting

UNIT II SYSTEMS AND REPRESENTATION

Basic elements in control systems: – Open and closed loop systems – Electrical analogy of mechanical systems – Transfer function – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs.

UNIT III TIME AND FREQUENCY RESPONSE

Time response: – Time domain specifications – Types of test input -I and II order system response – Error coefficients – Generalized error series – Steady state error – Correlation between frequency domain and time domain specifications- Frequency response: – Bode plot – Polar plot – Determination of closed loop response from open loop response

UNIT IV MECHANICAL MEASUREMENTS

Measurement of displacement-Resistive-Inductive-Capacitive Methods Velocity Measurement-Contact type and Non-contact type Acceleration measurement-Potentiometric type-LVDT type-Piezoelectric type CO4 – Force measurement-Hydraulic-Pneumatic-Strain gauge- Magnetostrictive Load Cell Measurement of Torque-Inline rotating-Inline stationary-Proximity type.

UNIT V MEASUREMENT OF TEMPERATURE AND PRESSURE

Temperature measurement-Bimetallic thermometer-Filled system thermometer-Resistance temperature detector-Thermistor-Thermocouple .Radiation fundamentals-Pyrometers Pressure measurement-Pressure fundamentals-Manometer and its types-Elastic and Electrical pressure transducers-Vacuum pressure measurement-McLeod gauge-Thermal conductivity gauge-Pressure gauge calibration-Dead weight tester

TOTAL: 45 PERIODS

TEXTBOOKS

- 1. Ernest O Doebelin, "Measurement Systems Applications and Design", Tata McGraw-Hill, 2009.
- 2. Sawhney A K and Puneet Sawhney, "A Course in Mechanical Measurements and Instrumentation and Control", 12th edition, Dhanpat Rai& Co, New Delhi, 2013.
- 3. Nagarath, I.J. and Gopal, M., "Control Systems Engineering", New Age International Publishers, 2017.
- 4. Benjamin C. Kuo, "Automatic Control Systems", Wiley, 2014.

REFERENCE BOOKS

1. Patranabis. D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010.

2. John Turner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford Science Publications, 1999.

COURS	SE OUTCOMES
Upon co	ompletion of the course, students will be able to
CO1	Explain various characteristics, standards, calibration and types of errors in measurement systems.
CO2	Develop mathematical models for different types of system by using block diagram and signal flow graph.
CO3	Determine the time response specifications along with error coefficients for closed loop control system.
CO4	Illustrate the working principle and applications of different types of Mechanical sensors and transducers.
CO5	Illustrate the working principle and applications of different types of instruments for measurement of temperature and pressure.

				M	APPIN	GOF	COs W	ITH PO	Os ANI) PSOs						
COs					PRO	GRAM	1 OUT	COME	S (POs)			PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	3	2	2	-	-	-	-	-	-	-	2	3	-		
CO2	3	3	2	2	-	-	-	-	-	-	-	2	3	-		
CO3	3	3	2	2	-	-	-	-	-	-	-	2	3	-		
CO4	3	3	2	2	-	-	-	-	-	-	-	2	3	-		
CO5	3	3	2	2	-	-	-	-	-	-	-	2	3	-		

ME4551

NON-TRADITIONAL MACHINING PROCESSES

L	Т	Р	С
3	0	0	3

9

9

9

OBJECTIVES

- To learn about various Non-traditional Machining processes, their process parameters and influence on the performance of end components
- To select appropriate machining technique for machining advanced materials
- To select appropriate machining technique for machining components with very tight tolerances
- To update the students with latest technological developments and research trends in the field of Nontraditional Machining.

UNIT I INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES

Unconventional machining Process – Need – classification – merits, demerits and applications. Abrasive Jet Machining – Water Jet Machining – Abrasive Water Jet Machining - Ultrasonic Machining. (AJM, WJM, AWJM and USM). Working Principles – equipment used – Process parameters – MRR Applications. Numerical Problems

UNIT II THERMAL AND ELECTRICAL ENERGY BASED PROCESSES 9 Electric Discharge Machining (EDM) – Wire cut EDM – Working Principleequipments- Process parameters-Surface Finish and MRR- electrode / Tool – Power and control Circuits-Tool Wear – Dielectric – Flushing — Applications. Laser beam machining and drilling, Plasma arc machining (PAM), Electron Beam Machining (EBM) and Ion Beam Machining (IBM). Principles –Equipment – Types - Beam control techniques – Applications. Numerical Problems CO2

UNIT IIICHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES9Chemical machining - Etchants – Maskant - techniques of applying maskants - Principles of Electro Chemical
Machining (ECM) - equipments – Process Parameters, MRR and Surface Finish. Electro Chemical Grinding
(ECG) and Electro Chemical Honing (ECH), Electro Stem Drilling (ESD) - Applications. Numerical Problems9

UNIT IV ADVANCED SURFACE FINISHING PROCESSES

Abrasive flow machining, chemo-mechanical polishing, magnetic abrasive finishing, magneto rheological finishing, magneto rheological abrasive flow finishing, plasma assisted polishing: their working principles, equipments, effect of process parameters, applications, advantages and limitations- Recent developments in finishing process.

UNIT V RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES

Recent developments in non-traditional machining processes, their working principles, equipments, effect of process parameters, applications, advantages and limitations. Comparison of non-traditional machining processes, Bio Machining, Ice Jet Machining, Elastic Emission Machining (EEM), Hybrid Machining Process – Micromachining and Nano machining, Non Traditional Machining in Industry 4.0.

TOTAL: 45 PERIODS

TEXTBOOKS

1. Vijay.K. Jain "Advanced Machining Processes" Allied Publishers Pvt. Ltd. New Delhi, 2009

2. Pandey P.C. and Shan H.S. "Modern Machining Processes" Tata McGraw Hill, New Delhi, 2017.

REFERENCE BOOKS

1. Benedict. G.F. "Nontraditional Manufacturing Processes", Marcel Dekke Inc., New York, 2019.

2. Mc Geough, "Advanced Methods of Machining", Chapman and Hall, London 1998.

3. Paul De Garmo, J.T.Black, and Ronald. A.Kohser, "Material and Processes I Manufacturing", Prentice Hall of India Pvt. Ltd., 8thEdition, New Delhi, 2001.

Upon	completion of the course, students will be able to
CO1	Classify various Mechanical Energy based Non Traditional Machining processes.
CO2	Compare various Thermal energy and Electrical energy based Non Traditional Machining processes.
CO3	Summarize various chemical and electro-chemical energy based Non Traditional Machining processes.
CO4	Explain various Nano Finishing processes.
CO5	Gain knowledge about recent trends and developments in Non Traditional Machining

		PROGRAM OUTCOMES (POs)											PROC SPEC OUTC (PS	GRAM CIFIC COMES PSOs)	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	2	1	1	-	-	-	-	-	2	3	2	
CO2	2	2	2	2	1	1	-	-	-	-	-	2	3	2	
CO3	2	2	2	2	1	1	-	-	-	-	-	2	3	2	
CO4	2	2	2	2	1	1	-	-	-	-	-	2	3	2	
CO5	2	2	2	2	1	1	-	-	-	-	-	2	3	2	

MF	4552	TURRO MACHINES	L	T	Р	
	-332		3	0	0	
OBJE *	CTIVI To ur mach	ΞS iderstand the various systems, principles, operations and applications of different typ inery components.	es of	turl	00	
UN	IT I	PRINCIPLES				9
Energy	transfe	r between fluid and rotor-classification of fluid machinery,-dimensionless parame	eters-	spe	cific	
speed-ap	pplicati	ons-stage velocity triangles-work and efficiency.				CO
UN	IT II	CENTRIFUGAL FANS AND BLOWERS				9
Types- s	stage ar	nd design parameters-flow analysis in impeller blades-volute and diffusers, losses,	char	acter	istic	
curves a	and sele	ection, fan drives and fan noise.				C
UNI	TII	CENTRIFUGAL COMPRESSOR				9
Constru	ction d	etails, impeller flow losses, slip factor, diffuser analysis, losses and performance c	curve	s.		C
UNI	TIV	AXIAL FLOW COMPRESSOR				
Stage ve	elocity	diagrams, enthalpy-entropy diagrams, stage losses and efficiency, work done simple	e stag	ge de	esign	~
problem	s and p	erformance characteristics.				C
UN	IT V	AXIAL AND RADIAL FLOW TURBINES				
Stage ve	elocity	diagrams, reaction stages, losses and coefficients, blade design principles, testing	and			
perform	ance cl	naracteristics.				C
		ТОТ	AL:	45 P	ERI	0
TEXT	BOOK	ΣS				
1.Yahya 2.Bruneo	ı, S.M., ck, Fans	Turbines, Compressor and Fans, Tata McGraw Hill Publishing Company, 1996. s, Fans; design and operation of centrifugal, axial-flow, and cross-flow fansPergamon	n Pres	ss, 19	973.	
REFER	RENCE	BOOKS				
1. Earl L	.ogan, J	r., Hand book of Turbomachinery, Marcel Dekker Inc., 1992.				
2. Dixon	n, S.I., "	Fluid Mechanics and Thermodynamics of Turbomachinery", Pergamon Press, 1990.				
3. Sheph	nerd, D.	G., "Principles of Turbomachinery", Macmillan, 1969.				
4. Ganes	san, V.,	"Gas Turbines", Tata McGraw Hill Pub. Co., 1999.				
5. Gopal	lakrishn	an .G and Prithvi Raj .D, "A Treatise on Turbo machines", Scifech Publications (Indi	a) Pv	t. Lt	d., 2	200
COUR	RSE OU	JTCOMES				
Upon	comple	tion of the course, students will be able to				
CO1	Unders	stand the principles of Energy transfer and velocity triangles.				
CO2	Draw	the characteristic curves of centrifugal fans and blowers				
	Analys	e the performance curves of centrifugal compressor				
CO2	-					
CO3 CO4	Analys	e the performance curves of centrifugal compressor axial flow compressor				

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	3	2	-	-	-	-	-	-	-	2	3	-		
CO2	3	2	3	2	-	-	-	-	-	-	-	2	3	-		
CO3	3	2	3	2	-	-	-	-	-	-	-	2	3	-		
CO4	3	2	3	2	-	-	-	-	-	-	-	2	3	-		
CO5	3	2	3	2	-	-	-	-	-	-	-	2	3	-		

ME4553	DESIGN OF TRANSMISSION SYSTEMS	L	Т	Р	С						
WIE4355		3	0	0	3						
OBJECTIVES											
To gain knowledge on the principles and procedure for the design of Mechanical power Transn components.											
 To understand the standard procedure available for Design of Transmission of Mechanical elements 											
 To learn to use standard data and catalogues (Use of P S G Design Data Book permitted) 											
UNIT I DESIGN OF FLEXIBLE ELEMENTS											
Design of Flat belts and pulleys - Selection of V belts and pulleys - Selection of hoisting wire ropes and pulleys - Design of Transmission chains and Sprockets.											
UNIT II	SPUR GEARS AND PARALLEL AXIS HELICAL GEARS				9						
Speed ratios and number of teeth-Force analysis -Tooth stresses - Dynamic effects - Fatigue strength - Factor of safety - Gear materials - Design of straight tooth spur & helical gears based on strength and wear considerations - Pressure angle in the normal and transverse plane - Equivalent number of teeth - forces for helical gears.											
UNIT III	BEVEL, WORM AND CROSS HELICAL GEARS				9						
Straight bevel gear: Tooth terminology, tooth forces and stresses, equivalent number of teeth. Estimating the dimensions of pair of straight bevel gears. Worm Gear: Merits and demerits, terminology. Thermal capacity, materials-forces and stresses, efficiency, estimating the size of the worm gear pair. Cross helical: Terminology-helix angles-Estimating the size of the pair of cross helical gears.											
UNIT IV	GEAR BOXES										
Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box - Speed reducer unit. Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications.											
UNIT V	INIT V CAMS, CLUTCHES AND BRAKES										
Cam Design: Types-pressure angle and under cutting base circle determination-forces and surface stresses. Design of plate clutches - axial clutches-cone clutches - internal expanding rim clutches - Electromagnetic clutches. Band and Block brakes - external shoe brakes - Internal expanding shoe brake.											
TOTAL: 45 PER											
]						
TEXTBOOK	S										
1. Bhandari V B, "Design of Machine Elements", 4th Edition, Tata McGraw-Hill Book Co, 2016.											
2. Joseph Shigley, Richard G. Budynas and J. Keith Nisbett "Mechanical Engineering Design", 10th Edition,											
Tata McGraw-Hill, 2015.											
REFERENCE BOOKS											
1. Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Elements" 8th Edition, Printice H 2003.											
2. Orthwein W, "Machine Component Design", Jaico Publishing Co, 2003. 3. Prabhu. T.J., "Design of Transm Elements", Mani Offset, Chennai, 2000.											
4. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4th Edition, Wiley, 2005											
5. Sundararajar	moorthy T. V, Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2	2003.									

