

Faculty of Electronics and Communication Engineering

B.E Electronics and Communication Engineering *Choice Based Credit Systems (CBCS)*

> Curriculum Regulations R– 2022 I -VIII Semesters

B. E. ELECTRONICS AND COMMUNICATION ENGINEERING

REGULATIONS R-2022

CHOICE BASED CREDIT SYSTEM

I. PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. To craft engineers with technical expertise in electronics & communication engineering with ethical practices to serve the society in a progressive manner.

2. To impart comprehensive knowledge in the design, analysis and implementation of electronic circuits, communication systems and other inter-related domains.

3. To elicit the passion for lifelong learning towards emerging technologies in the field of electronics & communication engineering for attaining excellence in career.

4. To augment the graduates to sustain in a multidisciplinary environment through exceptional individual, teamwork and leadership qualities.

II. PROGRAM OUTCOMES (POs)

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

III. PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Developing a strong base in the fundamentals of Electronics and Communication Engineering thus enhancing problem solving skills needed to develop innovative and quality products for scientific applications.

PSO2: Implementing the functional blocks of modern hardware-software co-design, for applications of Signal Processing, Networking, Embedded Systems, VLSI, Wired and Wireless Communication through practical approaches.

PSO3: Applying multidisciplinary concepts to redefine problems and arrive at appropriate solutions, either independently or in team.

PSO4: Imparting social awareness, environmental wisdom, project management coupled with ethical responsibility to pursue a successful career and sustain the passion for real world applications.

PEOs				P	ROGR	AMOU	тсом	ES(PO	S)			
11205	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEO1	3	2	2	2	2	3	3	3	2	3	2	3
PEO2	3	3	3	3	2	2	2	2	2	3	2	2
PEO3	3	3	3	3	3	3	3	2	2	3	2	3
PEO4	3	3	3	3	3	2	3	2	3	3	3	3

Mapping of Programme Educational Objectives (PEOs) and the Program Outcomes (Pos):

We Make You Shine St. JOSEPH'S INSTITUTE OF TECHNOLOGY (An Autonomous Institution) St. Joseph's Group of Institutions OMR, Chennai - 119

REGULATIONS R-2022 B. E. ELECTRONICS AND COMMUNICATION ENGINEERING CHOICE BASED CREDIT SYSTEM CURRICULA FOR SEMESTERS I TO VIII SEMESTER I

	SEMIESTERT										
S.	COURSE		CATE	I	HOU	RS	TOTAL				
	CODE	COURSE TITLE	GORY	PE	RW	EEK	CONTACT	CREDITS			
NO.	CODE		GORY	L	Т	Р	HOURS				
1.	IP4151	Induction Programme	-	-	-	-	-	0			
THEC	DRY										
2.	HS4101	Communicative English	HSMC	3	0	0	3	3			
3.	MA4102	Engineering Mathematics-I	BSC	3	1	0	4	4			
4.	PH4103	Engineering Physics	BSC	3	0	0	3	3			
5.	CY4104	Engineering Chemistry	BSC	3	0	0	3	3			
6.	GE4105	Problem solving and Python	ESC	3	0	0	3	3			
		Programming									
7.	GE4106	Engineering Graphics	ESC	2	0	4	6	4			
8	GE4151	Heritage Of Tamils	HSMC	1	0	0	1	1			
		(தமிழர் மரபு)									
PRAC	CTICALS										
9.	GE4107	Python Programming	ESC	0	0	4	4	2			
		Laboratory									
10.	BS4108	Physics and Chemistry	BSC	0	0	4	4	2			
		Laboratory									
TOTA	L			17	1	12	30	25			

SEMESTER II

S.	COURSE		CATE		HOURS		TOTAL			
NO.	CODE	COURSE TITLE	GORY	PER WEEK		EEK	CONTACT	CREDITS		
				L	Т	Р	HOURS			
THEO	THEORY									
1.	HS4201	Professional English	HSMC	3	0	0	3	3		
2.	MA4202	Statistics and Numerical Methods	BSC	3	1	0	4	4		
3.	PH4252	Physics for Electronics Engineering	BSC	3	0	0	3	3		
4.	GE4204	Environmental Science and Engineering	BSC	3	0	0	3	3		
5.	EE4205	Circuit Analysis	PCC	2	1	0	3	3		
6.	EC4206	Electronic Devices	PCC	3	0	0	3	3		
7	GE4251	Tamils and Technology (தமிழரும் தொழில்நட்பம்)	HSMC	1	0	0	1	1		
PRAC	TICALS									
8.	GE4207	Engineering Practices Laboratory	ESC	0	0	4	4	2		
9.	EC4208	Circuits and Devices Laboratory	PCC	0	0	4	4	2		
TOTA	L			17	2	8	27	24		

SEMESTER III

S.	COURSE		CATE]	HOU	RS	TOTAL				
NO.	CODE	COURSE TITLE	GORY	PE	R W	EEK	CONTACT	CREDITS			
NU.	CODE		GOKI	L	Т	Р	HOURS				
THE	THEORY										
1.	MA4352	Transforms and Complex Functions	BSC	3	1	0	4	4			
2.	CS4353	Data Structures using C	ESC	3	0	0	3	3			
3.	EC4303	Electronics Circuits and its Applications	PCC	3	0	0	3	3			
4.	EC4304	Digital Circuits and Design	PCC	3	0	0	3	3			
5.	EC4305	Control Systems Engineering	PCC	2	1	0	3	3			
6.	EC4306	Electromagnetic Fields	PCC	3	0	0	3	3			
PRAC	CTICALS										
7.	EC4307	Analog and Digital Circuits Laboratory	PCC	0	0	4	4	2			
8.	CS4358	Data Structures Laboratory	ESC	0	0	4	4	2			
			TOTAL	17	2	8	28	23			

SEMESTER IV

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY		HOU ER W	JRS /EEK	TOTAL CONTACT	CREDIT
			GONI	L	Т	Р	HOURS	S
THE	ORY							
1.	MA4401	Probability and Statistics	BSC	3	1	0	4	4
2.	EC4402	Signals and Systems	PCC	3	1	0	4	4
3.	EC4403	Communication systems	PCC	3	0	0	3	3
4.	EC4404	Linear Integrated Circuits	PCC	3	0	0	3	3
5.	EE4405	Sensors and Actuators	ESC	3	0	0	3	3
6.	EC4406	Transmission Lines and RF Systems	PCC	3	0	0	3	3
7.		Nan Mudhalvan						
PRAC	CTICALS	1	1	1				
7.	EC4407	Communication Systems Laboratory	PCC	0	0	4	4	2
8.	EC4408	Linear Integrated Circuits Laboratory	PCC	0	0	4	4	2
9	HS4310	Professional Skills Development	EEC	0	0	2	2	1
			TOTAL	18	2	10	30	25

•

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY	HOURS PER WEEK			TOTAL CONTACT	CREDITS
NU.	CODE		GOKI	L	Т	Р	HOURS	
THE	ORY						•	
1.	EC4501	Discrete Time Signal Processing	PCC	3	1	0	4	4
2.	EC4502	VLSI Design	PCC	3	0	0	3	3
3.		Professional Elective I	PEC	3	0	0	3	3
4.		Professional Elective II	PEC	3	0	0	3	3
5.		Professional Elective III	PEC	3	0	0	3	3
6.		Mandatory Course-I ^{&}	MC	3	0	0	3	0
PRA (CTICALS							
7.	EC4508	VLSI Laboratory	PCC	0	0	4	4	2
8.	EC4509	Digital Signal Processing Laboratory	PCC	0	0	4	4	2
			TOTAL	18	1	8	27	20

SEMESTER V

[&] Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under Mandatory Course-I)

SEMESTER VI

S.	COURSE		CATE		URS WEE	PER K	TOTAL CONTACT	
NO.	CODE	COURSE TITLE	GORY	L	T	Р	HOURS	CREDITS
THE	ORY	·						
1.	EC4651	Embedded Systems and IoT Design	PCC	3	0	0	3	3
2.	EC4602	Wireless Communication	PCC	3	0	0	3	3
3.		Open Elective – I**	OEC	3	0	0	3	3
4.		Professional Elective IV	PEC	3	0	0	3	3
5.		Professional Elective V	PEC	3	0	0	3	3
6.		Mandatory Course-II &	MC	3	0	0	3	0
		Nalayathiran	EEC					
PRAC	CTICALS							
7.	EC4608	Embedded and IoT Laboratory	PCC	0	0	4	4	2
8.	EC4609	Mini Project	EEC	0	0	4	4	2
	TOTAL			18	0	8	26	19

** Open Elective I (Shall be chosen from the list of open electives offered by other programmes). & Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under Mandatory Course-II)

S.	COURSE	COURSE TITLE	CATE		OUF R WI		TOTAL	CREDITS			
NO	CODE	COURSE IIILE	GORY				CONTACT	CREDITS			
•				L	Т	Р	HOURS				
THEORY											
1.	GE4791	Human Values and Ethics	HSMC	3	0	0	3	3			
2.	EC4702	Microwave and Optical Communication	PCC	3	0	0	3	3			
3.	EC4703	Field and Service Robotics	PCC	3	0	0	3	3			
4.		Open Elective – II**	OEC	3	0	0	3	3			
5.		Open Elective – III**	OEC	3	0	0	3	3			
6.		Elective Management [#]	HSMC	3	0	0	3	3			
PRA	CTICALS										
7.	EC4706	Advanced Communication Laboratory	PCC	0	0	4	4	2			
8.	EC4707	Robotics Laboratory	PCC	0	0	4	4	2			
	TOTAL				0	8	26	22			

SEMESTER VII

** Open Elective II (Shall be chosen from the list of open electives offered by other Programmes). # Elective - Management shall be chosen from the Elective Management courses.