Upon completion of the course, students will be able to

CO1	Apply the concepts of design to belts, chains and rope drives.
CO2	Apply the concepts of design to spur, helical gears.
CO3	Apply the concepts of design to worm and bevel gears.
CO4	Apply the concepts of design to gear boxes.
CO5	Apply the concepts of design to cams, brakes and clutches.

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	3	-	-	-	-	-	-	-	-	3	3	1	
CO2	3	2	3	-	-	-	-	-	-	-	-	3	3	1	
CO3	3	2	3	-	-	-	-	-	-	-	-	3	3	1	
CO4	3	2	3	-	-	-	-	-	-	-	-	3	3	1	
CO5	3	2	3	-	-	-	-	-	-	-	-	3	3	1	
ME4554	FINITE ELEMENT ANALYSIS	L	Т	Р	C										
--	--	------------------------	---------------------------	----------------------	----------	--	--	--	--						
		3	0	0	3										
OBJECTIVI	S troduce the concepts of Mathematical Modeling of Engineering Problems. preciate the use of FEM to a range of Engineering Problems.														
UNIT I	INTRODUCTION				9										
Historical Ba Discrete and o Variational Fo Method.	ckground – Mathematical Modeling of field problems in Engineering – Governing continuous models – Boundary, Initial and Eigen Value problems– Weighted Residua ormulation of Boundary Value Problems – Ritz Technique – Basic concepts of the Fi	Equ al M inite	ation ethoo Elen	ns – ds – nent	COI										
UNIT II	ONE-DIMENSIONAL PROBLEMS				9										
One Dimension – Derivation problems from Order Beam I	onal Second Order Equations – Discretization – Element types- Linear and Higher ord of Shape functions and Stiffness matrices and force vectors- Assembly of Matrices - n solid mechanics and heat transfer. Longitudinal vibration frequencies and mode sh Equation – Transverse deflections and Natural frequencies of beams.	der E – Sol apes	Eleme lution s. For	ents n of urth	CO2										
UNIT III	TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS				9										
Second Order formulation – Problems – '	2D Equations involving Scalar Variable Functions – Variational formulation –Fi Triangular elements – Shape functions and element matrices and vectors. Applica Thermal problems – Torsion of Non circular shafts –Quadrilateral elements – F	nite tion Iighe	Elen to F er Or	nent ield rder	CO3										
Elements.	TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS				9										
Elements. UNIT IV	Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Body forces and temperature effects – Stress calculations – Plate and shell elements.														
Elements. UNIT IV Equations of effects – Stres	ss calculations – Plate and shell elements.														
Elements. UNIT IV Equations of effects – Stres UNIT V	ISOPARAMETRIC FORMULATION				9										
Elements. UNIT IV Equations of effects – Stre: UNIT V Natural co-or two dimensio Matrix solutio	ISOPARAMETRIC FORMULATION dinate systems – Isoparametric elements – Shape functions for iso parametric elements – Serendipity elements – Numerical integration and application to plane stress proof techniques – Solutions Techniques to Dynamic problems – Introduction to Analys	its – blen is Sc	One 1s – oftwa	and	9 CO5										

TEXTBOOKS

Reddy. J.N., "An Introduction to the Finite Element Method", 3rd Edition, Tata McGraw-Hill, 2005
 Seshu, P, "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd., New Delhi, 2007.

- Bhatti Asghar M, "Fundamental Finite Element Analysis and Applications", John Wiley & Sons, 2005 (Indian Reprint 2013)*
- 2. Chandrupatla & Belagundu, "Introduction to Finite Elements in Engineering", 3rd Edition, Prentice Hall College Div, 1990
- 3. Logan, D.L., "A first course in Finite Element Method", Thomson Asia Pvt. Ltd., 2002
- 4. Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butterworth Heinemann, 2004

Upon completion of the course, students will be able to:

CO1	Summarize the basics of finite element formulation.
CO2	Apply finite element formulations to solve one dimensional Problems.
CO3	Apply finite element formulations to solve two dimensional scalar Problems
CO4	Apply finite element method to solve two dimensional Vector problems
CO5	Apply finite element method to solve problems on iso parametric elements and dynamic Problems.

COs				PI	ROGRA	AM OU	JTCON	IES (P	Os)				SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	-	-	-	-	-	-	-	1	1	3	3	
CO2	3	3	2	-	-	-	-	-	-	-	1	1	3	3	
CO3	3	3	2	-	-	-	-	-	-	-	1	1	3	3	
CO4	3	3	2	-	-	-	-	-	-	_	1	1	3	3	
CO5	3	3	2	-	-	-	-	-	-	-	1	1	3	3	

			,						
ME4555	DESIGN FOR MANUFACTURING	L 2	T	P	C 2				
		3	0	0	5				
OBJECTIVES									
↔ To und	erstand the principles of design such the manufacturing of the product is possible.								
Various	s design aspects to be considered for manufacturing the products using different proc	esses							
UNIT I	DESIGN FOR MANUFACTURING APPROACH AND PROCESS				9				
Methodologies and tools, design axioms, design for assembly and evaluation, minimum part assessment. Taguchi method, robustness assessment, manufacturing process rules, designer's tool kit, Computer Aided group Technology, failure mode effective analysis, Value Analysis. Design for minimum number of parts, development of modular design, minimizing part variations, design of parts to be multi-functional, multi-use, ease of fabrication, Poka Yoke principles.									
UNIT II	GEOMETRIC ANALYSIS				9				
Surface finish, review of relationship between attainable tolerance grades and difference machining processes. Analysis of tapers, screw threads, applying probability to tolerances.									
UNIT III	NIT III FORM DESIGN OF CASTINGS AND WELDMENTS								
Redesign of cast using weldment	tings based on parting line considerations, Minimizing core requirements, redesigning c s, use of welding symbols.	cast n	nemb	bers	CO3				
UNIT IV	MECHANICAL ASSEMBLY				9				
Selective assem different types,	bly, deciding the number of groups, control of axial play, examples, grouped datu geometric analysis and applications - design features to facilitate automated assembly	m sy	vsterr	ns -	CO4				
UNIT V	TRUE POSITION THEORY				9				
Virtual size concept, floating and fixed fasteners, projected tolerance zone, assembly with gasket, zero true position tolerance, functional gauges, paper layout gauging, examples. Operation sequence for typical shaft type of components. Preparation of process drawings for different operations, tolerance worksheets and centrality analysis, examples.									
	тот	AL:	45 P	PER	IODS				
TEXTBOOKS									
1. Corrado Poli	"Design for Manufacturing: A Structured Approach" Elsevier 2001								
2. G. K. Lal, Na Science Internat	llagundla Venkata Reddy, and Vijay Gupta," Fundamentals of Design and Manufact ional, 2005	uring	g" alp	oha					

REFERENCE BOOKS

1. A. K. Chitale, R. C. Gupta, "Product Design And Manufacturing" PHI Learning Pvt. Ltd. 2013

2. James G. Bralla, "Hand Book of Product Design for Manufacturing" McGraw Hill Publications, 1983.

3. Oliver R. Wade, "Tolerance Control in Design and Manufacturing", Industrial Press Inc. New York Publications, 1967.

4. Harry Peck, "Designing for Manufacture", Pitman Publications, 1983.

5. Matousek, "Engineering Design, - A Systematic Approach" - Blackie & Son Ltd., London, 1974.

Upon completion of the course, students will be able to

CO1	Perform designing of components considering manufacture ability.
CO2	Understand the need and the usage of tolerances.
CO3	Design casting and weld structures.
CO4	Use principles of design for assembly.
CO5	Understand true position theory.

COs		PROGRAM OUTCOMES (POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	3	1	-	-	-	-	-	-	1	1	3	1		
CO2	3	2	3	1	-	-	-	-	-	-	1	1	3	1		
CO3	3	2	3	1	-	-	-	-	-	-	1	1	3	1		
CO4	3	2	3	1	-	-	-	-	-	-	1	1	3	1		
CO5	3	2	3	1	-	-	-	-	-	-	1	1	3	1		

ME4561

ADVANCED INTERNAL COMBUSTION ENGINES

9

CO1

9

9

CO3

9

9

COURSE OBJECTIVES:

- To understand the underlying principles of operation of different IC Engines and components.
- To provide knowledge on pollutant formation, control, alternate fuel etc.

UNIT I SPARK IGNITION ENGINES

Mixture requirements – Fuel injection systems – Mono point, Multipoint & amp; Direct injection - Stages of Combustion – Normal and Abnormal combustion – Knock - Factors affecting knock – Combustion chambers.

UNIT II COMPRESSION IGNITION ENGINES

Diesel Fuel Injection Systems - Stages of combustion – Knocking – Factors affecting knock – Direct and Indirect injection systems – Combustion chambers – Fuel Spray behavior – Spray structure and spray penetration – Air motion - Introduction to Turbo-charging.

UNIT III POLLUTANT FORMATION AND CONTROL

Pollutant – Sources – Formation of Carbon Monoxide, Un burnt hydrocarbon, Oxides of Nitrogen, Smoke and Particulate matter – Methods of controlling Emissions – Catalytic converters, Selective Catalytic Reduction and Particulate Traps – Methods of measurement – Emission norms and Driving cycles.

UNIT IV ALTERNATIVE FUELS

Alcohol, Hydrogen, Compressed Natural Gas, Liquefied Petroleum Gas and Bio Diesel - Properties, Suitability, Merits and Demerits - Engine Modifications CO4

UNIT V RECENT TRENDS

Air assisted Combustion, Homogeneous charge compression ignition engines – Variable Geometry turbochargers – Common Rail Direct Injection Systems - Hybrid Electric Vehicles – NOx Adsorbers - Onboard Diagnostics.

TOTAL: 45 PERIODS

TEXTBOOKS

- 1. Ganesan, V., "Internal combustion engines", Tata McGraw Hill Publishing Co., 2007
- 2. Ramalingam. K.K., "Internal combustion engine", scitech publications, Chennai, 2003

- 1. Ganesan, V., "Compute Simulation of Compression Ignition engine process", Universities Press (India) Ltd., Hyderabad, 1996.
- John, B., Heywood, "Internal Combustion Engine Fundamentals", McGraw Hill Publishing Co., New York, 1990
- 3. Benson, R.S., Whitehouse, N.D., "Internal Combustion Engines", Pergamon Press, Oxford, 1979.

Upon completion of the course, students will be able to:

CO2 Ability to understand about various injection systems, Fuel Spray behavior, Stages of combustion, Tur charging, Combustion chambers and Knocking in C.I Engine CO3 Ability to understand various pollutants and its formations, method of controlling Emissions, methods measurement, Emission norms and Driving cycles Ability to understand various pollutants and its formations, method of controlling Emissions, methods	CO1
CO3 Ability to understand various pollutants and its formations, method of controlling Emissions, methods measurement, Emission norms and Driving cycles Ability to understand various pollutants and its formations, method of controlling Emissions, methods	CO2
CO3 Pointy to understand various pointaints and its formations, method of controlling Emissions, methods measurement, Emission norms and Driving cycles	
	CO3
CO4 Ability to understand various alternative fuels, their suitability and corresponding Engine modification	CO4
CO5 Ability to understand about the recent trends in I.C. Engine's Injection Systems, Combustion, ignition, Hybrid Vehicles and Onboard Diagnostics	CO5

COs		PROGRAM OUTCOMES (POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	2	1	-	1	-	-	-	-	-	1	1	1		
CO2	3	2	2	1	-	1	-	-	-	-	-	1	1	1		
CO3	3	1	2	-	-	1	-	-	-	-	-	1	1	1		
CO4	3	2	1	-	-	1	-	-	-	-	-	1	1	1		
CO5	3	2	2	1	-	1	-	-	-	-	-	1	1	1		

ME4562

PROCESS PLANNING AND COST ESTIMATION

9

CO1

9

CO2

9

9

9

OBJECTIVES

 To introduce the process planning concepts to make cost estimation for various products after process planning

UNIT I INTRODUCTION TO PROCESS PLANNING

Introduction- methods of process planning-Drawing interpretation-Material evaluation – steps in process selection-.Production equipment and tooling selection

UNIT II PROCESS PLANNING ACTIVITIES

Process parameters calculation for various production processes-Selection jigs and fixtures selection of quality assurance methods - Set of documents for process planning-Economics of process planning- case studies

UNIT III INTRODUCTION TO COST ESTIMATION

Importance of costing and estimation –methods of costing-elements of cost estimation –Types of estimates – Estimating procedure- Estimation labor cost, material cost- allocation of over head charges- Calculation of depreciation cost

UNIT IV PRODUCTION COST ESTIMATION

Estimation of Different Types of Jobs - Estimation of Forging Shop, Estimation of Welding Shop, estimation of Foundry Shop

UNIT V MACHINING TIME CALCULATION

Estimation of Machining Time - Importance of Machine Time Calculation- Calculation of Machining Time for Different Lathe Operations ,Drilling and Boring - Machining Time Calculation for Milling, Shaping and Planning -Machining Time Calculation for Grinding

TOTAL: 45 PERIODS

TEXTBOOKS

1. PETER SCALON, "Process planning, Design/Manufacture Interface", Elsevier science technology Books, Dec 2002.

2. Ostwalal P.F. and Munez J., "Manufacturing Processes and systems", 9th Edition, John Wiley, 1998.

REFERENCE BOOKS

1. Chitale A.V. and Gupta R.C., "Product Design and Manufacturing", 2nd Edition, PHI, 2002.

2. Russell R.S and Tailor B.W, "Operations Management", 4th Edition, PHI, 2003

COURSE OUTCOMES

Upon c	Upon completion of the course, students will be able to						
CO1	Select the process, equipments and tools for various industrial products						
CO2	Prepare the process planning activity chart						
CO3	Explain the concept of cost estimation						
CO4	Compute the job order cost for different types of shop floor						
CO5	Calculate the machining time for various machining operations						

COs				PI	ROGR	AM O	UTCO	MES (POs)				PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	1	2	2	2	3	3	1	3	3	3	-	
CO2	2	2	2	1	2	2	2	3	2	1	3	2	3	-	
CO3	2	2	2	1	2	2	2	3	2	1	3	2	3	-	
CO4	2	2	2	1	2	2	2	3	2	1	3	2	3	-	
CO5	2	2	2	1	2	2	2	3	2	1	3	2	3	-	

		L	Т	Р	C							
ME4563	GAS DYNAMICS AND JET PROPULSION	3	0	0	3							
COURSE OB	JECTIVES: derstand the basic difference between incompressible and compressible flow.											
 To une about 	lerstand the phenomenon of shock waves and its effect on flow. To gain some bailed propulsion and Rocket Propulsion. (Use of Standard Gas Tables permitted)	asic 1	know	ledg	e							
UNIT I	BASIC CONCEPTS AND ISENTROPIC FLOWS				9							
Energy and momentum equations of compressible fluid flows – Stagnation states, Mach waves and Mach cone – Effect of Mach number on compressibility – Isentropic flow through variable ducts – Nozzle and Diffusers												
UNIT II FLOW THROUGH DUCTS												
Flows through constant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) – variation of flow properties												
UNIT III	NORMAL AND OBLIQUE SHOCKS				9							
Governing equations – Variation of flow parameters across the normal and oblique shocks – Prandtl – Meyer elations – Applications.												
UNIT IV	UNIT IV JET PROPULSION											
Theory of jet pr cycle analysis a	opulsion – Thrust equation – Thrust power and propulsive efficiency – Operat nd use of stagnation state performance of ram jet, turbojet, turbofan and turbo pr	ing p op ei	orinci ngine	iple, es	CO4							
UNIT V	SPACE PROPULSION				9							
Types of rock propulsion – I flights.	tet engines – Propellants-feeding systems – Ignition and combustion – The Performance study – Staging – Terminal and characteristic velocity – Applica	ory ations	of ro s – sj	ocket pace	CO5							
TOTAL: 45 PERIODS												
TEXTBOOK	5											
TEXTBOOK 1. Anderso 2. Yahya,	8 m, J.D., "Modern Compressible flow", 3 rd Edition, McGraw Hill, 2012. S.M. "Fundamentals of Compressible Flow", New Age International (P) Limited	l, Ne	w De	elhi, 2	2002.							
TEXTBOOK1.Anderso2.Yahya,REFERENCE	Son, J.D., "Modern Compressible flow", 3 rd Edition, McGraw Hill, 2012. S.M. "Fundamentals of Compressible Flow", New Age International (P) Limited C BOOKS	l, Ne	w De	elhi, 2	2002.							
TEXTBOOK 1. Anderso 2. Yahya, REFERENCE 1. Cohen, I	Son, J.D., "Modern Compressible flow", 3 rd Edition, McGraw Hill, 2012. S.M. "Fundamentals of Compressible Flow", New Age International (P) Limited BOOKS H., G.E.C. Rogers and Saravanamutto, "Gas Turbine Theory", Longman Group I	<u>l, Ne</u> Ltd.,	w De 1980	elhi, 2	2002.							
TEXTBOOK1.Anderso2.Yahya,REFERENCE1.Cohen, I2.Ganesari3.Shapiro,1953.	 Son, J.D., "Modern Compressible flow", 3rd Edition, McGraw Hill, 2012. S.M. "Fundamentals of Compressible Flow", New Age International (P) Limited BOOKS H., G.E.C. Rogers and Saravanamutto, "Gas Turbine Theory", Longman Group I. V., "Gas Turbines", Tata McGraw Hill Publishing Co., New Delhi, 2010. A.H.," Dynamics and Thermodynamics of Compressible fluid Flow", John wile 	l, Ne Ltd., 2y, N	<u>w De</u> 1980 ⁾ ew Y	ork,	2002.							
TEXTBOOK1.Anderso2.Yahya,REFERENCE1.Cohen, I2.Ganesar3.Shapiro,1953,4.	 Son, J.D., "Modern Compressible flow", 3rd Edition, McGraw Hill, 2012. S.M. "Fundamentals of Compressible Flow", New Age International (P) Limited BOOKS H., G.E.C. Rogers and Saravanamutto, "Gas Turbine Theory", Longman Group I. V., "Gas Turbines", Tata McGraw Hill Publishing Co., New Delhi, 2010. A.H.," Dynamics and Thermodynamics of Compressible fluid Flow", John wile G.P., "Rocket Propulsion Elements", John wiley, New York, 2010, 	l, Ne Ltd., ey, N	<u>w De</u> 1980 ^v ew Y	Vork,	2002.							

Upon	Upon completion of the course, students will be able to							
CO1	Apply the concept of compressible flows in variable area ducts.							
CO2	Apply the concept of compressible flows in constant area ducts.							
CO3	Examine the effect of compression and expansion waves in compressible flow.							
CO4	Use the concept of gas dynamics in Jet Propulsion.							
CO5	Apply the concept of gas dynamics in Space Propulsion.							

		PROGRAM OUTCOMES (POs)									PROGRAM SPECIFIC OUTCOMES (PSOs)			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	-	-	-	-	-	-	-	1	2	1
CO2	3	2	2	1	-	-	-	-	-	-	-	1	2	1
CO3	3	2	2	1	-	-	-	-	-	-	-	1	2	1
CO4	3	2	2	1	-	-	-	-	-	-	-	1	2	1
CO5	3	2	2	1	-	-	-	-	-	-	-	1	2	1

ME4564
MILITION

OPERATIONAL RESEARCH

COURSE OBJECTIVES:

To provide knowledge and training in using optimization techniques under limited resources for the engineering and business problems.

UNIT I LINEAR MODELS 15 The phase of an operation research study – Linear programming – Graphical method– Simplex algorithm – Duality formulation – Sensitivity analysis **CO1** TRANSPORTATION MODELS AND NETWORK MODELS **UNIT II** 8 Transportation Assignment Models – Traveling Salesman problem-Networks models – Shortest route Minimal spanning tree – Maximum flow models – Project network – CPM and PERT networks – Critical path **CO2** scheduling - Sequencing models. **UNIT III INVENTORY MODELS** 6 Inventory models - Economic order quantity models - Quantity discount models - Stochastic inventory models - Multi product models - Inventory control models in practice. **CO3 UNIT IV QUEUEING MODELS** 6 Queueing models - Queueing systems and structures – Notation parameter – Single server and multi server models – Poisson input – Exponential service – Constant rate service – Infinite population – Simulation. **CO4** UNIT V **DECISION MODELS** 10 Decision models - Game theory - Two person zero sum games - Graphical solution- Algebraic solution-**CO5** Linear Programming solution – Replacement models – Models based on service life – Economic life– Single / Multi variable search technique – Dynamic Programming – Simple Problem. **TOTAL: 45 PERIODS**

TEXTBOOKS

- 1. Hillier and Libeberman, "Operations Research", Holden Day, 2005
- 2. Taha H.A., "Operations Research", Sixth Edition, Prentice Hall of India, 2003.

- 1. Azara M.J., Jarvis and Sherali H., "Linear Programming and Network Flows", John Wiley, 2009.
- 2. Budnick F.S., "Principles of Operations Research for Management", Richard D Irwin, 1990.

Upon	completion of the course, students will be able to						
CO1	To understand the concepts of linear model theorem.						
CO2	To understand the concept and application of transportation model						
CO3	To understand the concept of Inventory control and its applications						
CO4	To understand the concept of queuing model and its applications						
CO5	To understand the decision models and decision making						
	MAPPING OF COs WITH POs AND PSOs						
		PROGRAM					

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1	1	1	2	-	2	-	-	3	3	-	3	1	1	
CO2	1	1	1	2	-	2	-	-	3	3	-	3	1	1	
CO3	1	1	1	2	-	2	-	-	3	3	-	3	1	1	
CO4	1	1	1	2	-	2	-	-	3	3	-	3	1	1	
CO5	1	1	1	2	-	2	-	-	3	3	-	3	1	1	

ME4565

OBJECTIVES

- ✤ To study the metallurgical concepts and applications of casting and welding process.
- ✤ To acquire knowledge in CAD of casting and automation of welding process.

UNIT I	CASTING DESIGN	9			
Heat transfer	between metal and mould — Design considerations in casting – Designing for directional	G A A			
solidification	and minimum stresses - principles and design of gating and risering	CO1			
UNIT II	CASTING PROCESS	9			
Solidification	n of pure metal and alloys – shrinkage in cast metals – progressive and directional solidification				
— Degasific	ation of the melt-casting defects - Castability of steel, Cast Iron, Al alloys, Babbit alloy and	CO2			
Cu alloy.					
UNIT III	RECENT TRENDS IN CASTING AND FOUNDRY LAYOUT	9			
Shell mouldi	ng, precision investment casting, CO2 moulding, centrifugal casting, Die casting, Continuous				
casting, Cour	ter gravity low pressure casting, Squeeze casting and semisolid processes. Layout of mechanized	CO 2			
foundry-san	d reclamation – material handling in foundry pollution control in foundry — Computer aided design	COS			
of casting.					
UNIT IV	WELDING METALLURGY AND DESIGN	9			
Heat affected	Zone and its characteristics – W eldability of steels, cast iron, stainless steel, aluminum, Mg , Cu ,				
Zirconium an	d titanium alloys – Carbon Equivalent of Plain and alloy steels Hydrogen embrittlement – Lamellar				
tearing - Res	idual stress - Distortion and its control . Heat transfer and solidification - Analysis of stresses in	CO4			
welded struct	ures - pre and post welding heat treatments - weld joint design - welding defects - Testing of				
weldment.					
UNIT V	RECENT TRENDS IN WELDING	9			
Friction weld	ling, friction stir welding – explosive welding – diffusion bonding – high frequency induction				
welding – ult	rasonic welding – electron beam welding – Laser beam welding –Plasma welding – Electroslag				
welding- narrow gap, hybrid twin wire active TIG – Tandem MIG- modern brazing and soldering techniques CO					
- induction, dip resistance, diffusion processes - Hot gas, wave and vapour phase soldering. Overview of					
automation o	f welding in aerospace, nuclear, surface transport vehicles and under water welding.				
	TOTAL: 45 PE	RIODS			
TEXT BC	OOKS				
1.Carrry B.,	Modern Welding Technology, Prentice Hall Pvt Ltd., 2002				
2. CORNU.	Advanced welding systems – Volumes I, II and III, JAICO Publishers, 1994.				

REFERENCE BOOKS

1.HEINELOPER & ROSENTHAL, Principles of Metal Casting, Tata McGraw Hill, 2000.

2.IOTROWSKI – Robotic welding – A guide to selection and application – Society of mechanical Engineers, 1987.