SEMESTER VIII

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY	HOURS PER WEEK			TOTAL CONTACT	CREDITS
	CODE		JONI	L	Т	Р	HOURS	
THE	ORY	·						
1		Professional Elective VI	PEC	3	0	0	3	3
2		Professional Elective VII	PEC	3	0	0	3	3
PRA	CTICALS							
3	EC4803	Project Work	EEC	0	0	20	20	10
			TOTAL	6	0	20	26	16

TOTAL CREDITS: 174

PROFESSIONAL ELECTIVE COURSES (PEC)

SL. NO.	COURSE	COURSE TITLE	CATE GORY		DUR R WI	S EEK	TOTAL CONTACT	CREDIT
NO.	CODE		GORY	L	Т	Р	HOURS	S
1.	EC4511	Radar Technologies	PEC	3	0	0	3	3
2.	EC4512	Basics of Avionics Systems	PEC	3	0	0	3	3
3.	EC4513	Positioning and Navigational Systems	PEC	3	0	0	3	3
4.	EC4514	Satellite Communication	PEC	3	0	0	3	3
5.	EC4515	Remote Sensing Techniques	PEC	3	0	0	3	3
6.	EC4516	Rocketry and Space Mechanics	PEC	3	0	0	3	3

VERTICAL - I - SPACE TECHNOLOGIES

VERTICAL- II - IC DESIGN and TESTING

S.	COURSE	COURSE TITLE	CATE			URS WEEK	TOTAL CONTACT	CREDITS
NO.	CODE		GORY	L	Т	Р	HOURS	
1.	EC4521	Wide Bandgap Devices	PEC	3	0	0	3	3
2.	EC4522	RF ID System Design & Testing	PEC	3	0	0	3	3
3.	EC4523	Antenna Design Techniques	PEC	3	0	0	3	3
4.	EC4524	VLSI Testing and Design For Testability	PEC	3	0	0	3	3
5.	EC4525	FPGA based Embedded Design	PEC	3	0	0	3	3
6.	EC4526	Design of Analog IC	PEC	3	0	0	3	3

VERTICAL- III - BIOMEDICAL TECHNOLOGIES

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	H	OUR WE	S PER EK	TOTAL CONTACT	CREDITS
				L	Т	Р	HOURS	
1.	EC4531	Wearable Devices						
			PEC	3	0	0	3	3
2.	EC4532	Human Assist Devices		3	0	0	3	3
			PEC					
3.	EC4533	Therapeutic Equipment	PEC	3	0	0	3	3
4.	EC4534	Medical Imaging Systems	PEC	3	0	0	3	3
5.	EC4535	Brain Computer Interface and Applications	PEC	3	0	0	3	3
6.	EC4536	Body Area Networks	PEC	3	0	0	3	3

SL.	COURSE	COURSE TITLE	CATE	HOURS PER WEEK			TOTAL CONTACT	CREDITS
NO.	CODE		GORY	L	Т	Р	HOURS	
1.	EC4641	Advanced Digital Signal Processing	PEC	3	0	0	3	3
2.	EC4642	Image processing	PEC	3	0	0	3	3
3.	EC4643	Speech Processing	PEC	2	0	2	4	3
4.	EC4644	Software Defined Radio	PEC	2	0	2	4	3
5.	EC4645	DSP Architecture and Programming	PEC	2	0	2	4	3
6.	EC4646	Computer Vision for Robotics	PEC	2	0	2	4	3

VERTICAL- IV - SIGNAL PROCESSING

VERTICAL - V – RF TECHNOLOGIES

S. NO.	COURSE	COURSE TITLE	CATE		OURS WEE	S PER CK	TOTAL CONTACT	CREDITS
no.	CODE			L	Т	Р	HOURS	
1.	EC4651	RF Transceivers	PEC	3	0	0	3	3
2.	EC4652	Networks and Security	PEC	3	0	0	3	3
3.	EC4653	Low Power Integrated Circuit Design	PEC	3	0	0	3	3
4.	EC4654	MICs and RF System Design	PEC	3	0	0	3	3
5.	EC4655	EMI/EMC Pre compliance Testing	PEC	3	0	0	3	3
6.	EC4656	CAD for VLSI Circuits	PEC	3	0	0	3	3

VERTICAL-VI - HIGH SPEED COMMUNICATIONS

COURSE	COURSE TITLE	CATE	PER WEEK			TOTAL CONTACT	CREDITS
CODE		GORY	L	Τ	P	HOURS	
EC4861	Advanced Communication Technologies	PEC	3	0	0	3	3
EC4862	Wireless Broadband Networks	PEC	3	0	0	3	3
EC4863	Signal Integrity	PEC	3	0	0	3	3
EC4864	Software Defined Networks	PEC	3	0	0	3	3
EC4865	Millimeter Wave Communication	PEC	3	0	0	3	3
EC4866	Photonic Networks	PEC	3	0	0	3	3
	CODE EC4861 EC4862 EC4863 EC4864 EC4865	CODECOURSE TITLEEC4861Advanced Communication TechnologiesEC4862Wireless Broadband NetworksEC4863Signal IntegrityEC4864Software Defined NetworksEC4865Millimeter Wave Communication	CODECOURSE TITLEGORYEC4861Advanced Communication TechnologiesPECEC4862Wireless Broadband NetworksPECEC4863Signal IntegrityPECEC4864Software Defined 	COURSE CODECOURSE TITLECATE GORYPE LEC4861Advanced Communication TechnologiesPEC3EC4862Wireless Broadband NetworksPEC3EC4863Signal Integrity NetworksPEC3EC4864Software Defined NetworksPEC3EC4865Millimeter Wave CommunicationPEC3EC4866Photonic NetworksPEC3	$\begin{array}{c} \mbox{COURSE}\\ \mbox{CODE}\\ \mbox{CODE}\\ \mbox{COURSE TITLE}\\ \mbox{COURSE TITLE}\\ \mbox{Constant of COURSE TITLE}\\ \mbox{GORY}\\ \mbox{L}\\ \mbox{T}\\ \mbox{T}\\ \mbox{T}\\ \mbox{Communication}\\ \mbox{Technologies}\\ \mbox{PEC}\\ \mbox{Advanced}\\ \mbox{Communication}\\ \mbox{PEC}\\ \mbox{Advanced}\\ \mbox{Communication}\\ \mbox{PEC}\\ \mbox{Advanced}\\ \mbox{PEC}\\ \mbox{Advanced}\\ \mbox{Advanced}\\ \mbox{Communication}\\ \mbox{PEC}\\ \mbox{Advanced}\\ \mbox{Advanced}\\ \mbox{PEC}\\ \mbox{Advanced}\\ \mbox{Advanced}\\ \mbox{Advanced}\\ \mbox{PEC}\\ \mbox{Advanced}\\ \mbox{Advanced}\\ \mbox{Advanced}\\ \mbox{PEC}\\ \mbox{Advanced}\\ \mbox{Advanced}\\ \mbox{Advanced}\\ \mbox{PEC}\\ \mbox{Advanced}\\ \mbox{Advanced}\\ \mbox{Advanced}\\ \mbox{Advanced}\\ \mbox{Advanced}\\ \mbox{Advanced}\\ \mbox{PEC}\\ \mbox{Advanced}\\ Advanc$	CODECOURSE TITLEGORYTEX WEEKEC4861Advanced Communication TechnologiesPEC300EC4862Wireless Broadband NetworksPEC300EC4863Signal Integrity NetworksPEC300EC4864Software Defined NetworksPEC300EC4865Millimeter Wave CommunicationPEC300EC4866Photonic NetworksPEC300	COURSE CODECOURSE TITLECATE GORYPER WEEK TCONTACT HOURSEC4861Advanced Communication TechnologiesPEC3003EC4862Wireless Broadband NetworksPEC3003EC4863Signal Integrity NetworksPEC3003EC4864Software Defined NetworksPEC3003EC4865Millimeter Wave CommunicationPEC3003EC4866Photonic NetworksPEC3003

VERTICAL- VII - SENSOR TECHNOLOGIES and IoT

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	HOURS PER WEEK L T P		EEK	TOTAL CONTACT HOURS	CREDITS
1.	EC4871	Adhoc Networks	PEC	3	0	0	3	3
2.	EC4872	IoT Based System Design	PEC	3	0	0	3	3
3.	EC4873	Wireless Sensor Networks	PEC	3	0	0	3	3
4.	EC4874	Industrial IoT and Industry 4.0	PEC	3	0	0	3	3
5.	EC4875	MEMS Design	PEC	3	0	0	3	3
6.	EC4876	Fundamentals of Nano electronics	PEC	3	0	0	3	3

OPEN ELECTIVES

(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories). OPEN ELECTIVES – I

		OI EN ELE		. T				
S. NO.	COURSE CODE	COURSE TITLE	CATE GORY		IOU PE WE		TOTAL CONTACT HOURS	CREDITS
				L	L T P		HOURS	
1.	OMA411	Graph Theory & its applications	OEC	3	0	0	3	3
2.	OEE411	Renewable Energy System	OEC	3	0	0	3	3
3.	OEC412	Foundation of Robotics	OEC	3	0	0	3	3
4.	OMB413	Digital Marketing	OEC	3	0	0	3	3
5.	OAD414	Artificial Intelligence and Machine Learning	OEC	3	0	0	3	3
6.	OMA426	Resource Management Techniques	OEC	3	0	0	3	3
7.	OME417	Introduction to Industrial Engineering	OEC	3	0	0	3	3

OPEN ELECTIVES – II

S. NO.	COURSE CODE	COURSE TITLE	CATEGORY		HOURS PER WEEK		TOTAL CONTACT HOURS	CREDITS
				L	Т	Р		
1.	OEE421	Electric and Hybrid Vehicle	OEC	3	0	0	3	3
2.	OIT421	Dev-ops	OEC	3	0	0	3	3
3.	OAD422	R Programming for Data Science	OEC	3	0	0	3	3
4.	OEE423	Advanced Control Systems	OEC	3	0	0	3	3
5.	OMB443	Fintech Technologies	OEC	3	0	0	3	3
6	OME424	Sustainable Manufacturing	OEC	3	0	0	3	3
7.	OEC414	Biomedical Instrumentation	OEC	3	0	0	3	3

OPEN ELECTIVES – III

S. NO	COURSE CODE	COURSE TITLE	CATE GORY		HOURS PER WEEK		TOTAL CONTACT HOURS	CREDITS
				L	Т	Р		
1.	OIT411	Fundamentals of Database	OEC	3	0	0	3	3
		Design						
2.	OMA421	Algebra and Number Theory	OEC	3	0	0	3	3
3.	OAD432	Deep Learning	OEC	3	0	0	3	3
4.	OMB432	Operations Research	OEC	3	0	0	3	3
5.	OME427	Reverse Engineering	OEC 3 0 0		0	3	3	
6.	OME429	Introduction to Industrial	OEC	3 0 0		0	3	3
		Automation Systems						

ELECTIVE – MANAGEMENT COURSES

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY		IOU R W	RS EEK	TOTAL CONTACT	CREDITS
				L	Т	Р	HOURS	
1.	MB4751	Principles of Management	HSMC	3	0	0	3	3
2.	MB4741	Total Quality Management	HSMC	3	0	0	3	3
3.	MB4043	Engineering Economics	HSMC	3	0	0	3	3
		and Financial Accounting						
4.	MB4202	Human Resource	HSMC	3	0	0	3	3
		Management						
5.	MB4044	Knowledge Management	HSMC	3	0	0	3	3
6.	GE4792	Industrial Management	HSMC	3	0	0	3	3

MANDATORY COURSES-I

S. NO.	COURSE	COURSE TITLE	CATE		HOU R W	RS EEK	TOTAL CONTACT	CREDITS
110.	CODE		GORY	L	Т	Р	HOURS	
1.	MX4001	Introduction to Women and Gender Studies	MC	3	0	0	3	0
2.	MX 4002	Elements of Literature	MC	3	0	0	3	0
3.	MX 4003	Personality Development through Life Enlightenment Skills	MC	3	0	0	3	0
4.	MX 4004	Disaster Management	MC	3	0	0	3	0

MANDATORY COURSES II

S. NO.	COURSE	COURSE TITLE	CATE	HOURS PER WEEK			TOTAL CONTACT	CREDITS
10.			GORY	L	Т	Р	HOURS	
1.	MX 4005	Well Being with traditional practices (Yoga, Ayurveda and Siddha)	MC	3	0	0	3	0
2.	MX 4006	History of Science and Technology in India	MC	3	0	0	3	0
3.	MX 4007	Political and Economic Thought for a Humane Society	MC	3	0	0	3	0
4.	MX 4008	Industrial Safety	MC	3	0	0	3	0

S.No.	SUBJECT		CR	REDIT	'S AS	PERS	SEME	STER		CREDITS	Percentage
	AREA	Ι	Π	III	IV	v	VI	VII	VIII	TOTAL	(%)
1.	HSMC	4	4	-	-	-	-	6	-	14	8.05
2.	BSC	12	10	4	4	-	-	-	-	30	17.24
3.	ESC	9	2	5	3	-	-	-	-	19	11.11
4.	РСС	-	8	14	17	11	8	10	-	68	39.08
5.	PEC	-	-	-	-	9	6	-	6	21	12.07
6.	OEC	-	-	-	-	-	3	6	-	09	5.17
7.	EEC	-	-	-	1	-	2	-	10	13	7.47
Т	OTAL	25	24	23	25	20	19	22	16	174	100

SUMMARY OF CURRICULUM

Vertical I	Vertical II	Vertical III	Vertical IV	Vertical VI	Vertical VI	Vertical VII
Space	IC Design and	BioMedical	Signal	RF	High Speed	Sensor
Technologies	Testing	Technologies	Processing	Technologies	Communications	Technologies and
- C	0))	Ũ		IoT
Radar	Design of Analog	Wearable	Advanced	RF Transceivers	Advanced	Adhoc Networks
Technologies	IC	Devices	Digital Signal		Communication	
			Processing		Technologies	
Basics of Avionics	Low Power	Human Assist	Image	Networks and	Wireless	IoT Based System
Systems	Integrated Circuit	Devices	processing	Security	Broad Band	Design
	Design				Networks	
Positioning and	Antenna Design	Therapeutic	Speech	RF ID System	Signal Integrity	Industrial IoT and
Navigational	Techniques	Equipment	Processing	Design &		Industry 4.0
Systems				Testing		
Remote Sensing	VLSI Testing	Medical	Software	MICs and RF	Software Defined	Wireless Sensor
Techniques	and Design	Imaging	Defined Radio	System Design	Networks	Network Design
	For Testability	Systems				
Satellite	Design Testing of	Brain	DSP	EMI/EMC Pre	Millimeter Wave	MEMS Design
Communication	Mixed Signal IC	Computer	Architecture	compliance	Communication	
		Interface and	and	Testing		
Rocketry and	Wide Bandgap	Body Area	Computer	CAD for	Photonic	Fundamentals of
Space Mechanics	Devices	Networks	Vision for	VLSI Circuits	Networks	Nano electronics
			Robotics			

PROFESSIONAL ELECTIVE COURSES: VERTICALS

Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V,VI and VIII. These courses are listed in groups called verticals that represent a particular area of specialization / diversified group. Students are permitted to choose all the Professional Electives from a particular vertical or from different verticals. Further, only one Professional Elective course shall be chosen in a semester horizontally (row-wise). However, two courses are permitted from the same row, provided one course is enrolled in Semester V and another in semester VI.

The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VIII. The procedure for registration of courses explained above shall be followed for the courses of B.E/B.Tech (Honours) or Minor degree also. For more details on B.E./B.Tech (Honours) or Minor degree refer to the Regulations 2022.

SEMESTER I

HS4101	COMMUNICATIVE ENGLISH	L	Т	P	С					
	Common for all Branches of B.E. / B. Tech Programmes300									
OBJECTIVE	ES									
 To dev 	velop the basic reading and writing skills of first year engineering and tec	hnolo	ogy							
students.										
	p learners develop their listening skills, which will, enable them listen to	lectu	res ar	nd						
	ehend them by asking questions; seeking clarifications.									
	p learners develop their speaking skills and speak fluently in real context									
	p learners develop vocabulary of a general kind by developing their read									
UNIT I	SHARING INFORMATION RELATED TO ONESELF/FAMILY&)S	9					
0	critical reading — finding key information in a given text — shif	<u> </u>								
	s - Writing - autobiographical writing - developing hints. Listening- sl									
	and informal conversations. Speaking- basics in speaking - int									
	changing personal information- speaking on given topics & s			C	01					
	evelopment- voices- Wh- Questions- asking and answering-ye	es or	no no							
questions- pa										
	pulary development prefixes- suffixes- articles - Polite Expressions.									
UNIT II	GENERAL READING AND FREE WRITING				9					
	ort narratives and descriptions from newspapers (including dialo									
	; Reading Comprehension Texts with varied question types - Writing -									
	c sentence- main ideas- free writing, short narrative descriptions us									
	cabulary and structures –. Listening - long texts - TED talks - extensi				02					
	fairs and discussions Speaking — describing a simple process — a									
	estions - Language development – prepositions, clauses. Vocabulary deve	elopn	nent-							
	anings of words in context – useofsequence words.									
UNIT III	GRAMMAR AND LANGUAGE DEVELOPMENT				9					
	rt texts and longer passages (close reading) & making a critical analy									
	riting — types of paragraph and writing essays — rearrangement of									
	tening: Listening to ted talks and long speeches for comprehension. Spea									
	about routine actions and expressing opinions. Language developmen			C	03					
	n- pronouns- Direct vs. Indirect Questions. Vocabulary development - ic	lioms	and							
.	e & effect expressions, adverbs.									
UNIT IV	READING AND LANGUAGE DEVELOPMENT				9					
	nprehension-reading longer texts- reading different types of texts- n									
-	er writing, informal or personal letters-e-mails-conventions of persor									
-	stening comprehension (IELTS, TOEFL and others). Speaking -Speak	-			04					
friends/places/hobbies - Language development- Tenses- simple present-simple past- present										
continuous and past continuous- conditionals — if, unless, in case, when and others, Vocabulary										
development- synonyms-antonyms- Single word substitutes- Collocations.										
UNIT V	EXTENDED WRITING				9					
-	ding for comparisons and contrast and other deeper levels of meaning		-							
	g -writing short essays — developing an outline- identifying				- -					
	ideas- dialogue writing- Listening - popular speeches and prese				05					
	npromptu speeches & debates Language development-modal verbs- pr		/ past	t						
perfect tense -	Vocabulary development-Phrasal verbs- fixed and semi-fixed expression		r 4-							
			.: 45	\н(OURS					

TEXT BOOKS 1. Board of Editors. Using English, A Course book for Undergraduate Engineers and Technologists. Orient Black Swan Limited, Hyderabad: 2020 2. Sanjay Kumar & Pushp Lata Communication Skills Second Edition, Oxford University Press: 2015. 3. Richards, C. Jack. Interchange Students' Book-2 New Delhi: CUP, 2015. **REFERENCE BOOKS** 1. Bailey, Stephen. Academic Writing: A practical guide for students. New York: Rutledge, 2011. Means, L. Thomas and Elaine Langlois. English & Communication For Colleges. CengageLearning ,USA: 2007 2. Redston, Chris & Gillies Cunningham Face 2 Face (Pre-intermediate Students Book& Workbook) Cambridge University Press, New Delhi: 2005 3. Comfort, Jeremy, et al. Speaking Effectively: Developing Speaking Skills for Business English. Cambridge University Press, Cambridge: Reprint 2011 4. Dutt P. Kiranmai and Rajeevan Geeta Basic Communication Skills, Foundation Books: 2013 5. John Eastwood et al : Be Grammar Ready: The Ultimate Guide to English Grammar, Oxford University Press: 2020. **COURSE OUTCOMES** Upon completion of the course, students will be able to Speak clearly, confidently, comprehensibly, and communicate with one or many listeners using **CO1** appropriate communicative strategies. **CO2** Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic. **CO3** Read different genres of texts adopting various reading strategies. **CO4** Listen/view and comprehend different spoken discourses/excerpts in different accents **CO5** Identify topics and formulate questions for productive inquiry **MAPPING OF COs WITH POs AND PSOs PROGRAM OUTCOMES (POs) PROGRAM SPECIFIC** COs **OUTCOMES (PSOs)** PO **PSO PSO** PSO3 PS 2 3 4 5 7 8 9 10 11 2 04 1 6 12 1 **CO1** 2 2 _ _ _ _ _ 3 -1 -_ _ -1 _ **CO2** 1 2 3 2 2 1 -_ _ -_ -_ --**CO3** 2 2 1 3 ---1 2 ---_ ---2 2 2 **CO4** _ _ _ 1 1 --_ -_ ---2 2 1 1 2 2 3 1 1 CO5 -------

MA4102	ENGINEERING MATHEMATICS – I	L	Т	P	С
	(Common for all branches of B.E. / B. Tech Programmes)	3	1	0	4

✤ To develop the use of matrix algebra techniques that is needed by engineers for p	ractical
applications.	Tactical
✤ To familiarize the students with differential calculus.	
✤ To familiarize the student with functions of several variables. This is needed in many bran	ches of
 engineering. To make the students understand various techniques of integration. 	
 To acquaint the students understand various teeninques of integration. To acquaint the student with mathematical tools needed in evaluating multiple integrals and 	nd their
applications.	
UNIT I MATRICES	12
Eigenvalues and Eigenvectors of a real matrix - Characteristic equation - Properties of	001
Eigenvalues and Eigenvectors – Cayley-Hamilton theorem – Diagonalization of matrices –	CO1
Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of	
juadratic forms	
UNIT II CALCULUS OF ONE VARIABLE	12
Limit of a function - Continuity - Derivatives - Differentiation rules – Interval of increasing and	
lecreasing functions – Maxima and Minima - Intervals of concavity and convexity.	CO2
UNIT III CALCULUS OF SEVERAL VARIABLES	12
Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change	
of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for	CO3
functions of two variables – Maxima and minima of functions of two variables – Lagrange's	COS
nethod of undetermined multipliers.	
UNIT IV INTEGRAL CALCULUS	12
Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by	
parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by	CO4
partial fraction, Integration of irrational functions - Improper integrals.	
UNIT V MULTIPLE INTEGRALS	12
Double integrals – Change of order of integration – Double integrals in polar coordinates – Area	
enclosed by plane curves – Change of variables from Cartesian to polar in double integrals-Triple	CO5
ntegrals – Volume of solids	
inegruis volume of solidas	
TOTAL : 60 H	ιουκ
TOTAL : 60 H	

 James Stewart, "Calculus: Early Transcendental", Cengage Learning, 7th Edition, New Delhi,2015. [For Units I & III - Sections 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1 (Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.2 - 7.4 and 7.8].