3. Jain P.L., Principles of Foundry Technology, Tata McGraw Hill Publishers, 2003

4.LANCASTER.J.F. - Metallurgy of welding - George Alien & Unwin Publishers, 1980

5.Parmer R.S., Welding Engineering and Technology, Khanna Publishers, 2002

6.SCHWARIZ, M.M. - Source book on innovative welding processes - American Society for Metals (OHIO), 1981

COUR	COURSE OUTCOMES						
Upon completion of the course, students will be able to							
CO1	To understand the various mould and its components.						
CO2	Explain the concepts of metal characterization during casting and its defects.						
CO3	Illustrate the application with various Casting process.						
CO4	Understanding the concepts of various designs of welding and metallurgy.						
CO5	Analyzing the various trends in welding and its unique metalurgy						

COs			PROGRAM SPECIFIC OUTCOME S (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	1	1	-	-	-	-	-	2	3	2
CO2	2	2	2	2	1	1	-	-	-	-	-	2	3	2
CO3	2	2	2	2	1	1	-	-	-	-	-	2	3	2
CO4	2	2	2	2	1	1	-	-	-	-	-	2	3	2
CO5	2	2	2	2	1	1	-	-	-	-	-	2	3	2

OEC/1/	BACICC OF BIOMEDICAL INCEDIMENTATION	L	Т	Р	C					
UEC414	BASICS OF BIOMEDICAL INSTRUMENTATION	3	0	0	3					
COURSE OF To stud To und To stud To lear To disc	SJECTIVES: ly about the different bio potential and its propagation erstand the different types of electrodes and its placement for various recording ly the design of bio amplifier for various physiological recording n different measurement techniques for non-physiological parameters cuss the recent trends in the field of diagnostic and therapeutic equipment									
UNIT I BIOPOTENTIAL RECORDING AND ELECTRODE TYPES										
Biopotential origin and its propagation. Types of electrodes and its equivalent circuits - surface, needle and micro electrodes. Recording problems - measurement with two electrodes										
UNIT II FEATURES OF BIOSIGNAL AND ELECTRODE CONFIGURATIONS										
Features of Bio-signal – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead system. EEG – unipolar, bipolar, average mode and 10-20 electrode system. EMG– unipolar and bipolar mode.										
UNIT III	BIOAMPLIFIER CIRCUITS AND ASSIST DEVICES		_		9					
Basic requirements pass filtering. A	ents for bio-amplifier - differential bio-amplifier, PLI, Right leg driven ECG ampl Assist Devices- Dialyzer, Cardiac Pacemakers, and Heart Lung Machine.	lifier,	Band	(203					
UNIT IV	MEASUREMENT OF NON-ELECTRICAL AND BIO-CHEMICAL PARA	MET	ERS		9					
Temperature, respiration rate and pulse rate measurements. Blood Pressure: indirect methods - Auscultatory method, direct methods: electronic manometer, Systolic, diastolic pressure, Blood flow and cardiac output measurement: Indicator dilution, and dye dilution method. Calorimeter, Sodium Potassium Analyzer, auto analyzer (simplified schematic description).										
UNIT V CURRENT TRENDS IN MEDICAL DEVICES										
Laser in med application, Int	icine and its applications, Thermograph – System, working, endoscopy un roduction to tele-medicine.	nit, Ci	ryogeı	nic (205					
	ТО	TAL	: 45 P	'ERI(ODS					

TEXTBOOKS

- 1. Leslie Cromwell, "Biomedical Instrumentation and measurement", Prentice hall of India, New Delhi, 2007.
- 2. John G. Webster, "Medical Instrumentation: Application and Design", John Wiley and sons, NewYork,2004.(Unit I,II&III).

- 1. MyerKutz, "Standard Handbook of Biomedical Engineering and Design", McGraw Hill Publisher, 2003.
- 2. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, NewDelhi, 2003.(Unit II&IV)
- 3. Joseph J. Carr and John M Brown, "Introduction to Biomedical Equipment Technology", Pearson Education, 2004.
- 4. Chan and Anthony Y.K, 'Biomedical Device Technology: Principles and Design'', Springfield, Illinois : Charles C. Thomas publisher Limited,2016.

Upon	Upon completion of the course, students will be able to						
CO1	To learn the different bio potentials and its propagation						
CO2	To get familiarized with different electrode placements for various physiological recording						
CO3	Fo design bio amplifiers for various physiological recording						
CO4	To understand various techniques for non-electrical and physiological measurements						
CO5	To understand the current trends in medical devices.						

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	-	1	3	-	-	1	-	-	-	-	1	
CO2	2	2	2	-	1	3	-	-	1	-	-	-	-	1	
CO3	3	3	3	-	3	3	-	-	2	-	-	-	-	1	
CO4	2	2	3	-	3	3	-	-	2	-	-	-	-	1	
CO5	2	2	3	-	3	3	-	-	2	-	-	-	-	1	

EQUINDATION OF POPOTICS	С							
$\mathbf{OEC412} \qquad \mathbf{FOUNDATION OF ROBOTICS} \qquad 3 0 0$	3							
 COURSE OBJECTIVES: To comprehend how a robot's fundamental parts work. To examine how different Ends of Effector and sensors are used. To disseminate information on programming and robot kinematics. To learn about the economics, safety, and future of robots 								
UNIT I FUNDAMENTALS OF ROBOT	9							
Robot - Definition - Robot Anatomy - Coordinate Systems, Work Envelope Types, and Classification – Specifications - Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load - Robot Parts and their Functions - Need for Robots - Different Applications.	CO1							
UNIT II SYSTEMS FOR ROBOT DRIVE AND ENDEFFECTORS	9							
Pneumatic Drives - Hydraulic Drives - Mechanical Drives - Electrical Drives - D.C. Servo Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and Comparison - End effectors - Classification, Types of Mechanical actuation, Gripper design, Robot drive system Types, Position, and velocity feedback devices - Robot joints and links - Types, Motion interpolation.	C O 2							
UNIT III SENSORS AND MACHINE VISION	9							
Sensors in robots: Touch Sensors, Tactile Sensors, Proximity, and range sensors, Force sensor, Light sensors, Pressure sensors - Triangulation Principles Structured - Lighting Approach, Time of Flight, Camera, Frame Grabber, Sensing and Digitizing Image Data - Signal Conversion, Image Storage, Lighting Techniques, Image Processing, and Analysis - Data Reduction, Segmentation, Feature Extraction, Object Recognition, Other Algorithms, Applications Inspection, Identification, Visual Serving and Navigation								
UNIT IV KINEMATICS AND PROGRAMMING FOR ROBOTS	9							
Robot kinematics – Basics of direct and inverse kinematics, Robot trajectories, 2D and 3D Transformation - Scaling, Rotation, Translation Homogeneous transformation. Control of robot manipulators – Point-to-point, Continuous Path Control, Robot programming - Introduction to Artificial Intelligence.	C O 4							
UNIT V ROBOT APPLICATIONS AND ECONOMIC IMPLEMENTATION	9							
RGV, AGV, Industrial applications of robots, Medical, Household, Entertainment, Space, Underwater, Defense, and Disaster management. Applications, Micro and Nanorobots, Future Applications Robotics adoption in Industries - Safety Considerations for Robot Operations - Economic Analysis of Robots.	C O 5							
TOTAL: 45 PERIC	ODS							

TEXTBOOKS

- 1. Klafter R.D., Chmielewski T.A, and Negin M., "Robotic Engineering An Integrated Approach", Prentice Hall, 2003.
- 2. Bruno Siciliano, Oussama Khatib, "Springer Handbook of Robotics", Springer, 2008.

- 1. Deb.S.R and Sankha Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill Publishing Company Limited, 2010.
- 2. Mikell P. Groover, Mitchell Weiss, Roger N Nagel, Nicholas G Odrey, "Industrial Robotics Technology, Programming and Applications", Tata –McGraw Hill Pub. Co., 2008.
- 3. Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.
- 4. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.

Upon	Upon completion of the course, students will be able to					
CO1	List and describe the fundamental components of industrial robots.					
CO2	Examine the kinematics and control strategies of the robot.					
CO3	To improve performance, classify the numerous robot sensors.					
CO4	Able to apply basic engineering knowledge for the design of robotics					
CO5	To list the different commercial and noncommercial uses of robots.					

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	2	2	2	-	-	-	-	2	1	1	-	
CO2	3	3	3	3	2	3	-	-	-	-	2	1	1	-	
CO3	3	2	3	3	2	2	-	-	-	-	2	1	1	-	
CO4	3	3	3	2	2	2	-	-	-	-	2	2	1	-	
CO5	3	2	3	3	2	3	-	-	-	-	2	1	1	-	

OIT 411		L	Т	Р	С			
011411	FUNDAMENTALS OF DATABASE DESIGN	3	0	0	3			
COURSE OI	BJECTIVES:							
✤ To learn t	he role of database management system in an organization and learn the database	conce	epts.					
 To unders 	tand the design databases using data modelling and data normalization techniques	5.						
✤ To constr	uct database queries using relational algebra and calculus.							
✤ To unders	tand the concept of a database transaction and related database facilities.							
To learn the basic concepts of Transactions, concurrency control techniques, and recovery procedures								
UNIT I	CONCEPTUAL MODELLING				9			
Introduction database design -Database Environment, - Data Models: Entity Relationship Model, Relational Model- Database Development Lifecycle								
UNIT II RELATIONAL MODELS								
Integrity Constraints- SQL Data Manipulation and Definition- Views- Relational Models- Hierarchical and Network								
UNIT III	INTRODUCTION TO SQL				9			
Introduction to Index-Synony	o Structured Query Language-DDL Commands-DML Commands-TCL Comm ns- Sub queries- SQL Functions-Joins-PL/SQL–simple programs	ands	-view	′s-	CO3			
UNIT IV	RELATIONAL DATABASE DESIGN AND NORMALIZATION				9			
ER and EER to relationship Model-ER DiagramsFunctional Dependencies-First, Second and Third Normal Forms-Dependency preservation								
UNIT V TRANSACTION MANAGEMENT								
Transaction Concepts- Properties- Schedules- Serializability- Concurrency Control – Two phase locking techniques								
	ТО	TAL	: 45 P	PERI (ODS			

TEXTBOOKS

1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", McGraw-Hill, 4thEdition, 2002.

- Ramez Elmasri, Shamkant B. Navathe, "Fundamental Database Systems", Pearson Education, 3rdEdition, 2003.
- Raghu Ramakrishnan, "Database Management System", Tata McGraw-Hill Publishing Company, 3rd Edition, 2003.
- 3. Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, "Database System Implementation", Pearson Education, United States, 1st Edition, 2000.
- 4. Peter Rob, Corlos Coronel, "Database System, Design, Implementation and Management", Thompson Learning Course Technology, 5th Edition, 2003.

Upon	completion of the course, students will be able to
CO1	The fundamentals of Database systems are vital components of modern information systems.

CO2	Understand the need for Databases and relational Model concepts.
CO3	Database applications all pervasive and range in size from small in-memory databases to terabytes or even larger in various applications domains.
CO4	The course focuses and the fundamentals of knowledgebase and relational database management systems, and the current developments in database theory and their practices.

CO5 Write Queries in SQL and execute multiple sub-queries, functions and joins.

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1	2	2	1	3	2	2	2	1	2	2	2	-	-	
CO2	1	2	2	1	3	2	2	2	1	2	2	2	-	-	
CO3	1	2	2	1	3	2	2	2	1	2	2	2	-	-	
CO4	1	2	2	1	3	2	2	2	1	2	2	2	-	-	
CO5	1	2	2	1	3	2	2	2	1	2	2	2	-	-	

OMA426	DESCUDCE MANACEMENT TECHNIQUES	L	Т	Р	С				
01/17420	RESOURCE MANAGEMENT TECHNIQUES	3	0	0	3				
OBJECTIVE	S								
✤ Be fa♠ Learner	niliar with resource management techniques.								
↔ Learn	derstand the concept of non-linear programming								
↔ Tour	nosed to CPM and PERT								
UNIT I	LINEAR PROGRAMMING	a a 14			9				
– Resource al	ocation problems – Simplex method – Sensitivity analysis.	solut	.1011	С	:01				
UNIT II	DUALITY AND NETWORKS				9				
Definition of	dual problem – Primal – Dual relationships – Dual simplex methods – Post op	tima	lity						
analysis – Transportation and Assignment model - Shortest route problem.					02				
UNIT III	INTEGER PROGRAMMING				9				
Cutting plan a	lgorithm – Branch and Bound methods, Multistage (Dynamic) Programming.			С	03				
UNIT IV	UNIT IV CLASSICAL OPTIMISATION THEORY								
Unconstrained external problems, Newton – Raphson method – Equality constraints – Jacobian									
methods – Lagrangian method – Kuhn – Tucker conditions – Simple problems.									
UNIT V	OBJECT SCHEDULING				9				
Network diag	am representation – Critical path method – Time charts and resource leveling –	PER	Г	С	05				
	TOTAL	: 45	PER	IO	DS				
TEXT BOOI									
1. H.A. T	aha "Operation Research", Prentice Hall of India, 2002.								
2. Paneer	Selvam "Operations Research", Prentice Hall of India, 2002								
REFERENCI	BOOKS:								
1. Anders	on "Quantitative Methods for Business", 8th Edition, Thomson Learning, 2002.								
2. Winsto	n "Operation Research", Thomson Learning, 2003.								
3. Vohra	'Quantitative Techniques in Management", Tata Mc Graw Hill, 2002.								
4. Anand	Sarma "Operation Research", Himalaya Publishing House, 2003								
COURSE OU Upon comple	TCOMES tion of the course, students will be able to								
CO1 Solve	optimization problems using simplex method.								
CO2 Solve	optimization problems using Duality concept, solve Transportation and assignm	ent r	node	ls.					
CO3 Appl	integer programming and linear programming to solve real-life applications.								
CO4 Solvi	ng Unconstrained external problems.								
CO5 Use I	ERT and CPM for problems in project management.								

	MAPPING OF COs WITH POs AND PSOs													
			PROGRAM SPECIFIC OUTCOMES (PSOs)											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2	2	2	2	1	-	-	-	1	1	1	-	3	2
CO2	2	2	2	1	1	-	-	-	1	1	-	1	2	2
CO3	2	3	2	1	1	-	-	-	2	2	-	-	1	-
CO4	2	2	2	2	1	-	-	-	1	1	1	1	2	3
CO5	2	1	2	1	1	-	-	-	2	1	1	-	3	3

-								
OEE411	RENEWABLE ENERGY SYSTEMS	L	T	P	C			
~~~~		3	0	0	3			
COURSE O	BJECTIVES: e awareness about renewable and non-renewable Energy Sources technol	logies	and	its i	mpact			
on the en	nvironment	105105	unu	105 11	inpuer			
✤ To learn	wind energy conversion system and its issues with grid integration.							
✤ To learn	the concepts of solar PV and solar thermal systems.	1						
✤ To unde	rstand the concept of tidal energy, hydrogen energy, ocean thermal energy a	and it	s sign	11f1Ca	ance.			
UNIT – I	RENEWABLE ENERGY SOURCES				9			
Convention	al energy sources- Fossil Fuels, Types of fossil fuel, Environmental consequ	uence	s of					
fossil fuel u	se, Non-Conventional energy sources- Renewable energy(RE) and its types	•	1		CO1			
Significance	es of renewable energy sources, Sustainable Design and development, Effec	ets and	1					
UNIT – II WIND ENERGY								
Wind formation, Power in the Wind – WPP (wind power plant)- Components of WPPs - Types of Wind Power Plants (WPPs)– Working of WPPs- Siting of WPPs-Grid integration issues of WPPs.C								
UNIT - III SOLAR - THERMAL SYSTEMS AND PV SYSTEMS								
Solar Radiation, Radiation Measurement, Solar Thermal system and its types, Solar Photovoltaic								
systems (SPV) : Basic Principle of SPV conversion – Types of PV Systems- Types of Solar Cells,								
Photovoltaic cell concepts: Cell, module, array, I-V Characteristics, Efficiency & Quality of the								
Cell, series and parallel connections - Applications.								
UNIT - IVBIOMASS, GEOTHERMAL AND HYDRO ENERGY SOURCES9								
Introduction	-Bio mass resources –Energy from Bio mass: conversion processes-Bioma	SS						
Cogeneratio	n-Environmental Benefits. Geothermal Energy: Basics, Direct Use, Geothe	rmal			CO4			
Electricity.	Mini/micro hydro power: Classification of hydropower schemes, Essential	comp	onent	S	04			
of hydroeled	ctric system.							
UNIT - V	OTHER ENERGY SOURCES				9			
Tidal Energ	y: Energy from the tides, Barrage and Non Barrage Tidal power systems. W	/ave I	Energ	y:				
Energy fron	waves, wave power devices. Hydrogen Production and Storage- Fuel cell various types - construction and applications.	: Prin	ciple	(	CO5			
	ТС	TAL	: 45 P	'ERI	ODS			
ТЕУТРООТ	ZS							
1 Joshua I	AD Farnest Tore Wizeliu 'Wind Power Plants and Project Development' PHI	Lear	ing F	o _{vt} I	td			
New De	lhi, 2015.	LCall	iiiig i	v t. 1	<i></i> ,			
<ol> <li>D.P.Kothari, K.C Singal, Rakesh Ranjan "Renewable Energy Sources and Emerging Technologies", PHIL earning Pyt Ltd. New Delbi 2013</li> </ol>								
REFERENCE BOOKS								
1. A.K.Mukeriee and Nivedita Thakur." Photovoltaic Systems: Analysis and Design". PHI Learning								
Private Limited, New Delhi, 2011								
2. Richard A. Dunlap," Sustainable Energy" Cengage Learning India Private Limited, Delhi, 2015.								
3. Chetan	Singh Solanki, "Solar Photovoltaics : Fundamentals, Technologies and App revive Limited New Delbi, 2011	olicati	ons",	, РН	1			
4. Bradley	A. Striebig, AdebayoA.Ogundine and Maria Panadakis "Engineering Ann	licatio	ons in					
Sustaina	ble Design and Development", Cengage Learning India Private Limited, D	elhi, 2	2016.					

Upon	completion of the course, students will be able to
CO1	Ability to create awareness about non- renewable and renewable Energy Sources and technologies
CO2	Acquire knowledge on the concepts of wind energy conversion system, siting and grid related issues.
CO3	Ability to understand the solar PV and solar thermal systems
CO4	Ability to analyze other types of renewable energy resources like biomass, geothermal and Hydro energy.
CO5	Ability to Acquire knowledge on tidal energy, hydrogen energy, ocean thermal energy and fuel cell.

COs	Os										PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	1	1	3	3	3	1	1	1	3	1	1
CO2	3	3	3	3	3	3	3	3	3	1	3	3	1	1
CO3	3	3	3	3	3	3	3	3	3	1	3	3	1	1
CO4	3	3	3	3	3	3	2	3	3	1	2	3	1	1
CO5	3	3	3	3	3	3	2	3	3	1	2	3	1	1

#### **GRAPH THEORY AND ITS APPLICATIONS**

L	Т	Р	С
3	0	0	3

### **OBJECTIVES**

- ◆ To introduce the basic notions of graphs and trees which will then be used to solve related problems.
- To introduce and apply the concepts of trees, connectivity and planarity.
- ✤ To understand the basic concepts of colouring in graph theory.
- ✤ To understand the basic concepts of permutations and combinations.
- To acquaint the knowledge of recurrence relations and generating function.

#### UNIT I 9 INTRODUCTION OF GRAPHS Graphs - Introduction - Isomorphism - Sub graphs - Walks, Paths, Circuits - Connectedness -Components - Euler graphs - Hamiltonian paths and circuits - Trees - Properties of trees - Distance and **CO1** centers in tree – Rooted and binary trees. UNIT II 9 TREES, CONNECTIVITY AND PLANARITY Spanning trees – Fundamental circuits – Spanning trees in a weighted graph – cut sets – Properties of cut set – All cut sets – Fundamental circuits and cut sets – Connectivity and separability – Network flows – 1-CO₂ Isomorphism – 2-Isomorphism – Combinational and geometric graphs – Planer graphs – Different representation of a planer graph. MATRICES, COLOURING AND DIRECTED GRAPH **UNIT III** 9 Chromatic number – Chromatic partitioning – Chromatic polynomial – Matching – Covering – Four color problem – Directed graphs – Types of directed graphs – Digraphs and binary relations – Directed paths and **CO3** connectedness – Euler graphs. UNIT IV 9 PERMUTATIONS AND COMBINATIONS Fundamental principles of counting - Permutations and combinations - Binomial theorem - combinations with repetition - Combinatorial numbers - Principle of inclusion and exclusion - Derangements -**CO4** Arrangements with forbidden positions. UNIT V **GENERATING FUNCTIONS** 9 Generating functions - Partitions of integers - Exponential generating function – Summation operator -Recurrence relations - First order and second order – Non-homogeneous recurrence relations - Method of **CO5** generating functions.

### **TOTAL : 45 PERIODS**

### **TEXT BOOKS**

1. Narsingh Deo, "Graph Theory: With Application to Engineering and Computer Science", Prentice Hall of India, 2003.

2. Grimaldi R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", Addison Wesley, 1994.

#### **REFERENCE BOOKS**

1. Clark J. and Holton D.A, "A First Look at Graph Theory", Allied Publishers, 1995.

 Mott J.L., Kandel A. and Baker T.P. "Discrete Mathematics for Computer Scientists and Mathematicians", Prentice Hall of India, 1996.

3. Liu C.L., "Elements of Discrete Mathematics", Mc Graw Hill, 1985.

4. Rosen K.H., "Discrete Mathematics and Its Applications", Mc Graw Hill, 2007.

#### **COURSE OUTCOMES**

#### Upon completion of the course, students should be able to

CO1	Write precise and accurate mathematical definitions of objects in graph theory.
CO2	Use mathematical definitions to identify and construct examples and to distinguish examples from non - examples.
CO3	Validate and critically assess a mathematical proof.
CO4	Use a combination of theoretical knowledge and independent mathematical thinking in creative investigation of questions in graph theory.
CO5	Reason from definitions to construct mathematical proofs.

	MAPPING OF COs WITH POs AND PSOs														
COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	2	1	1	1	2	1	1	1	_	2	-	
CO2	3	3	2	1	1	1	-	2	1	1	-	1	2	-	
CO3	2	3	2	1	2	1	-	1	2	2	-	_	2	-	
CO4	3	2	2	2	1	1	-	2	1	1	1	1	2	-	
CO5	3	3	2	1	1	1	1	1	2	1	1	_	2	-	

040422		L	Т	Р	С		
UAD452	DEEP LEAKNING	3	0	0	3		
COURSE O	BJECTIVES:				-		
<ul> <li>To under</li> </ul>	stand the basic ideas and principles of neural networks.						
✤ To under	stand the basic concepts of deep learning.						
<ul> <li>To appre</li> </ul>	ciate the use of deep learning applications.						
UNIT I	BASICS OF NEURAL NETWORKS				9		
Basic Concept of Neurons – Perceptron Algorithm – Feed Forward and Backpropagation Networks.							
UNIT II	INTRODUCTION TO DEEP LEARNING				9		
Deep Feed-Forward Neural Networks – Gradient Descent – Back-Propagation and Other Differentiation Algorithms – Vanishing Gradient Problem – Mitigation – Rectified Linear Unit (ReLU) – Heuristics for Avoiding B ad Local Minima – Heuristics for Faster Training – Nestors Accelerated Gradient Descent – Regularization for Deep Learning – Dropout – Adversial Training – Optimization for Training Deep Models.							
UNIT III	CONVOLUTIONAL NEURAL NETWORKS				9		
CNN Architec Learning – R Recursive Net	ctures – Convolution – Pooling Layers – Transfer Learning – Image Classification u eccurrent and Recursive Nets – Recurrent Neural Networks – Deep Recurrent ural Networks – Applications.	sing 7 Netv	ſransf vorks	ier – (	CO3		
UNIT IV	UNSUPERVISED DEEP LEARNING				9		
Autoencoders Generative Ne	– Standard – Sparse – Denoising – Contractive – Variational Autoencoders tworks - Deep Boltzmann Machine (DBM).	s-Adv	ersari	al (	C <b>O</b> 4		
UNIT V	APPLICATIONS OF DEEP LEARNING				9		
Images segmentation – Object Detection – Multi class Object Detection - Object Classification and Localization- Automatic Image Captioning – Image generation with Generative adversarial networks– Opinion Mining using Recurrent Neural Networks – Parsing and Sentiment Analysis using Recursive Neural Networks – Sentence Classification using Convolutional Neural Networks – Dialogue Generation with LSTMs							
	ТО	TAL	: 45 P	PERI	ODS		

### TEXTBOOKS

- 1. Ian J. Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2017.
- 2. Francois Chollet, "Deep Learning with Python", Manning Publications, 2018

- 1. Phil Kim, "Matlab Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence", Apress, 2017.
- 2. Ragav Venkatesan, Baoxin Li, "Convolutional Neural Networks in Visual Computing", CRC Press, 2018.
- 3. Navin Kumar Manaswi, "Deep Learning with Applications Using Python", Apress, 2018.
- 4. Joshua F. Wiley, "R Deep Learning Essentials", Packt Publications, 2016.
- 5. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.

COUL	SE OU LEOMES	
Upon	completion of the course, students will be able to	
CO1	Understand the role of deep learning in machine learning applications.	
CO2	Design and implement deep learning applications.	
CO3	Critically analyze different deep learning models in image related projects.	
CO4	Design and implement convolutional neural networks.	
CO5	Know about applications of deep learning in NLP and image processing.	
	MAPPING OF COs WITH POs AND PSOs	
		PROGRAM

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	1	2	1	3	2	2	2	1	3	2	1	1	-	
CO2	2	1	2	1	3	2	2	2	1	3	2	1	1	-	
CO3	2	1	2	1	3	2	2	2	1	3	2	1	1	-	
CO4	2	1	2	1	3	2	2	2	1	3	2	1	1	-	
CO5	2	1	2	1	3	2	2	2	1	3	2	1	1	-	

					a		
OEC411	IOT CONCEPTS AND APPLICATIONS	L	Т	Р	С		
		3	0	0	3		
COURSE O	BJECTIVES:						
<ul> <li>To apprise</li> <li>of IOT.</li> </ul>	se students with basic knowledge of IoT that paves a platform to understand physi	cal ar	ıd logi	cal de	esign		
<ul> <li>To teach design of</li> </ul>	a student how to analyze requirements of various communication models and proto IOT applications on different IoT platforms.	ocols f	or cos	t-effe	ctive		
✤ To introd	uce the technologies for implementing Internet of Things (IoT).						
UNIT I	INTRODUCTION TO INTERNET OF THINGS				9		
Definition of IoT - Characteristics of IoT – Evolution of IoT– Study of IoT Enabling Technologies – Architecture of IoT based Systems – Fog, Applications of Cloud and Edge in IoT							
UNIT II IOT COMPONENTS							
Functional blocks of an IoT ecosystem – Sensors, Actuators, Smart Objects and Connecting Smart Objects - IoT levels and deployment templates. Study of Communication Modules – Wifi, Bluetooth, GSM. Zigbee.							
UNIT III	IoT PROTOCOLS				9		
IoT Access Te Security of IE Introductory c	echnologies: Physical Layer of IoT and MAC layer concepts of IoT, Architecture, EE 802.15.4 Network Layer: IP versions, Optimizing IP for IoT: IPv6, 6LoWPAN concepts of cloud computing.	topolo I, MQ	ogy an TT.	d C	203		