REFERENCE BOOKS 1. Anton, H, Bivens, I and Davis, S, "Calculus", Wiley, 10th Edition, 2016. 2. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 3rd Edition, 2007. 3. Narayanan, S. and Manicavachagom Pillai, T. K., "Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2007. 4. Srimantha Pal and Bhunia, S.C, "Engineering Mathematics" Oxford University Press, 2015. T. Veerarajan, "Engineering Mathematics - I", McGraw Hill Education; First edition 2017. 5. **COURSE OUTCOMES** Upon completion of the course, students will be able to Use the matrix algebra methods for solving practical problems **CO1 CO2** Apply differential calculus tools in solving various application problems. CO3 Able to use differential calculus ideas on several variable functions. **CO4** Apply different methods of integration in solving practical problems. **CO5** Apply multiple integral ideas in solving areas, volumes and other practical problems. **MAPPING OF COs WITH POs AND PSOs PROGRAM PROGRAM OUTCOMES (POs)** COs **SPECIFIC OUTCOMES (PSOs)** PO PO2 **PO5 PO6 PO8** PO PO PO PO **PO1** PO **PO1** PS PSO2 PS PSO4 4 7 9 11 01 03 1 3 0 2 **CO1** 3 3 3 1 2 3 3 2 3 3 3 2 1 --1 CO2 1 3 3 3 2 2 1 _ 1 2 2 1 2 _ _ -CO3 1 2 2 3 3 3 2 1 -1 2 1 1 _ --1 **CO4** 2 3 3 3 2 2 1 2 2 2 1 ----2 1 CO5 3 3 2 1 1 2 1 1 3 1 _

PH4103ENGINEERING PHYSICSLTPCCommon for all branches of B.E. / B. Tech Programmes3003

OBJECTIVES

- To make the students understand the elastic property and stress strain diagram.
- To educate the students about principle of laser and its role in optical fibers and its applications as sensors and communication.
- ✤ To teach the students about the heat transfer through solids and liquids.
- To educate the students about the quantum concepts and its use to explain black body radiation, Compton effect, tunnelling electron microscopy and its applications.
- To make the students to understand the importance of various crystal structures and various growth techniques.

Lasers : population of energy levels, Einstein's A and B coefficients derivation — resonant cavity, optical amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction — Industrial and medical applications of Laser- Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) — losses associated with optical fibers — Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber-Endoscopy-Fiber optic communication system. UNIT III THERMAL PHYSICS Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) – scanning tunnelling microscope-Applications of electron microscopy.	UNIT I	PROPERTIES OF MATTER	9
strength – torsional stress and deformations – twisting couple - torsion pendulum: theory and caperiment - bending of beams - bending moment – cantilever: theory and experiment – uniform and non-uniform bending: theory and experiment – Practical applications of modulus of elasticity-I-shaped girders - stress due to bending in beams. UNIT II LASER AND FIBER OPTICS Lasers : population of energy levels, Einstein's A and B coefficients derivation — resonant cavity, optical amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction — Industrial and medical applications of Laser – Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibers (material, refractive index, mode) — losses associated with optical fibers — Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber - Endoscopy-Fiber optic communication system. UNIT III THERMAL PHYSICS Transfer of heat energy — thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation — heat conductions in solids – thermal conduction, through compound media (series and parallel)-Radial flow of heat - thermal insulation — applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation — Planck's theory (derivation) — Compton effect: theory and experimental verification — wave particle duality — electron diffraction — concept of wave function and its physical significance — Schrödinger's wave equation — time independent and time dependent equations = particle in a one-dimensional rigid box — Electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials — single crystals: unit cell, crystal systems, Bravais lattices,	Elasticity – S	Stress-strain diagram and its uses - factors affecting elastic modulus and tensile	
experiment - bending of beams - bending moment – cantilever: theory and experiment – uniform and non-uniform bending: theory and experiment – Practical applications of modulus of elasticity-1-shaped girders - stress due to bending in beams. UNIT II LASER AND FIBER OPTICS Lasers : population of energy levels, Einstein's A and B coefficients derivation — resonant cavity, optical amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction — Industrial and medical applications of Laser – Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) — losses associated with optical fibers — Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber- Endoscopy-Fiber optic communication system. UNIT III THERMAL PHYSICS Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat – thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations –particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunmelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller	-	-	со
and non-uniform bending: theory and experiment – Practical applications of modulus of elasticity-I-shaped girders - stress due to bending in beams. UNIT II LASER AND FIBER OPTICS Lasers : population of energy levels, Einstein's A and B coefficients derivation — resonant cavity, optical amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction — Industrial and medical applications of Laser – Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibers (material, refractive index, mode) — losses associated with optical fibers — Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber - Endoscopy-Fiber optic communication system. UNIT III THERMAL PHYSICS Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity –Rectilinear flow of heat- Lec's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and anorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices — inter-planar distances coordination number and packing factor for SC, BCC,	-		
elasticity-I-shaped girders - stress due to bending in beams. Image: Construct the stress of the	-		
UNIT II LASER AND FIBER OPTICS Lasers : population of energy levels, Einstein's A and B coefficients derivation — resonant cavity, optical amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction — Industrial and medical applications of Laser – Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibers (material, refractive index, mode) — losses associated with optical fibers — Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber - Endoscopy-Fiber optic communication system. UNIT III Transfer of heat energy — thermal expansion of solids and liquids — expansion joints - bimetallic strips - thermal conduction, convection and radiation — heat conductions in solids - thermal conductivity —Rectilinear flow of heat - Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat - thermal insulation — applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation — Planck's theory (derivation) — Compton effect: theory and experimental verification — wave particle duality — electron diffraction — concept of wave function and its physical significance — Schrödinger's wave equation — time independent and time dependent equations — particle in a one-dimensional rigid box —Electron microscope-tunnelling (qualitative) - scaning tunnelling microscope-Applications of electron microscopy. UNIT IV CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials — single crystals: unit cell, crystal systems, Bravais latices, directions and planes in a crystal, Miller			
cavity, optical amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction — Industrial and medical applications of Laser- Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) — losses associated with optical fibers — Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber-Endoscopy-Fiber optic communication system. UNIT III THERMAL PHYSICS Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conduction, convection and radiation – heat conductions in solids – thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices — inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures — Graphite structure-crystal imperfections: point defects, line defects — Burger vectors, stacking faults – growth of single crystal: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative).			9
cavity, optical amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction — Industrial and medical applications of Laser- Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) — losses associated with optical fibers — Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber-Endoscopy-Fiber optic communication system. UNIT III THERMAL PHYSICS Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental equations – particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices — inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures — Graphite structure-crystal imperfections: point defects, line defects — Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative).	Lasers : popu	ulation of energy levels, Einstein's A and B coefficients derivation — resonant	
heterojunction — Industrial and medical applications of Laser- Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) — losses associated with optical fibers — Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber- Endoscopy-Fiber optic communication system. UNIT III THERMAL PHYSICS Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures — Graphite structure-crystal imperfections: point defects, line defects — Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative).	1 1		
numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) — losses associated with optical fibers — Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber - Endoscopy-Fiber optic communication system. UNIT III THERMAL PHYSICS Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices — inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures — Graphite structure-crystal imperfections: point defects, line defects — Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative).	• •		
mode) — losses associated with optical fibers — Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber-Endoscopy-Fiber optic communication system. UNIT III THERMAL PHYSICS Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic thermal conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. unit iv UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitativ	-		CO
method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber- Endoscopy-Fiber optic communication system. Image: Communication System. UNIT III THERMAL PHYSICS Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices — inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures — Graphite structure-crystal imperfections: point defects, line defects — Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative).	-		
optical fiber- Endoscopy-Fiber optic communication system. UNIT III THERMAL PHYSICS Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices — inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures — Graphite structure-crystal imperfections: point defects, line defects — Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques-Epitaxial growth-Applications of Single crystal (Qualitative).			
UNIT III THERMAL PHYSICS Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity – Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. Image: Conductivity – Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. Image: Conductive of the conduction furnace and solar water heaters. Image: Conductive of the conduc			
Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative).			9
strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. Image: Conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques-Epitaxial growth-Applications of Single crystal (Qualitative).			
conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative).			
through compound media (series and parallel)-Radial flow of heat– thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative). TOTAL : 45 HOU			
applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative).	-		
UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. CRYSTAL PHYSICS UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative). TOTAL : 45 HOU	•		
Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative).			
 verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative). 			9
physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative). TOTAL : 45 HOU	Black body ra	adiation – Planck's theory (derivation) – Compton effect: theory and experimental	
physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative). TOTAL : 45 HOU			co
- scanning tun-lling microscope-Applications of electron microscopy. UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices — inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures — Graphite structure-crystal imperfections: point defects, line defects — Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative). TOTAL: 45 HOU	physical sign	ificance - Schrödinger's wave equation - time independent and time dependent	
UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials — single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices — inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures — Graphite structure-crystal imperfections: point defects, line defects — Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative). TOTAL : 45 HOU	equations - pa	article in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative)	
Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative).	- scanning tun	nelling microscope-Applications of electron microscopy.	
systems, Bravais lattices, directions and planes in a crystal, Miller indices — inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures — Graphite structure-crystal imperfections: point defects, line defects — Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative). TOTAL : 45 HOU	UNIT V	CRYSTAL PHYSICS	9
systems, Bravais lattices, directions and planes in a crystal, Miller indices — inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures — Graphite structure-crystal imperfections: point defects, line defects — Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative).	Single crystal	lline, polycrystalline and amorphous materials – single crystals: unit cell, crystal	
distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures — Graphite structure-crystal imperfections: point defects, line defects — Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative). TOTAL : 45 HOU	••••		
structures — Graphite structure-crystal imperfections: point defects, line defects — Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative). TOTAL : 45 HOU			CO
vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative).			CU
growth-Applications of Single crystal (Qualitative). TOTAL : 45 HOU			
TOTAL : 45 HOU			
	50wm-Appin		
ILAI DOORS	ΤΕΥΤ ΡΛΛΙ		UΚ
1 Phottochemic D.K. & Doonom T. "Engineering Physics" Oxford University Press 2010			

- 1. Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2019.
- 2. Gaur, R.K. & Gupta, S.L. "Engineering Physics". Dhanpat Rai Publishers, 2017.
- 3. Pandey, B.K. & Chaturvedi, S. "Engineering Physics". Cengage Learning India, 2019.