UNIT IV	TOOLS FOR IOT IMPLEMENTATION				9		
Introduction to lab - Introducti through embed	Python, Basic programming concepts of Python, Python development tools like on to different IoT tools, Applications development through IoT tools, Sensor base ided system platform-devlopment, Implementation of IoT techniques using Python	Jupyt d app 1.	er, Co licatio	n C	CO4		
UNIT V	IOT BASED APPLICATIONS				9		
Various appli Environment	ications of IoT based in Home automations – Design of IoT in Smart cities – Imp – Case study of IoT based system in Logistics – Agriculture – Industry - Health and	oleme nd life	nting i style	in . C	CO5		
	ТО	TAL	: 45 P	ERIC	DDS		

#### TEXTBOOKS

- 1. Robert Barton, Patrick Grossetete, David Hanes, Jerome Henry, Gonzalo Salgueiro, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", CISCO Press, 2017.Bruno Siciliano, Oussama Khatib, "Springer Handbook of Robotics", Springer, 2008.
- 2. Samuel Greengard, The Internet of Things, The MIT Press, 2015

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Key applications and Protocols", Wiley, 2012
- 2. IOT (Internet of Things) Programming: A Simple and Fast Way of Learning, IOT Kindle Edition.
- 3. Dieter Uckelmann, Mark Harrison, Florian Michahelles, "Architecting the Internet of Things" Springer-Verlag Berlin Heidelberg, 2011.
- 4. Arshdeep Bahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015.

# COURSE OUTCOMES Upon completion of the course, students will be able to

CO1	Explain the concept of IoT.								
CO2	Analyze the networking and sensors communications with IoT Components								
CO3	Understand the communication models and various protocols for IoT.								
CO4	Analyze and design different models for IoT implementation.								
CO5	Analyze applications of IoT in real time scenario.								
	MAPPING OF COs WITH POs AND PSOs								
COs	PROGRAM OUTCOMES (POs)	PROGRAM SPECIFIC OUTCOMES (PSOs)							

COS	-												JU I)	,,,,
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2	2	1	-	-	-	-	-	2	3	-	-
CO2	2	2	2	2	1	-	-	-	-	-	2	3	-	-
CO3	2	2	2	3	1	-	-	-	-	-	2	3	-	-
CO4	2	1	3	3	1	-	-	-	-	-	2	3	-	-
CO5	3	1	3	3	2	-	-	-	-	-	2	3	-	-

<b>OAD422</b>	

#### DATA SCIENCE FUNDAMENTALS

L	Т	Р	С
3	0	0	3

9

9

9

9

9

#### **COURSE OBJECTIVES:**

- $\bullet \quad \text{To learn the role of data science in big data }$
- ✤ To understand the tables and graphs describing data with averages.
- To form the relationship for organizing correlation cooeficient for quantitative data.
- ✤ To understand the concept dependency preservation and ER diagrams
- To learn the basic concepts of visualization with MAT PLOT LIB

### UNIT I DATA SCIENCE IN BIG DATA

Data Science: Benefits and uses – facets of data - Data Science Process: Overview – Defining research goals – Retrieving data – Data preparation - Exploratory Data analysis – build the model– presenting findings and building applications.

#### UNIT II DESCRIBING DATA

Types of Data - Types of Variables -Describing Data with Tables and Graphs –Describing Data with Averages - Describing Variability - Normal Distributions and Standard (z) Scores CO2

### UNIT III RELATIONSHIPS FOR ORGANIZING

Correlation –Scatter plots –correlation coefficient for quantitative data –computational formula for correlation coefficient – Regression –regression line –least squares regression line – Standard error of estimate.

#### UNIT IV PYTHON MAGIC COMMANDS

ER and EER to relationship Model-ER Diagrams- -Functional Dependencies-First, Second and Third Normal Forms-Dependency preservation CO4

### UNIT V VISUALIZATION WITH MAT PLOT LIB

Importing Matplotlib – Line plots – Scatter plots – visualizing errors – density and contour plots – CO5 Histograms – legends – colors – subplots – text and annotation – three dimensional plotting - Visualization with Seaborn.

#### **TOTAL: 45 PERIODS**

#### TEXTBOOKS

- 1. David Cielen, Arno D.B.Meysman, andMohamedAli, "IntroducingDataScience" Manning Publications, 2016. (Unit I)
- 2. Robert S.Witteand John S.Witte, "Statistics", Eleventh Edition, Wiley Publications, 2017. (Units II and III)

#### **REFERENCE BOOKS**

1. Jake Vander Plas, "Python DataScience Handbook", O'Reilly, 2016. (Units IV and V)

Г

Upon	completion of the course, students will be able to
CO1	Define the data science process
CO2	Understand different types of data description for data science process
CO3	Apply data processing methods for processing health care data.
CO4	Use the Python Libraries for Data Wrangling
CO5	Apply visualization Libraries in Python to interpret and explore data

#### MAPPING OF COs WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1	3	2	2	1	2	2	2	1	1	1	2	-	-	
CO2	1	3	2	2	1	2	2	2	1	1	1	2	-	-	
CO3	1	3	2	2	1	2	2	2	1	1	1	2	-	-	
CO4	1	3	2	2	1	2	2	2	1	1	1	2	-	-	
CO5	1	3	2	2	1	2	2	2	1	1	1	2	-	-	

<b>OEE423</b>	CONTROL SYSTEMS	L	Т	Р	С
		3	0	0	3
OBJECTIVES ★ To und system ★ To pro ★ To acc ★ To intr ★ To intr	S lerstand the use of transfer function models for analysis physical systems and components. vide adequate knowledge in the time response of systems and steady state error ord basic knowledge in obtaining the open loop and closed–loop frequency resp oduce stability analysis and design of compensators oduce state variable representation of physical systems	intro anal onse	oduce ysis. es of	e the o	control ns.
UNIT – I	SYSTEMS AND REPRESENTATION				9
Basic elements thermal system Signal flow gra	in control systems: – Open and closed loop systems – Electrical analogy of me as – Transfer function – AC and DC servomotors – Block diagram reduction aphs.	echa tech	nical miqu	and es –	CO1
UNIT – II	TIME RESPONSE				9
Time response coefficients – C –Time response	– Time domain specifications – Types of test input – I and II order system resp Generalized error series – Steady state error – Effects of P, PI, PID modes of feed e analysis.	oons dbac	e – E k coi	Error ntrol	CO2
UNIT – III	FREQUENCY RESPONSE				9
Frequency resp response - Corr	bonse: – Bode plot – Polar plot – Determination of closed loop response fro relation between frequency domain and time domain specifications	m o	pen	loop	CO3
UNIT – IV	STABILITY AND COMPENSATOR DESIGN				9
Characteristics of Lag, lead an	equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance crid lag-lead compensation on frequency response.	iteria	a - Et	ffect	CO4
UNIT – V	STATE VARIABLE ANALYSIS				9
Concept of stat equation in cor	e variables – State models for linear and time invariant Systems – Solution of sta trollable canonical form – Concepts of controllability and observability.	ite ai	nd ou	itput	CO5
	ΤΟΤΑΙ	. PE	RIO	DS:	45
TEXT BOOK	8:				
1.Nagarath, I.J. 2.Katsuhiko Og	and Gopal, M., "Control Systems Engineering", New Age International Publish gata, "Modern Control Engineering", Pearson, 2015.	iers,	2017		
REFERENCE	BOOKS:				
1. Benjamin C.	Kuo, "Automatic Control Systems", Wiley, 2014.				
2. Richard C.D	orf and Bishop, R.H., "Modern Control Systems", PearsonEducation,2009.				
3. John J.D., Az	zzo Constantine, H. and Houpis Sttuart, N Sheldon, "Linear Control System Ana	lysis	and	Desig	;n with
4 Rames C P	to raylor& Francis Reprint2009. anda and T. Thyagarajan, "An Introduction to Process Modelling Identifies	ntion	and	Con	trol of

Engineers", Narosa Publishing House, 2017.5. M.Gopal, "Control System: Principle and design", McGraw Hill Education, 2012.

6. NPTEL Video Lecture Notes on "Control Engineering "by Prof. S. D. Agashe, IIT Bombay.

Course Outcomes (CO) Upon completion of the course, students will be able to:									
CO1	Ability to develop various representations of system and to reduce the complex systems into simpler system in transfer function.								
CO2	Ability to do time domain analysis of various models of linear system and understand the use of controllers in closed loop system								
CO3	Ability to do frequency domain analysis of various models of linear system								
CO4	Infer the stability of systems and ability to design appropriate compensator for the given specifications								
C05	Ability to represent the system in state variable forms.								

COs			PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	2	2	1	2	2	3	2	-	-
CO2	3	3	3	3	3	2	2	1	2	2	3	2	-	-
CO3	3	3	3	3	3	2	2	1	2	2	3	2	-	-
CO4	3	3	3	3	3	2	2	1	2	2	3	2	-	-
CO5	3	3	3	3	3	2	2	1	2	2	3	2	-	-

OFF/21	ELECTDIC AND HVRDID VEHICLE	L	Т	Р	С							
OEE421	ELECTRIC AND ITTORID VEHICLE	0	0	3								
<ul> <li>OBJECTIVES</li> <li>To provide knowledge of the operation and dynamics of electrical vehicles</li> <li>To impart knowledge on vehicle control for standard drive cycles of electrical vehicles (EVs)</li> <li>To estimate the energy requirement of EVs and Hybrid Electric Vehicles (HEVs)</li> <li>To provide knowledge about different energy sources and energy management in HEVs.</li> <li>To provide knowledge of supervisory control of EVs</li> </ul>												
UNIT - I	INTRODUCTION TO CONVENTIONAL AND ELECTRIC VEHICLES				9							
Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics. Electric Vehicle: EV system- Series parallel architecture of Hybrid Electric Vehicles (HEV) - Plug-in Hybrid Electric Vehicles (PHEV)- Power train components and sizing, Gears, Clutches, Transmission and Brakes.												
UNIT - II	MECHANICS OF ELECTRIC VEHICLES			9	9							
Fundamentals of vehicle mechanics - tractive force, power and energy requirements for standard drive cycles of EV's - motor torque and power rating and battery capacity.												
UNIT - III	CONTROL OF DC AND AC MOTOR DRIVES			9	9							
Speed control for constant torque, constant HP operation of all electric motors - DC/DC chopper based four quadrant operation of DC motor drives, inverter based V/f Operation (motoring and braking) of induction motor drives, Construction and operation of PMSM, Brushless DC motor drives, Switched reluctance motor (SRM) drives.												
UNIT - IV ENERGY STORAGE AND MANAGEMENT SYSTEMS												
Battery: Principle of operation, types, models, Estimation of SOC & SOH, Traction Batteries and their capacity for standard drive cycles. Alternate sources: Fuel cells, Ultra capacitors, Fly wheels.												
UNIT - V	UNIT - V HYBRID VEHICLE CONTROL STRATEGY											
HEV supervisory control - Selection of modes - power spilt mode - parallel mode - engine brake mode - regeneration mode - series parallel mode.												
	TOTAL P	ERIC	DDS:	4	5							
TEXT BOO	KS:											
<ol> <li>M. Ehsani,</li> <li>Fundamentals</li> <li>Iqbal Husa</li> <li>Washington,</li> </ol>	Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell V s, Theory, and Design", CRC Press, 2004. in, "Electric and Hybrid vehicles: Design fundamentals", CRC PRESS, Boca Raton L D.C,2005.	ehicle	es: n, Ne	w Yo	ork							
REFERENC	E BOOKS:P											
1. C. Mi, M Perspective	A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applicat: es", John Wiley & Sons, 2011.	ions v	with ]	Pract	ical							

- S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.
   Larminie, James and John Lowry, "Electric Vehicle Technology Explained" John Wiley and Sons, 2012.
   Tariq Muneer and Irene Illescas García, "The automobile, In Electric Vehicles: Prospects and Challenges", Elsevier, 2017.

COURSE OUTCOMES (CO) Upon completion of the course, students will be able to									
CO1	Learned the significance of Electric Vehicle compared to conventional vehicles.								
CO2	Understood the concept of mechanics of Electric Vehicles.								
CO3	Acquired the knowledge in control of DC And AC motor drives.								
CO4	Concepts related to battery technology and energy storage systems are analysed.								
CO5	Acquired knowledge in control strategy for Hybrid Vehicle & Battery management systems for EV								

C	COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)	
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
	CO1	3	2	3	1	3	2	2	3	3	2	1	3	2	1	
	CO2	3	2	3	3	3	2	2	3	3	2	1	2	2	1	
	CO3	3	3	3	3	2	2	2	3	2	2	2	3	2	1	
	CO4	3	2	3	3	3	3	3	3	3	3	2	3	2	1	
	CO5	3	2	2	2	3	3	3	3	3	3	2	3	2	1	
OME422	A DDITINE MANUEA CTUDINC	L	Т	Р	С											
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------	------------	---	----	--	--	--	--							
OME423	ADDITIVE MANUFACTORING	3	0	0	3											