REFF	EREN	ICE B	OOK	S												
1.	Halliday, D., Resnick, R. & Walker, J. "Engineering Physics". Wiley, 2015.															
2.	Serway, R.A. & Jewett, J.W. "Physics for Scientists and Engineers". Cengage Learning, 2019.								.9.							
3.	Tipler, P.A. & Mosca, G. 'Physics for Scientists and Engineers with Modern Physics'.															
	W.I	H.Free	eman,	2007	•											
COU	RSE (OUTO	COM	ES												
Upon	com	pletion	n of tl	he cou	urse,	stude	ents v	vill bo	e able	e to						
CO1	Gair	1 knov	vledg	e on t	he ba	sics o	of pro	pertie	s of n	natter a	nd its	applica	ations,			
CO2	Acq opti		nowle	edge o	on the	conc	cepts of	of wa	ves ai	nd optic	cal dev	vices ar	nd their	applicat	ions in f	ïber
CO3		e adec xpansi			0			-	s of th	ermal p	proper	ties of	material	ls and th	eirappli	cations
CO4		know] roscop	0		lvanc	ed ph	ysics	conce	epts o	f quant	um the	eory an	nd its ap	plicatior	ns intuni	neling
CO5	Und	erstan	d the	basic	s of c	rystal	ls, the	eir str	ucture	es and d	liffere	nt crys	tal grow	th techn	iques.	
					N	IAPP	PING	OF (COs V	VITH	POs A	ND PS	SOs			
COs				PR	OGF	RAM	OUT	CON	AES ((POs)				GRAM		
005	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO	PO1		COME	L)	s) PSO
	1	$\frac{10}{2}$	3	4	5	6	7	8	9	0	11	2	PSO1	PSO2	PSO3	4
CO1	3	3	3	3	3	2	2	1	3	2	1	2	3	1	2	2
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	1	3	3
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	2	2	2
CO4	3	3	2	2	2	1	1	1	1	1	1	3	3	1	3	3
k	1	1	1	3		1	1	1	1		1	1	1	1	1	

CY4104	ENGINEERING CHEMISTRY	L	Т	Р	С					
Common for all branches of B.E. / B. Tech Programmes300										
OBJECTIVES	5									
 Princip 	les of water characterization and treatment for industrial purposes.									
 Princip 	les and applications of surface chemistry and catalysis.									
 Phase r 	ule and various types of alloys.									
 Various 	s types of fuels, applications and combustion.									
Conven	tional and non-conventional energy sources and energy storage device	ce.								
UNIT I WATER AND ITS TREATMENT										
Hardness of w	vater - Types - Expression of hardness - Units - Estimation of	har	dness	by						
EDTA method	I – Numerical problems on EDTA method – Boiler troubles (scale	e an	d slud	lge,						
caustic embritt	lement, boiler corrosion, priming and foaming) - Treatment of boiler	r fee	d wat	er						
– Internal tr	eatment (carbonate, phosphate, colloidal, sodium aluminate	and	l calg	gon	CO1					
conditioning) – External treatment – Ion exchange process, Zeolite process – Desalination of										
brackish water by reverse Osmosis.										
UNIT II	SURFACE CHEMISTRY AND CATALYSIS				9					
Surface chemi	stry: Types of adsorption – Adsorption of gases on solids – Adsorp	tion	of sol	lute						

υn Ausorption of sonus gases υn Ausoi

from solutions - Adsorption isotherms - Freundlich's adsorption isotherm - Langmuir's	
adsorption isotherm - Kinetics of uni-molecular surface reactions - Adsorption in	
chromatography – Applications of adsorption in pollution abatement using PAC.	CO2
Catalysis: Catalyst – Types of catalysis – Criteria – Contact theory – Catalytic poisoning and	-
catalytic promoters – Industrial applications of catalysts – Catalytic convertor – Auto catalysis	
-Enzyme catalysis – Michaelis-Menten equation.	
UNIT III PHASE RULE AND ALLOYS	9
Phase rule : Introduction – Definition of terms with examples – One component system – Water	
system – Reduced phase rule – Thermal analysis and cooling curves – Two component	
systems – Lead-silver system – Pattinson process.	
Alloys: Introduction – Definition – Properties of alloys – Significance of alloying – Functions	CO3
and effect of alloying elements – Nichrome, Alnico, Stainless steel (18/8) – Heat treatment of	
steel – Non-ferrous alloys – Brass and bronze.	
UNIT IV FUELS AND COMBUSTION	9
Fuels : Introduction – classification of fuels – Comparison of solid, liquid, gaseous fuels – Coal	
– Analysis of coal (proximate and ultimate). – Carbonization – Manufacture of metallurgical	
coke (Otto Hoffmann method) – Petroleum – Cracking – Manufacture of synthetic petrol	
(Bergius process, Fischer Tropsch Process) – Knocking – Octane number – Diesel oil –	
Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power	CO4
alcohol and biodiesel.	
Combustion of fuels : Introduction – Calorific value – Higher and lower calorific values	
– Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignition	
temperature – Explosive range – Flue gas analysis by Orsat Method.	
UNIT V NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES	9
Nuclear energy – Fission and fusion reactions – Differences – Chain reactions – Nuclear	
reactors - Classification of reactors - Light water nuclear reactor for power generation -	
Breeder reactor — Solar energy conversion — Solar cells — Wind energy — Fuel cells —	CO5
Hydrogen-oxygen fuel cell. Batteries – Types of batteries - Alkaline batteries – Lead-acid,	
Nickel-cadmium and Lithium batteries.	
TOTAL : 45 HO	URS

TEXT BOOKS

- 1. P.C.Jain, Monica Jain, "Engineering Chemistry" 17th Ed. Dhanpat Rai Pub. Co., New Delhi,(2015).
- 2. S.S. Dara, S.S. Umare, "A text book of Engineering Chemistry" S.Chand & Co.Ltd., New Delhi(2020).
- 3. S. Vairam, P. Kalyani and Suba Ramesh, "Engineering Chemistry", Wiley India (P) Ltd. NewDelhi, (2018).
- 4. P. Kannan, A. Ravikrishnan, "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company (P) Ltd. Chennai, (2009).

REFERENCE BOOKS

- 1. B.K.Sharma "Engineering chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 2. B. Sivasankar "Engineering chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008).
- 3. Prasanta Rath"Engineering chemistry" Cengage Learning India (P) Ltd., Delhi, (2015).
- 4. Shikha Agarwal, "Engineering Chemistry–Fundamentals and Applications", Cambridge University Press, Delhi, (2015).
- 5. A. Pahari, B. Chauhan, "Engineering chemistry", Firewall Media., New Delhi., (2010).
- 6. Sheik Mideen., Engineering Chemistry, Airwalk Publications, Chennai (2018).

COU	RSE OUTCOMES							
Upon	Upon completion of the course, students will be able to							
CO1	Able to understand impurities in industrial water, boiler troubles, internal and external treatment methods of purifying water.							
CO2	Able to understand concepts of absorption, adsorption, adsorption isotherms, application of adsorption for pollution abatement, catalysis and enzyme kinetics.							
CO3	Able to recognize significance of alloying, functions of alloying elements and types of alloys, uses of alloys. They should be acquainted with phase rule and reduced phase and its applications in alloying.							
CO4	Able to identify various types of fuels, properties, uses and analysis of fuels. They should beable to understand combustion of fuels, method of preparation of bio-diesel, synthetic petrol.							
CO5	Able to understand conventional, non–conventional energy sources, nuclear fission and fusion, power generation by nuclear reactor, wind, solar energy and preparation, uses of various batteries.							

					N	IAPP	ING	OF (COs V	VITH	POs A	ND PS	SOs						
COs		PROGRAM OUTCOMES (POs)												CS (POs) PROGRAM SPE OUTCOMES (P					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO1 2	PSO1	PS O2	PSO3	PS O4			
CO1	3	3	3	3	3	2	3	2	2	2	2	2	2	2	1	2			
CO2	3	3	2	2	2	2	2	1	1	1	1	2	2	1	1	2			
CO3	3	3	3	3	3	2	2	1	2	2	2	2	2	2	2	3			
CO4	3	3	3	2	2	3	3	2	2	3	2	2	3	1	2	1			
CO5	3	2	3	3	3	3	3	2	2	2	2	2	3	2	3	1			

GE4105	PROBLEM SOLVING AND PYTHON PROGRAMMINGLTP	C									
	Common for all branches of B.E. / B. Tech Programmes300										
OBJECTIVI	ĊŚ										
 To kn 	ow the basics of algorithmic problem solving										
To wr	te simple python programs										
 To dev 	velop python program by using control structures and functions										
 To use 	python predefined data structures										
To wr	te file-based program										
UNIT I	ALGORITHMIC PROBLEM SOLVING	9									
Algorithms, Building blocks of algorithms: statements, state, control flow, functions, Notation: pseudo code, flow chart, programming language, Algorithmic problem solving: Basic algorithms, flowcharts and pseudocode for sequential, decision processing and iterative processing strategies, Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.											
UNIT II	INTRODUCTION TO PYTHON	9									

Python Introduction, Technical Strength of Python, Python interpreter and interactive mode, Introduction to colab , pycharm and jupyter idle(s) ,Values and types: int, float, boolean, string, and list; Built-in data types, variables, Literals, Constants, statements, Operators: Assignment, Arithmetic, Relational, Logical, Bitwise operators and their precedence, Expressions, tuple assignment, Accepting input from Console, printing statements, Simple Python programs.								
UNIT	III CONTROL FLOW, FUNCTIONS AND STRINGS	9						
conditi and els argume slices, root, g	tionals: Boolean values and operators, conditional (if), alternative (if-else), chained ional (if-elif-else); Iteration: while, for; Loop manipulation using pass, break, continue, se; Modules and Functions: function definition and use, flow of execution, parameters and ents, local and global scope, return values, function composition, recursion. Strings: string immutability, string functions and methods, string module; Illustrative programs: square cd, exponentiation, sum an array of numbers, linear search, binary search.	CO3						
UNIT		9						
Manip assigni advanc	Defining list and list slicing, list operations, list slices, list methods, list loop, list ulation, mutability, aliasing, cloning lists, list parameters, lists as arrays. Tuples: tuple ment, tuple as return value, tuple Manipulation; Dictionaries: operations and methods; ced list processing — list comprehension; Illustrative programs: selection sort, insertion herge sort, histogram.	CO4						
UNIT		9						
Files a	nd exception: Concept of Files, Text Files; File opening in various modes and closing of							
a file, I	Format Operators, Reading from a file, Writing onto a file, File functions- open(), close(),	CO5						
read(),	readline(), readlines(), write(), writelines(), tell(), seek(), Command Line arguments; Errors	05						
and ex	ceptions: handling exceptions; modules, packages; introduction to numpy, matplotlib.							
Illustra	ative programs: word count, copy a file.							
	TOTAL : 45 H	OURS						
	BOOKS							
1.	Allen B. Downey, "Think Python: How to Think Like a Computer Scientist ", 2 nd edition, Updated for Python 3, Shroff/O_Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/)							
2.								
	updated for Python 3.2, Network Theory Ltd., 2011.							
3.	Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University	sity						
	Press, 2019.	•						
	RENCE BOOKS							
1.	John V Guttag, —Introduction to Computation and Programming Using Python_,							
	Revised and expanded Edition, MIT Press, 2013							
2.	Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in	-						
_	Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016							
3.	Timothy A. Budd, —Exploring Python, Mc-Graw Hill Education (India) Private Ltd., 2							
4.	Kenneth A. Lambert, —Fundamentals of Python: First Programs, CENGAGE Learning,	, 2012.						
5.	Charles Dierbach, —Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013.							

6. Paul Gries, Jennifer Campbell and Jason Montojo, —Practical Programming: An Introduction.

COU	COURSE OUTCOMES						
Upon completion of the course, students will be able to							
CO1	Develop algorithmic solutions to simple computational problems						
CO2	Develop simple console application in python						
CO3	Develop python program by applying control structure and decompose program into functions.						
CO4	Represent compound data using python lists, tuples, and dictionaries.						
CO5	Read and write data from/to files in Python.						

					MA	PPIN	GO	FCO	s WI	ГН РС)s AN	D PS	Os						
COs				PRO	GRA	M O	OUTC	OMI	ES (P	Os)			PROGRAM SPECIFIC OUTCOMES (PSOs)						
	PO	PO2	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO4			
	1		3	4	5	6	7	8	9	10	11	12	1	2	3				
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3	3			
CO2	3	3	3	3	2	-	-	-	-	2	2	2	1	3	3	3			
CO3	3	3	3	3	2	-	-	-	-	2	2	2	1	3	3	3			
CO4	3	3	3	3	2	-	-	-	-	2	2	2	3	1	3	1			
CO5	3	3	3	3	2	-	1	-	-	2	2	2	3	1	3	1			

GE4106	ENGINEERING GRAPHICS L T	P	С
	Common for all branches of B.E. / B. Tech Programmes 2 0	4	4
OBJECTIVE	Ś		
✤ To dev	elop in students, graphic skills for communication of concepts, ideas and design of		
Engine	ering products		
 To exp 	ose them to existing national standards related to technical drawings.		
CONCEPTS	AND CONVENTIONS (Not for Examination)		1
Importance of	f graphics in engineering applications – Use of drafting instruments –		
BIS conventio	ons and specifications – Size, layout and folding of drawing sheets –		
Lettering and	limensioning.		
UNIT I	PLANE CURVES AND FREEHAND SKETCHING	7-	-12
Basic Geometr	ical constructions, Curves used in engineering practices: Conics - Construction of		
	ola and hyperbola by eccentricity method - Construction of cycloid -		
	f involutes of square and circle – Drawing of tangents and normal to the above		
	alization concepts and Free Hand sketching: Visualization principles -		
-	of Three-Dimensional objects - Layout of views- Freehand sketching of	C	01
*	s from pictorial views of objects		
UNIT II	PROJECTION OF POINTS, LINES AND PLANE SURFACE	6-	⊦12
	projection- principles-Principal Planes-First angle projection-projection of points.		
•	traight lines (only First angle projections) inclined to both the principal planes -		
	of true lengths and true inclinations by rotating line method and traces Projection	C	02
	ygonal and circular surfaces) inclined to both the principal planes by rotating		
object method.			
UNIT III	PROJECTION OF SOLIDS		-12
	imple solids like prisms, pyramids, cylinder, cone and truncated solids when the	C	03
axis is inclined	to one of the principal planes by rotating object method.		
UNIT IV	PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES	6-	+12

one of the prin	bove solids in simple vertical position when the cutting plane is inclined to the cipal planes and perpendicular to the other — obtaining true shape of section. f lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and	CO4			
UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS					
Principles of isometric projection — isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple					
vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.					

TOTAL : 90 HOURS

- TEXT BOOKS
 1. Natarajan K.V., —A text book of Engineering Graphics, Dhanalakshmi Publishers, Chennai, Twenty Ninth Edition 2016
 - 2. Venugopal K. and Prabhu Raja V., —Engineering Graphics, New Age International (P) Limited, 2011.

REFERENCE BOOKS

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019.
- 2. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
- 3. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2018.
- 4. Luzzader, Warren.J. and Duff,John M., —Fundamentals of Engineering Drawing with an introduction to Interactive Comput er Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 5. N S Parthasarathy and Vela Murali, "Engineering Graphic", Oxford University, Press, New Delhi, 2015.
- 6. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Understand the fundamentals and standards of Engineering graphics
- CO2 Perform freehand sketching of basic geometrical constructions and multiple views of objects
- CO3 Understand the concept of orthographic projections of lines and plane surfaces
- CO4 Draw the projections of section of solids and development of surfaces
- CO5 Visualize and to project isometric and perspective sections of simple solids

	MAPPING OF COs WITH POs AND PSOs																	
				PRO	GRA	MO	UTC	COMI	ES (P	Os)			PROGRAM SPECIFIC					
COs													OUTCOMES (PSOs)					
	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO		
		2	3	4	5	6	7	8	9	10	11	12	1	2	3	4		
CO1	-	3	3	3	-	-	-	-	3	3	3	-	-	-	-	3		
CO2	-	3	3	3	-	-	-	-	3	3	3	-	-	-	-	3		
CO3	-	3	3	3	-	-	-	-	3	3	3	-	-	-	-	3		
CO4	-	3	3	3	-	-	-	-	3	3	3	-	-	-	-	3		
CO5	-	3	3	3	-	-	-	-	3	3	3	-	-	-	-	3		

GE4151	HERITAGE OF TAMILS	L	Т	Ρ	С
	Common for all branches of B.E. / B. Tech Programmes	1	0	0	1
UNIT I	LANGUAGE AND LITERATURE			3	\$
Language Fa	milies in India - Dravidian Languages – Tamil as a Classical Language - C	las	sical		
Literature in	Tamil - Secular Nature of Sangam Literature - Distributive Justice in S	San	gam		
Literature - I	Management Principles in Thirukural - Tamil Epics and Impact of Budo	dhis	m &		
Jainism in Ta	mil Land - Bakthi Literature Azhwars and Nayanmars - Forms of minor I	Poe	try -	C C	:01
Developmer	nt of Modern literature in Tamil - Contribution of Bharathiya	ar	and		
Bharathidha	san.				
	HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTU	IRE		3	3
Hero stone	to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of	tem	ple		
car making	- Massive Terracotta sculptures, Village deities, Thiruvalluvar Sta	tue	at		
Kanyakuma	ri, Making of musical instruments - Mridhangam, Parai, Veenai, Yaz	zh a	and	С	02
Nadhaswara	am - Role of Temples in Social and Economic Life of Tamils.				
	FOLK AND MARTIAL ARTS			3	}
Therukoothu	, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leather pu	рре	try,		
Silambattam	Valari, Tiger dance - Sports and Games of Tamils.				_
	THINAI CONCEPT OF TAMILS			3	03
-	auna of Tamils & Aham and Puram Concept from Tholkappiyam and S	and	am	3)
	Aram Concept of Tamils - Education and Literacy during Sangam Age - A	•			
	orts of Sangam Age - Export and Import during Sangam Age - Overseas Co			6	.
of Cholas.		1.			04
	CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AN			<u> </u>	
UNIT V	INDIAN CULTURE			3	\$
	of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils o				
	f India — Self-Respect Movement - Role of Siddha Medicine in Indig	geno	ous	6	
Systems of I	Medicine — Inscriptions & Manuscripts – Print History of Tamil Books.				05
	TOTAL	: 1	5 PE	RIO	D
EXT-CUM-REFE	RENCE BOOKS				
1. தமிழ	க வரலாறு - மக்களும் பண்பாடும் - கே கே பிள்ளை (வெளியீ(டு த	5மிழ	р _Б г	тЬ
பாடந	ால் மற்றும் கல்வியியல் பணிகள் கழகம்)				
2. கணி	னித் தமிழ் - முனைவர் இல. சுந்தரம் (விகடன் பிரசுரம்)				
	- வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லிய	பல்	ച്ചണ	am	
ு. ூ <u>ச</u> ு வெளி		- •	<u> </u>	ر نے	
	-				
4. பொரு	நை - ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)				

- 5. Social Life of Tamils (Dr. K. K. Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr. S. Singaravelu) (Published by: International Institute of Tamil Studies.
- Historical Heritage of the Tamils (Dr. S. V. Subatamanian, Dr. K. D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Published by: International Institute of Tamil Studies.)
- Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr. K. K. Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R. Balakrishnan) (Published by: RMRL) Reference Book.

GE4151	தமிழர் மரபு	L	Т	Ρ	С
	Common for all branches of B.E. / B. Tech Programmes	1	0	0	1
ച്ച ல கு I	மொழி மற்றும் இலக்கியம்			3	5
தமிழ் செவ் சங்க இலக் கருத்துக்கள் பௌத்த ச நாயன்மார் பாரதியார் ப	ாழிக் குடும்பங்கள் - திராவிட மொழிகள் - தமிழ் ஒரு செம்மெ விலக்கியங்கள் - சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன் க்கியத்தில் பகிர்தல் அறம் - திருக்குறளில் மேலாண் எ - தமிழ் காப்பியங்கள், தமிழகத்தில் மற்றும் தமிழகத்தில் ச மயங்களின் தாக்கம் - பக்தி இலக்கியம் alwargal மர கள் - சிறுகவிதை வடிவங்கள் - தமிழில் இலக்கிய வள மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு. மரபு - பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை - சி	மை மன ற்று ர்ச்	ை ன ம் செ	с	01
	ക്കരാ കഞ്ഞ		105	3	5
மற்றும் அ செய்யும் குமரிமுனை	தல் நவீன சிற்பங்கள் வரை- ஐம்பொன் சிலைகள்- பழங்குடி வர்கள் தயாரிக்கும் கைவினைப் பொருட்கள், பொம்மைகள் கலை - சுடுமண் சிற்பங்கள் - நாட்டுப்புறத் தெய்வங்க னயில் திருவள்ளுவர் சிலை இசை கருவிகள் மிருதங்கம், எழ், நாதஸ்வரம்- தமிழர்களின் சமூக பொருளாதார வா ரின் பங்கு.	- தே கள் பன	தர் - றை,	с	02
அலகு III	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்			3	}

ച്ചം	த IV தமிழர்களின் திணைக் கோட்பாடுகள்	3
எழு சங்	ழர்கள் போற்றிய அறக்கோட்பாடுகள் , சங்ககாலத்தில் தமிழகத்தில் த்தறிவும் கல்வியும் சங்ககால நகரங்களும் துறை முகங்களும் ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி கடல்கடந்த நாடுகளின் ழர்களின் வெற்றி.	CO
ച്ചം	் தமிழர்களின் பங்களிப்பு	3
பிற இந்§	திய விடுதலை போராட்டத்தில் தமிழர்களின் பங்களிப்பு - இந்தியாவின் பகுதிகளில் தமிழ் பயன்பாட்டின் தாக்கம் - சுயமரியாதை இயக்கம் - திய மருத்துவ முறைகளில் சித்த மருத்துவத்தின் பங்கு - கல்வெட்டுகள் றம் கையெழுத்துப்படிகள் - தமிழ் புத்தகங்களின் அச்சு வரலாறு.	CO
	TOTAL : 15 PEI	RIOD
EXT-C	UM-REFERENCE BOOKS	
1.	தமிழக வரலாறு - மக்களும் பண்பாடும் - கே கே பிள்ளை (வெளியீடு தமிழ்	்நா(
	பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்)	
2.	கணினித் தமிழ் - முனைவர் இல. சுந்தரம் (விகடன் பிரசுரம்)	
	கீழடி - வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துன	m
-	வெளியீடு)	2
4.	பொருநை - ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)	
	Social Life of Tamils (Dr. K. K. Pillay) A joint publication of TNTB & ESC and RMRL – (in	nrint
	Social Life of the Tamils - The Classical Period (Dr. S. Singaravelu) (Published by	
-	International Institute of Tamil Studies.	,
7.	Historical Heritage of the Tamils (Dr. S. V. Subatamanian, Dr. K. D. Thirunavukkarase	u)
	(Published by: International Institute of Tamil Studies).	
8.	The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Published by	y:
	International Institute of Tamil Studies.)	
9.	Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published b	y:
	Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation	n,
	Tamil Nadu)	
	Studies in the History of India with Special Reference to Tamil Nadu (Dr. K. K. Pillay	y)
10.	(Published by: The Author)	
	Desure Civilization (Isinthy Dublished by Description of Ascharabers, 9, Tarel Market Ta	.
	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Te Bookand Educational Services Corporation, Tamil Nadu)	xt
11.	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Te Bookand Educational Services Corporation, Tamil Nadu) Journey of Civilization Indus to Vaigai (R. Balakrishnan) (Published by: RMRL) – Referen	