OBJECTIV	ES stand the need for rapid prototyping. Instrate the design tools for additive manufacturing state principle and operation of Photo polymerization and Powder Bed Fusion. In the working of extrusion and sheet lamination processes. arize the influence of concentrated beam on additive manufacturing															
UNIT I	INTRODUCTION			9	9											
Overview - Need - Development of Additive Manufacturing Technology -Principle – AM Process Chain- Classification – Rapid Prototyping- Rapid Tooling – Rapid Manufacturing – Applications - Benefits – Case studies.																
UNIT II DESIGN FOR ADDITIVE MANUFACTURING																
Design tools: Data processing - CAD model preparation – Part orientation and support structure generation – Model slicing – Tool path generation- Design for Additive Manufacturing: Concepts and objectives - AM unique capabilities – DFAM for part quality improvement.																
UNIT III	PHOTOPOLYMERIZATION AND POWDER BED FUSION PROCESSES				9											
Photopolyme Fusion: SLS- Application. I	rization: SLA-Photo curable materials – Process - Advantages and Applications. Pow Process description – powder fusion mechanism – Process Parameters – Typical Mate Electron Beam Melting.	vder erials	Bed and	С	03											
UNIT IV	EXTRUSION-BASED AND SHEET LAMINATION PROCESSES				9											
Extrusion Ba Bioextrusion.	sed System: FDM-Introduction – Basic Principle – Materials – Applications and Limi Sheet Lamination Process:LOM - Gluing or Adhesive bonding – Thermal bonding	itatio	ns –	С	04											
UNIT V PRINTING PROCESSES AND BEAM DEPOSITION PROCESSES																
Droplet formation technologies – Continuous mode – Drop on Demand mode –Three Dimensional Printing – Advantages – Bio-plotter - Beam Deposition Process: LENS- Process description – Material delivery – Process parameters – Materials – Benefits – Applications																
TOTAL: 45 PERIOI																

# TEXTBOOKS

1 Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third edition, World Scientific Publishers, 2010.

2 Ian Gibson, David W.Rosen, Brent Stucker "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing" Springer, 2010.

#### **REFERENCE BOOKS**

1 Andreas Gebhardt "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing" Hanser Gardner Publication 2011.

2 Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.

3 Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications : A tool box for prototype development", CRC Press, 2007.

COUF Upon	COURSE OUTCOMES Upon completion of the course, students will be able to						
CO1	Summarize the need for Additive manufacturing.						
CO2	Explain the working of design tools in AM product making						
CO3	Distinguish photo polymerization and PBF processes						
CO4	Compare working benefits of extrusion and sheet lamination processes						
CO5	Discuss the effect of drop/beam deposition in AM.						

COs				PI	ROGRA	AM OU	TCOM	IES (P	Os)				PROC SPEC OUTC (PS	GRAM CIFIC COMES SOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	-	2	-	-	2	3	1	1	-	-	1	3	1
CO2	3	-	2	-	-	2	3	1	1	-	-	1	3	1
CO3	3	-	2	-	-	2	2	1	1	-	-	1	3	1
CO4	3	-	2	-	-	2	2	1	1	-	-	1	3	1
CO5	3	-	2	-	2	2	2	1	1	-	-	1	3	1

	1	L	Т	Р	С				
OME427	REVERSE ENGINEERING	3	0	0	3				
OBJECTIVE	2S				L				
To im engine	part knowledge to the students about the need for and the various tools required for reverse engineering.	vers	e	_					
UNIT I	INTRODUCTION				5				
Scope and tas	sks of RE - Domain analysis- process of duplicating			C	01				
UNIT II	TOOLS FOR RE								
Functionality model - sol	- dimensional- developing technical data - digitizing techniques - construction of id-part material- characteristics evaluation - software and application-prototy	sur /pir	face 1g -	C	02				
UNIT III	CONCEPTS				12				
History of Re Verification-	verse Engineering – Preserving and preparation for the four-stage process – Evaluat Technical Data Generation, Data Verification, Project Implementation.	ion	and	C	03				
UNIT IV	DATA MANAGEMENT				10				
Data reverse	engineering – Three data Reverse engineering strategies – Definition – organizati	on	data						
issues - Softw	vare application – Finding reusable software components – Recycling real-time em	bed	lded						
software – De	esign experiments to evaluate a Reverse Engineering tool – Rule based detection for	rev	erse	C	04				
Engineering u	user interfaces – Reverse Engineering of assembly programs: A model based approa	ach	and						
its logical bas	sics								
UNIT V	INTEGRATION				10				
Cognitive ap	proach to program understated - Integrating formal and structured methods in	rev	erse						
engineering -	- Integrating reverse engineering, reuse and specification tool environments to	rev	erse		~ -				
engineering -	-coordinate measurement - feature capturing - surface and solid members			C	05				
	TOTAL	: 45	<b>; PE</b>	RIO	DS				
TEXTROO	KS								
1 Povorco En	aincoring Linda Wills Kluiver Academic Publishers 1006.6 White paper on PE								
2 Reverse En	gineering, Einda wins, Kuiver Academic Fublishers, 1990 0. winte paper on RE								
2. Reverse Eng									
REFERENC	CE BOOKS								
1. Co-ordinate	Measurement and reverse engineering, Donald R. Honsa, ISBN 1555897, American C	Bear	•						
2 Data Povor	se Engineering Aiken Peter McGraw-Hill 1006								

- 3. Design Recovery for Maintenance and Reuse, T J Biggerstaff, IEEE Corpn. July 1991
- 4. S. Rugaban, Technical Report, Georgia Inst. of Technology, 1994

COUF	COURSE OUTCOMES							
Upon completion of the course, students will be able to								
CO1	Understand the basic principles of reverse engineering							
CO2	Select the suitable tools and methodology for reverse engineering any product							
CO3	Generate Technical Data and verify							
CO4	Manage the data with different tools							
CO5	Integrate the reverse engineering							

COs	PROGRAM OUTCOMES (POs)							PROGRAM SPECIFIC OUTCOMES (PSOs)						
COS	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	3	-	-	-	-	-	-	3	3	-	-
CO2	3	3	-	3	-	-	-	-	-	-	3	3	-	-
CO3	3	3	-	3	-	-	-	-	-	-	3	3	-	-
CO4	3	3	_	3	-	_	-	-	-	-	3	3	-	-
CO5	3	3	-	3	-	-	-	-	-	-	3	3	-	-

**OMB413** 

#### **DIGITAL MARKETING**

9

9

9

9

9

#### **OBJECTIVES**

- The primary objective of this module is to examine and explore the role and importance of digital marketing in today's rapidly changing business environment.
- It also focusses on how digital marketing can be utilised by organisations and how its effectiveness can measured.

# UNIT I INTRODUCTION TO DIGITAL MARKETING

Online Market space- Digital Marketing Strategy- Components -Opportunities for building Brand- Website - Planning and Creation- Content Marketing.

# UNIT II SEARCH ENGINE OPTIMISATION

Search Engine optimization - Keyword Strategy - SEO Strategy - SEO success factors -On-Page Techniques - Off-Page Techniques. Search Engine Marketing- How Search Engine works- SEM components- PPC advertising -Display Advertisement.

# UNIT III E-MAIL MARKETING

E- Mail Marketing - Types of E- Mail Marketing - Email Automation - Lead Generation – Integrating Email with Social Media and Mobile- Measuring and maximising email campaign effectiveness. Mobile Marketing- Mobile Inventory/channels- Location based; Context based; Coupons and offers, Mobile Apps, Mobile Commerce, SMS Campaigns-Profiling and targeting.

## UNIT IV SOCIAL MEDIA MARKETING STRATEGIES

Social Media Marketing - Social Media Channels- Leveraging Social media for brand conversations and buzz .Successful /benchmark Social media campaigns. Engagement Marketing- Building Customer relationships - Creating Loyalty drivers - Influencer Marketing.

# UNIT V BRAND PERFORMANCE

Digital Transformation & Channel Attribution- Analytics- Ad-words, Email, Mobile, Social Media, Web Analytics - Changing your strategy based on analysis- Recent trends in Digital marketing.

# **TOTAL : 45 PERIODS**

#### **TEXT BOOKS**

1.Fundamentals of Digital Marketing by Puneet Singh Bhatia; Publisher: Pearson Education; First edition 2017.2.Digital Marketing by Vandana Ahuja; Publisher: Oxford University Press (April 2015)

- 1. Marketing 4.0: Moving from Traditional to Digital by Philip Kotler; Publisher: Wiley; 1st edition 2017
- 2. Ryan, D. (2014). Understanding Digital Marketing: Marketing Strategies for Engaging the Digital Generation, Kogan Page Limited.
- 3. Pulizzi, J Beginner's Guide to Digital Marketing, Mcgraw Hill Education.
- 4. Barker, Barker, Bormann and Neher(2017), Social Media Marketing: A Strategic Approach, 2E South-Western, Cengage Learning.

COUR	<b>RSE OUTCOMES</b>						
Upon	Upon completion of the course, students will be able to:						
CO1	To examine and explore the role and importance of digital marketing in today's rapidly changing business environment.						
CO2	To focusses on how digital marketing can be utilised by organisations and how its effectiveness can measured.						
CO3	To know the key elements of a digital marketing strategy						
CO4	To study how the effectiveness of a digital marketing campaign can be measured						
CO5	To demonstrate advanced practical skills in common digital marketing tools such as SEO, SEM, Social media and Blogs.						

COs	PROGRAMME OUTCOMES (POs)									PROC SPEC OUTC (PS	ROGRAM SPECIFIC UTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	1	3	3	1	1	2	1	3	1	-	2
CO2	-	-	-	1	3	1	1	2	1	1	1	1	-	2
CO3	-	-	-	2	1	1	2	1	3	1	1	2	-	2
CO4	-	-	-	2	3	3	2	1	1	1	3	2	-	2
CO5	-	-	-	1	2	2	2	3	1	1	2	2	-	2

					-					
	A DTIELCIAL INTELLICENCE AND MACHINELEADNING	L	Т	Р	С					
UAD414	AKTIFICIAL INTELLIGENCE AND MACHINE LEARNING	3	0	0	3					
COURSE	OBJECTIVES:									
✤ To pro	vide a strong foundation on fundamental concepts in Artificial Intelligence.									
✤ To ena	ble Problem-solving through various searching techniques.									
<ul> <li>Introduce Machine Learning and supervised learning algorithms</li> </ul>										
<ul> <li>Study a</li> </ul>	about ensembling and unsupervised learning algorithms									
<ul> <li>To app</li> </ul>	ly Artificial Intelligence techniques primarily for machine learning.									
UNIT I INTRODUCTION TO AI AND SEARCHING										
Introduction to AI - AI Applications - Problem solving agents – search algorithms – uninformed search strategies – Heuristic search strategies: A* algorithm – Game Playing: Alpha Beta Pruning – constraint satisfaction problems (CSP).										
UNIT II KNOWLEDGE REPRESENTATION										
Knowledge-based agents – propositional logic – propositional theorem proving – propositional model checking – agents based on propositional logic. First-order logic – forward chaining – backward chaining – (										
UNIT III	SUPERVISED LEARNING				9					
Introductior Bayesian lir discriminati classifier	n to machine learning – Linear Regression Models: Least squares, single & multiplear regression, gradient descent, Linear Classification Models: Discriminant function ve model - Logistic regression, Probabilistic generative model – Naive Bayes, Maxi	ple va Proba mum	riable abilist marg	s, ic in	C <b>O</b> 3					
UNIT IV	ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING				9					
Combining multiple learners: Model combination schemes, Voting, Ensemble Learning - bagging, boosting, stacking, Unsupervised learning: K-means, Instance Based Learning: KNN, Gaussian mixture models and Expectation maximization										
UNIT V	INTELLIGENCE AND APPLICATIONS				9					
Natural language processing-Morphological Analysis-Syntax analysis -Semantic Analysis-Ail applications – Language Models - Information Retrieval – Information Extraction – Machine Translation – Machine Learning - Symbol-Based – Machine Learning: Connectionist – Machine Learning.										
	ТО	TAL	: 45 P	ERI	ODS					

## TEXTBOOKS

- 1. Stuart Russell and Peter Norvig, "Artificial Intelligence A Modern Approach", Fourth Edition, Pearson Education, 2021.
- 2. Elaine Rich and Kevin Knight, —Artificial Intelligencel, Third Edition, Tata McGraw-Hill, 2010.
- 3. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Fourth Edition, 2020.

- 1. Dan W. Patterson, "Introduction to Artificial Intelligence and Expert Systems", Pearson Education, 2007
- 2. Kevin Night, Elaine Rich, and Nair B., "Artificial Intelligence", McGraw Hill, 2008
- 3. Patrick H. Winston, "Artificial Intelligence", Third Edition, Pearson Education, 2006
- 4. Deepak Khemani, "Artificial Intelligence", Tata McGraw Hill Education, 2013
- 5. Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 6. Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.
- 7. Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014
- 8. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.

# **COURSE OUTCOMES**

Upon	comple	tion of	the cou	ırse, stu	idents	will be	able to							
CO1	Use ap	propriat	e searc	h algori	thms fo	or proble	em solv	ing						
CO2	Provide	e a basio	c expos	ition to	the goa	ls and r	nethods	s of Arti	ificial I	ntelliger	nce.			
CO3	Build s	Build supervised learning models												
CO4	Build e	nsembl	ing and	unsupe	rvised	models								
CO5	Improv with m	e probl achine	em solv learning	ring skil g.	ls using	g the ac	quired l	knowled	lge in t	he areas	of natu	ıral lang	guage pro	ocessing
				MA	PPING	OF C	Os WI	ГН РО	s AND	PSOs				
COs					PRO	GRAM	I OUT	COME	S (POs	)			PROG SPEC OUTC (PS	RAM CIFIC OMES Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2	1	3	2	2	2	1	3	2	1	1	1
CO2	2	1	2	1	3	2	2	2	1	3	2	1	1	1
CO3	2	1	2	1	3	2	2	2	1	3	2	1	1	1
CO4	2	1	2	1	3	2	2	2	1	3	2	1	1	1
<b>GO7</b>	2	1	2	1	3	2	2	2	1	3	2	1	1	1

005422	MACHINE I FARNING TECHNIQUES	L	Т	Р	С
003422	MACHINE LEAKING TECHNIQUES	3	0	0	3
COURSE * To * To * To * To * To no	<b>OBJECTIVES:</b> o understand the basic concepts of machine learning and probability theory. o learn the supervised learning and their algorithms. o understand unsupervised learning like clustering. o understand the theoretical and practical aspects of probabilistic graphical models. o learn other learning aspects such as reinforcement learning, representation learning, o etworks and other technologies.	leep	learni	ing, n	eural
UNIT I	INTRODUCTION				9
Machine Le Concepts in Algorithms Algorithm	earning – Types of Machine Learning – Supervised Learning – Unsupervised Learning n Machine Learning – Machine Learning Process – Weight Space – Testing Mac – A Brief Review of Probability Theory –Turning Data into Probabilities – Candida	ng chine ate E	– ] Lea limin	Basic rning ation	CO1
UNIT II	SUPERVISED LEARNING				9
Linear Mod Regression Trees – Rar	lels for Regression – Bayesian Linear Regression – Common Regression Algorithms – – Multiple Linear Regression –Common Classification Algorithms – k-Nearest Neighl adom Forest model – Support Vector Machines	- Sim bors -	ple L – Dec	inear cision	CO2
UNIT III	UNSUPERVISED LEARNING				9
K-Means C Curse of Di (LVM) – La	Lustering – Dirichlet Process Mixture Models – Spectral Clustering – Hierarchical C mensionality – Dimensionality Reduction – Principal Component Analysis – Latent V atent Dirichlet Allocation (LDA)	luster 'ariab	ring – ole M	- The odels	CO3
UNIT IV	GRAPHICAL MODELS				9
Bayesian N – Sampling	etworks – Conditional Independence – Naive Bayes Classifiers – Markov Chain Monte – Proposal Distribution – Markov Random Fields – Hidden Markov Model.	Carlo	o Mei	thods	CO4
UNIT V	INTELLIGENCE AND APPLICATIONS				9
Natural lan applications – Machine l	guage processing-Morphological Analysis – Syntax analysis – Semantic Analys s – Language Models – Information Retrieval – Information Extraction – Machine Trar Learning - Symbol-Based – Machine Learning	is <i>–A</i> nslatio	Ail on		CO5
	ТО	ΓAL:	: 45 F	PERI	ODS

# TEXTBOOKS

- 1. Ethem Alpaydin, "Introduction to Machine Learning," Third Edition, Prentice Hall of India, 2015.
- 2. Stephen Marsland, —Machine Learning An Algorithmic Perspectivel, Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.

- 1. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 2. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.
- 3. Tom Mitchell, "Machine Learning", McGraw-Hill, 2017.
- 4. Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Second Edition, Springer, 2008.
- 5. Fabio Nelli, "Python Data Analytics with Pandas, Numpy, and Matplotlib", Second Edition, Apress, 2018.

#### **COURSE OUTCOMES**

Upon o	Upon completion of the course, students will be able to						
CO1	Gain knowledge about basic concepts of machine learning techniques and terminology						
CO2	Develop predictive model based on both input and output data using supervised algorithms						
CO3	Ability to understand the unsupervised learning algorithm and dimensionality reduction techniques						
CO4	Design systems that use the appropriate graphical models of machine learning						
CO5	Improve problem solving skills using the acquired knowledge in the areas of natural language Processing with machine learning.						

COs		PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C01	2	3	3	2	1	-	-	-	-	-	-	1	-	-	
CO2	2	3	3	2	2	-	-	-	-	-	-	1	-	-	
CO3	2	3	3	2	3	-	-	-	-	-	-	1	-	-	
CO4	2	3	3	2	3	-	-	-	-	-	-	1	-	-	
CO5	2	2	3	2	1	-	-	-	-	-	-	1	-	-	

008433	AUCMENTED AND VIDTUAL DEALITY	L	Т	Р	С								
003423		3	0	0	3								
COURSI	COBJECTIVES:												
<b>♦</b> T	To gain the knowledge of historical and modern overviews and perspectives on virtual reality.												
<b>♦</b> T	<ul> <li>To learn the fundamentals of sensation, perception, and perceptual training.</li> </ul>												
• To have the scientific, technical, and engineering aspects of augmented and virtual reality systems.													
<ul> <li>To learn the evaluation of virtual reality from the lens of design.</li> </ul>													
<ul> <li>To learn the technology of augmented reality and implement it to have practical knowledge.</li> </ul>													
UNIT I INTRODUCTION													
Introduction to Augmented-Virtual and Mixed Reality, Taxonomy, technology and features of augmented reality, difference between AR, VR and MR, Challenges with AR, AR systems and functionality, Augmented reality methods, visualization techniques for augmented reality.													
UNIT II	UNIT II VR SYSTEMS												
VR as a dis tracking sy terminolog	VR as a discipline, Basic features of VR systems, Architecture of VR systems, VR hardware: VR input hardware: tracking systems, motion capture systems, data gloves, VR output hardware: visual displays, Methodology and terminology, user performance studies, VR health and safety issues, Usability of virtual reality system.												
UNIT III	STEREOSCOPIC VISION & HAPTIC RENDERING				9								
Fundamentals of the human visual system, Depth cues, Stereopsis, Retinal disparity, Haptic sense, Haptic devices, Algorithms for haptic rendering and parallax, Synthesis of stereo pairs.													
UNIT IV	VR DEVELOPMENT				9								
Challenges of VR in Mechanical development, Control Architectures, Rendering mechanical components, 3D interaction techniques: Manipulation Techniques and Input Devices, Interaction Techniques for 3D Manipulation,													
UNIT V	APPLICATIONS				9								
AR software, Camera parameters and camera calibration, Marker-based augmented reality, AR Toolkit, Medical, military & mechanical applications, Advanced Real time Tracking, other applications, games, movies, simulations, therapy, Understanding Meta, AR VR in Cyber Currency, Mechanics in VR, Matlab.													
	TO	ΓAL:	45 P	PERI	ODS								
TEXTRO	OKS												

- 1. George Mather, Foundations of Sensation and Perception: Psychology Press; 2ndedition, 2009.
- 2. The VR Book: Human-Centered Design for Virtual Reality, by Jason Jerald
- 3. Learning Virtual Reality by Tony Parisi, O' Reilly
- 4. Burdea, G. C. and P. Coffet. Virtual Reality Technology, Second Edition. Wiley, IEEE Press, 2003/2006.
- 5. Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.

- 1. Steven M. LaValle, "Virtual Reality", Cambridge University Press, 2016
- 2. Alan Craig, William Sherman and Jeffrey Will, Developing Virtual Reality Applications, Foundations of Effective Design, Morgan Kaufmann, 2009.
- 3. Schmalstieg / Hollerer, "Augmented Reality: Principles & Practice", Pearson Education India; First edition(12 October 2016), ISBN-10: 9332578494

#### **COURSE OUTCOMES**

# Upon completion of the course, students will be able to

CO1	Identify, examine, and develop software that reflects fundamental techniques for the design and deployment of VR and AR experiences.
CO2	Describe how VR and AR systems work.
CO3	Choose, develop, explain, and defend the use of particular designs for AR and VR experiences.
<b>CO4</b>	Evaluate the benefits and drawbacks of specific AR and VR techniques on the human body.
CO5	Identify and examine state-of-the-art AR and VR design problems and solutions from the industry and academia.

COs			PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	-	1	2	1	-	-	-	-	-	-	-	-	-	-	
CO2	1	2	2	-	2	-	-	-	-	-	-	1	-	-	
CO3	1	2	2	-	-	-	-	-	-	-	-	2	-	-	
CO4	1	2	2	-	2	-	-	-	-	-	-	1	-	-	
CO5	1	2	2	2	3	-	-	-	-	-	-	2	-	-	

L Т Р С **OME416 TESTING OF MATERIALS** 3 0 0 3 **OBJECTIVES** To understand the various destructive and non-destructive testing methods of materials and its industrial applications. 9 UNIT I INTRODUCTION TO MATERIALS TESTING Overview of materials, Classification of material testing, Purpose of testing, Selection of material, Development of testing, Testing organizations and its committee, Testing standards, Result Analysis, **CO1** Advantages of testing 9 UNIT II **MECHANICAL TESTING** Introduction to mechanical testing, Hardness test (Vickers, Brinell, Rockwell), Tensile test, Impact test (Izod, Charpy) - Principles, Techniques, Methods, Advantages and Limitations, Applications. Bend test, **CO2** Shear test, Creep and Fatigue test - Principles, Techniques, Methods, Advantages and Limitations, Applications. 9 UNIT III NON DESTRUCTIVE TESTING Visual inspection, Liquid penetrant test, Magnetic particle test, Thermography test - Principles, Techniques, Advantages and Limitations, Applications. Radiographic test, Eddy current test, Ultrasonic test, Acoustic **CO3** emission- Principles, Techniques, Methods, Advantages and Limitations, Applications. 9 **UNIT IV** MATERIAL CHARACTERIZATION TESTING Macroscopic and Microscopic observations, Optical and Electron microscopy (SEM and TEM) - Principles, Types, Advantages and Limitations, Applications. Diffraction techniques, Spectroscopic Techniques, Electrical **CO4** and Magnetic Techniques- Principles, Types, Advantages and Limitations, Applications. UNIT V 9 **OTHER TESTING** Thermal Testing: Differential scanning calorimetry, Differential thermal analysis. Thermo- mechanical and Dynamic mechanical analysis: Principles, Advantages, Applications. Chemical Testing: X-Ray **CO5** Fluorescence, Elemental Analysis by Inductively Coupled Plasma-Optical Emission Spectroscopy and Plasma-Mass Spectrometry. **TOTAL: 45 PERIODS TEXTBOOKS** 

1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House, 2009.

2. Cullity, B. D., "Elements of X-ray diffraction", 3rd Edition, Addison-Wesley Company Inc., New York, 2000.

3. P. Field Foster, "The Mechanical Testing of Metals and Alloys" 7th Edition, Cousens Press, 2007.

#### **REFERENCE BOOKS**

1. Metals Handbook: Mechanical testing, (Volume 8) ASM Handbook Committee, 9th Edition, American Society for Metals, 1978.

2. ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA.

3. Brandon D.G., "Modern Techniques in Metallography", Von Nostrand Inc. NJ, USA, 1986.

COUR Upon (	COURSE OUTCOMES Upon completion of the course, students will be able to									
CO1	Explain the role of testing organization and select the appropriate testing standards for materials.									
CO2	Identify the suitable destructive testing method to inspect industrial components.									
CO3	Select the appropriate Non-Destructive testing method to assess the quality of industrial components.									
CO4	Illustrate the Material characterization testing methods and able to analyse the tested results.									
CO5	Demonstrate the various thermal and chemical testing methods of materials.									

COs				PF	ROGRA	AM OU	тсом	PROGRAM SPECIFIC OUTCOMES (PSOs)						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	3	-	-	-	-	-	-	3	3	-	-
CO2	3	3	-	3	-	-	-	-	-	-	3	3	-	-
CO3	3	3	-	3	-	-	-	-	-	-	3	3	-	-
CO4	3	3	-	3	-	-	-	-	-	-	3	3	-	-
CO5	3	3	-	3	-	-	-	-	-	-	3	3	-	-