GE4107	PYTHON PROGRAMMING LABORATORYL		C
	Common for all branches of B.E. / B. Tech Programmes0) 4	2
To implUse funReprese	e, test, and debug simple Python programs. lement Python programs with conditionals and loops. ctions for structuring Python programs. ent compound data using Python lists, tuples, and dictionaries. ad write data from/to files in Python.		
LIST OF EXP	ERIMENTS		
1. Write an	algorithm and draw flowchart illustrating mail merge concept.		
technica	algorithm, draw flowchart and write pseudo code for a real life or scientific or al problems		
	ic problem-solving using decision making and looping. Armstrong number, palindrome of a number, Perfect number.	(C O 1
•	programming for one dimensional and two-dimensional arrays. Transpose, addition, multiplication, scalar, determinant of a matrix to explore string functions and recursive functions.		
• • •	g Functions' in Python Find mean, median, mode for the given set of numbers in a list. Write a function dups to find all duplicates in the list. Write a function unique to find all the unique elements of a list. Write function to compute gcd, lcm of two numbers. rate the use of Dictionaries and tuples with sample programs.	(CO
	nt Searching Operations: Linear and Binary Search.		
9. To sort	the n' numbers using: Selection, Merge sort and Insertion Sort.		
10. Find the	e most frequent words in a text of file using command line arguments.		
11. Demon	strate Exceptions in Python.		CO
12. Applica	tions: Implementing GUI using turtle, pygame.		
	TOTAL: 60	HOU	JR
2019 2. Allen B Edition	BOOKS Thareja, Python Programming: Using Problem Solving Approach, Oxford Unive . Downey, — Think Python: How to Think Like a Computer Scientist, Second .Updated for Python 3, Shroff/O'Reilly Publishers, 2016. —Learning Python: Powerful Object-Oriented Programming; Fifth edition, 2013.	rsityP	'res
 4. David I 2009. 5. David N 	M.Baezly — Python Essential Reference. Addison-Wesley Professional; Fourth A. Baezly — Python Cookbook. O'Reilly Media; Third edition (June 1, 2013)	editio	on,
WEB REFER			
1. http://ww	-		
COURSE OU	FCOMES ion of the course, students will be able to		

(CO2	Use python built in data structures like lists, tuples, and dictionaries for representing compound
		data.
(CO3	Read and write data from/to files in Python and applications of python.

	MAPPING OF COs WITH POs AND PSOs															
COs				PRO	PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	3	3	3	2	-	-	-	-	2	2	2	2	2	2	2
CO2	3	3	3	3	2	-	-	-	-	2	2	2	2	2	2	2
CO3	3	3	3	3	2	-	-	-	-	2	2	2	1	1	1	2

BS4108	PHYSICS AND CHEMISTRY LABORATORY	L	T	Р	C
	(Common to all branches of B.E. / B. Tech Programmes)	0	0	4	2
 The Price The O Electric Enable To mathematication To mathematication Instruct LIST OF EX (A minimum 1. Determination 		netry	,		
3. Determinat	ion of Young's modulus of the material of the given beam by uniform ben ion of rigidity modulus of the material of the given wire using torsion pen			hod.	CO1
	tion of wavelength of mercury spectra using Spectrometer and grating.				I
(b) Determina 7. Determinat	ination of wavelength and particle size using a laser. ation of Numerical and acceptance angle of an optical fibre. tion of energy band gap of the semiconductor.				CO2
	ion of coefficient of thermal conductivity of the given bad conductor usin RATION EXPERIMENT	g Le	e's c	lisc.	
1. Determ	ination of thickness of a thin sheet / wire – Air wedge method				CO1
	PERIMENTS – CHEMISTRY of 6 experiments to be performed from the given list)				
1. Determ	ination of chloride content of water sample by argentometric method. ion of copper content of the given solution by Iodometry.				CO3
3. Determ	ination of strength of given hydrochloric acid using pH meter.				I

4. D	Determination of strength of acids in a mixture of acids using conductivity meter.	
5. E	stimation of iron content of the given solution using potentiometer.	COA
6. D	Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer.	CO4
7. C	Conductometric titration of strong acid vs strong base.	
	stimation of HCl using Na ₂ CO ₃ as primary standard and determination of alkalinity in water sample.	
9. D	Determination of total, temporary & permanent hardness of water by EDTA method.	CO5
10.	Determination of DO content of water sample by Winkler's method.	
DEMO	NSTRATION EXPERIMENTS	
	Stimation of iron content of the water sample using spectrophotometer (1,10-Phenanthroline / thiocyanate method).	CO3
2. E	stimation of sodium and potassium present in water using flame photometer.	CO5
	TOTAL: 60 H	OURS
CO1	Able to understand the concept about the basic properties of matter like stress, strain and typ moduli Able to understand the concept of optics like reflection, refraction, diffraction by using spectrometer grating.	bes of
CO2	Able to understand the thermal properties of solids, specific heat and some models for speci calculation. Able to understand the working principle of laser components and working of different laser system. Able to understand the phenomenon of light, applications of fibre optics.	
CO3	Able to understand the concept of determining the pH value by using pH meter. Able to understand the concept about the amount of chloride present in the given sample of	water.
CO4	Able to understand the concept of determining the emf values by using potentiometer Able to understand the concept about the measurement of conductance of strong acid and str base by using conductivity meter.	ong
CO5	Able to understand the amount of dissolved oxygen present in the water. Able to understand the concept of estimation of hardness of water by EDTA method. Able to understand the concept of estimation of alkalinity in water sample.	

		MAPPING OF COs WITH POs AND PSOs														
		PROGRAM OUTCOMES (POs) PROGRAM SPECIFIC														
COs		OUTCOMES (PSOs)														
	PO	PO P														PSO
	1	2	3	4	5	6	7	8	9	10	1	12	1	02	03	4
CO1	3	1	2	2	2	1	1	1	3	2	2	3	2	2	2	2
CO2	3	1	2	1	1	1	1	1	2	1	1	2	2	2	2	1
CO3	3	1	2	1	2	2	2	1	2	1	1	1	2	-	1	1
CO4	4 3 2 1 1 2 1 1 2 1 1 2 2 - 1 2										2					
CO5	3	2	1	1	1	2	2	1	2	1	2	1	1	-	1	2

SEMESTER II

HS4201	PROFESSIONAL ENGLISH	L	Т	P	С
	(Common to all branches of B.E. / B. Tech. Programmes)	3	0	0	3
OBJECTIVES					
 To enga 	ge learners in meaningful language activities to improve their LSRW skill	s			
 To enha 	nce learners' awareness of general rules of writing for specific audiences				
 To help 	learners understand the purpose, audience, contexts of different types of w	ritin	g		
 To deve 	lop analytical thinking skills for problem solving in communicative contex	xts	-		
 To demo 	onstrate an understanding of job applications and interviews for internship	and	place	eme	nts
UNIT I	MAKING COMPARISONS		-		9
and filling a C Marketing a pr manuals, broch	luative Listening: Advertisements, Product Descriptions, -Audio / video; L Graphic Organiser (Choosing a product or service by comparison) Spectroduct, Persuasive Speech Techniques. Reading - Reading advertisement ures; Writing – Professional emails, Email etiquette - Compare and Contrast nitions; Grammar –Prepositional phrases. Vocabulary – Contextual mea	aking its, u st Es	g – iser say	C	01
UNIT II	EXPRESSING CASUAL RELATIONS IN SPEAKING AND WRIT	ING			9
technical inforr effects - Speaki reports. Readin complaint, Wr	ening to longer technical talks and completing– gap filling exercises. Listenation from podcasts – Listening to process/event descriptions to identify ong – Describing and discussing the reasons of accidents or disasters based og - Reading longer technical texts– Cause and Effect Essays, and Letters/ exiting - Writing responses to complaints. Grammar - Active Passives, Infinitive and Gerunds; Vocabulary – Word Formation (Noun-Verb-Active)	caus on ne mail e Vo	e & ews s of oice	C	02
UNIT III	PROBLEM SOLVING				9
and suggesting Strategies, Rea to the Editor,	tening to / Watching movie scenes/ documentaries depicting a technical p solutions. Speaking – Group Discussion (based on case studies) - techniq ding - Case Studies, excerpts from literary texts, news reports etc. Writing Checklists, Problem solution essay / Argumentative Essay. Grammar onditional sentences Vocabulary - Compound Words, Sentence Completion	ues : – Le – Ei	and tter	C	203
UNIT IV	REPORTING OF EVENTS AND RESEARCH				9
writing, Summ select topics; R Report, Survey	stening Comprehension based on news reports – and documentaries – arising, Speaking –Interviewing, Presenting an oral report, Mini presentate eading –Newspaper articles; Writing – Recommendations, Transcoding, A Report Grammar – Reported Speech, Subject-verb agreement, Vocabuse of prepositions	tions Accid	on lent	C	204
UNIT V	THE ABILITY TO PUT IDEAS OR INFORMATION COGENTLY				9
interview perfo virtual interview	stening to technical talks, Presentations, Formal job interviews, (analysis rmance); Speaking – Participating in a Role play, (interview/telephone interview, ws, Making presentations with visual aids; Reading – Company profiles, St OP), an excerpt of interview with professionals; Writing – Job / Interview, Nature 2006, 2007, 200	ervie atem	w), ent	C	205

application – Cover letter & Resume; Grammar – Numerical adjectives, Relative Clauses Vocabulary – Easily confused words.

TOTAL: 45 HOURS

TEX	T BOOKS
1. E	nglish for Engineers & Technologists (2020 edition) Orient Blackswan Private Ltd. Department of
E	nglish, Anna University.
	nglish for Science & Technology Cambridge University Press 2021. Authored by Dr. Veena Selvam,
	r. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani,
D	epartment of English, Anna University.
	aman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford university press. New elhi.
REF	ERENCE BOOKS
1. Im	prove Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, New Delhi.
2. Le	earning to Communicate – Dr. V. Chellammal. Allied Publishers, New Delhi, 2003
3. Bu	usiness Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.
4. De	eveloping Communication Skills by Krishna Mohan, Meera Banerji-Macmillan India Ltd. 1990, Delhi.
	COURSE OUTCOMES
	Upon completion of the course, students will be able to
CO1	To compare and contrast products and ideas in technical texts.
CO2	To identify cause and effects in events, industrial processes through technical texts.
CO3	To analyse problems in order to arrive at feasible solutions and communicate them orally and in the written format.
CO4	To report events and the processes of technical and industrial nature.
COF	To present their opinions in a planned and logical manner, and draft effective resumes in context of
CO5	job search.

					MA	PPIN	GO	F CO	s WI	ГН РС	Os AN	D PS	Os			
				PRO	PROGRAM SPECIFIC											
COs						OUTCOMES (PSOs)										
	PO1 PO												PSO			
		2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	I	I	1	1	I	1	1	I	1	2	2	2	2	-	1	1
CO2	I	I	1	1	I	1	1	I	1	2	2	2	2	-	2	1
CO3	I	I	2	1	I	I	1	I	1	3	2	2	1	-	2	1
CO4	I	I	2	1	I	2	2	1	2	3	2	3	1	-	2	1
CO5	-	-	1	2	-	2	2	1	1	3	2	3	2	-	1	1

MA4202	STATISTICS AND NUMERICAL METHODS	L	Т	P	С
	(Common for all branches of B.E. / B. Tech Programmes)	3	1	0	4
OBJECTIV	ES				
 This c 	course aims at providing the necessary basic concepts of a few statistical an	d nur	neri	cal n	nethods
and g	ive procedures for solving numerically different kinds of problems occurrin	ig in	engi	ineeri	ing and
techno					
	quaint the knowledge of testing of hypothesis for small and large samples whin real life problems.	ch pla	ays a	an im	portant
	roduce the basic concepts of solving algebraic and transcendental equations.				
	roduce the numerical techniques of interpolation in various intervals and num		cal te	echni	ques of
	entiation and integration which plays an important role in engineering and te				
	quaint the knowledge of various techniques and methods of solving ordinary of				
UNIT I	TESTING OF HYPOTHESIS				12
Sampling dist	ributions - Tests for single mean, proportion and difference of means (Larg	ge an	d sr	nall	
samples) – Te	ests for single variance and equality of variances - Chi square test for good	lness	of f	it –	CO1
Independence	of attributes.				
UNIT II	DESIGN OF EXPERIMENTS				12
	two-way classifications - Completely randomized design - Randomized block	ock c	lesig	gn –	
Latin square d	esign - 2 ² factorial design.				CO2
UNIT III	SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS				12
	gebraic and transcendental equations by Newton Raphson method - Solut				
	uations - Gauss elimination method - Pivoting - Gauss Jordan method		terat	tive	CO3
	auss Jacobi and Gauss Seidel - Eigenvalue of a matrix by Power method.				
UNIT IV	INTERPOLATION AND NUMERICAL CALCULUS				12
	s – Newton's forward, Newton's backward and Lagrange's - Appro				
	sing interpolation polynomials – Numerical single and double integra	ition	s us	ing	
-	and Simpson's 1/3 rules.				CO4
UNIT V	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQ				12
0 1	ethods: Taylor's series method - Euler's method - Modified Euler's method				
	Kutta method for solving first order differential equations - Multi ste				~~~
	Adams- Bash forth predictor corrector methods for solving first order	diff	eren	itial	CO5
equations.			T	(A 11	
		JIA	L:	60 H	OURS
TEXT BOO	KS				
1. Grewa	l. B.S. and Grewal. J.S., "Numerical Methods in Engineering and Scie	ence	", 1	0th 1	Edition,
Khanna Publi	shers, New Delhi, 2015.				
2. Johnso	n, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Sta	tistic	s fo	r	
Engineers", 1	Pearson Education, Asia, 8th Edition, 2015.				

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 2006.
- 4. Gupta S.C. and Kapoor V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 12th Edition, 2020.
- 5. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines on Probability and

St	tatistics	s", Tata	a McC	Graw	Hill I	Editic	on, 4tl	h Edit	tion, 2	2012.						
6. W	/alpole	. R.E.,	Myer	s. R.]	H., M	[yers.	S.L.	and Y	le. K	., "Pro	babili	ty and	Statistic	s for Eng	ineers	
ar	nd Scie	ntists",	9th H	Editio	n, Pe	arson	n Edu	catior	n, Asi	a, 201	0.	•		C		
COU	RSE O	UTCO	OME	S												
Upon	comp	letion	of the	e cou	rse, s	tude	nts w	ill be	able	to						
CO1	App	oly the	conce	ept of	testi	ng of	hypo	othesis	s for s	small a	and la	ge sar	nples in	real life p	oroblems	•
CO2	App	oly the	basic	conc	epts	of cla	ssific	ation	s of d	lesign	of exp	erime	nts in the	e field of	agricultu	re.
CO3		oreciate nnique:												and appl	y the nur	nerical
CO4	ord	inary	diffe	rentia	l equ	ation	s.		1					g first ar		
CO5		ve the ineerir		•		ential	equa	tions	with	initia	l cond	itions	by using	certain t	technique	es with
					MA	PPIN	G OI	FCO	s WI'	ГН РС	Ds AN	D PSO	Os			
COs	PROC	GRAM	OUT	ΓΟΟΙ	MES	(POs	5)						_	GRAM		-
	PO1	PO2	PO	PO	PO	PO	PO			PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO4
601			3	4	5	6	7	8	9	0	1	2				
CO1	2	3	2	2	2	-	-	-	-	-	-	1	1	1	1	1
CO2	2	3	1	1	2	-	-	-	-	-	-	1	1	1	1	1
CO3	2	2	1	1	1	-	-	-	-	-	-	1	2	2	2	1
CO4	2	2	1	0	1	-	-	-	-	-	-	1	2	2	2	1
CO5	3	2	2	1	0	İ _	-			1		1	2	3	2	1

PH4252	2	PHYSICS FOR ELECTRONICS ENGINEERING	L	Т	P	С
		Common for ECE and EEE branches	3	0	0	3
OBJEC	TIVES					
Enable tl	he stude	ents to				
*	Under	stand the transport properties of conducting materials and their modeling u	ising	g		
classical	and qua	antum theories,				
*	Acqui	re knowledge in semiconductors and their applications in various devices				
*	Grasp	the principles of magnetic and dielectric materials and their applications				
*	Under	stand the functioning of optical materials for optoelectronics Understand	the ł	oasic	s of	
quantum	structu	res, properties of nano materials and their applications.				
UNIT I	[CONDUCTING MATERIALS				9
Classic	al free	electron theory - Expression for electrical conductivity - Thermal con	duct	ivity	/,	
express	ion -Wi	edemann-Franz law - Success and failures - electrons in metals - Particle	in a	thre	e	
dimens	ional bo	ox -degenerate states - Fermi-Dirac statistics - Density of energy states - E	lecti	ron i	n C	01
		ial: Bloch theorem - metals and insulators - Energy bands in solids - tigh			-	

approximation - Electron effective mass - concept of hole.		
UNIT II PHYSICS OF SEMICONDUCTOR DEVICES		9
Intrinsic Semiconductors - Energy band diagram - direct and indirect band gap semiconductors		
Carrier concentration in intrinsic semiconductors - extrinsic semiconductors - carrier concentration		
in n-type & p-type semiconductors - carrier transport: velocity-electric field relations drift and		
diffusion transport - Einstein's relation - Hall effect and devices - Zener and avalanche breakdown	C	02
in p-n junction diode - Zener diode as voltage regulator - Ohmic contacts - tunnel diode - Schottky		
diode -MOS Capacitor.		
UNIT III MAGNETIC AND DIELECTRIC MATERIALS		9
Origin of magnetic moment - Bohr magneton - Microscopic and macroscopic classification of		
magnetic materials: diamagnetic, paramagnetic and ferromagnetic materials - Domain theory -	C	03
Hysteresis (based on domain theory) - soft and hard magnetic materials - Ferrites - applications.		
Dielectric materials: Polarization processes - internal field - Clausius-Mosotti relation - dielectric		
loss - dielectric breakdown.		
UNIT IV OPTICAL MATERIALS		9
Classification of optical materials - carrier generation and recombination processes -Absorption,		
emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo	C	04
current in p-n junction diode - solar cell - photo detectors - LED - Organic LED - excitons -		
quantum confined Stark effect - quantum dot laser, quantum well laser.		
UNIT V NANO ELECTRONIC DEVICES		9
Introduction - electron density in bulk material - size dependence of Fermi energy - quantum		
confinement -quantum structures - Density of states in quantum well, quantum wire and quantum		05
dot structures - resonant tunneling - quantum interference effects - mesoscopic structures -		
Coulomb blockade effects - Single electron phenomena and Single electron Transistor - magnetic		
semiconductors - spintronics, Spintronic Devices: Spin Valve, Spin FET- Carbon nanotubes:		
Types, Preparation-CVD, Properties and applications.		
TOTAL : 45 H	[0]	URS
TEXT BOOKS		
1. Ben Streetman and Sanjay Banerjee Solid State Electronic Devices, Prentice Hall, 6 th Edition,	200)5.
2. Donald Neaman, Dhrubes Biswas, Semiconductor Physics and Devices (SIE), 4 th Edition, 201	7.	
3. Umesh K Mishra & Jasprit Singh, Semiconductor Device Physics and Design, Springer, 2008.		
4. Adaptation by Balasubramanian, R, Callister, Material Science and Engineering, Wiley India F Ltd., 2 nd Edition, 2014.		
5. Mani. P, Physics for Electronics Engineering, Dhanam Publishers, 2017.		
6. Salivahanan, S., Rajalakshmi, A., Karthie, S., Rajesh, N. P., Physics for Electronics Engineerir Information Science, McGraw Hill Education (India) Private Limited, 2018.	ng a	and
REFERENCE BOOKS		
 7.Traugott Fischer, Materials Science for Engineering Students, 1st Edition, Elsevier, 2009. 8.Budinski, K.G. & Budinski, M.K. Engineering Materials Properties and Selection, Prentice Hall 9.Rogers, B., Adams, J., & Pennathur, S. Nanotechnology: Understanding Small Systems, CRC P 2014. 10.Hanson, C.W. Fundamentals of Nanoelectronics, Paerson Education, 2000. 		

10. Hanson, G.W. Fundamentals of Nanoelectronics, Pearson Education, 2009.

11.Kwok Ng, Simon Sze, and Yiming Li, Physics of Semiconductor Devices, 2006

COU	RSE OUTCOMES
Upon	completion of the course, students will be able to
CO1	Gain knowledge on classical and quantum free electron theories and formation of energy band structures.
CO2	Gain knowledge on semiconducting devices and its applications.
CO3	Acquire knowledge on magnetic and dielectric materials and their applications.
CO4	Understand the relationship of optoelectronic materials and their applications.
CO5	Acquire knowledge about the nano structures and its applications.

MAPPING OF COS WITH POS AND PSOS

COs	PROG	FRAM	OUT	[CO]		PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	-	-	-	-	-	-	3	3	-	3	-
CO2	3	3	3	3	1	-	-	-	-	-	-	3	3	-	3	-
CO3	3	3	3	3	1	-	-	-	-	-	-	3	3	-	3	-
CO4	3	3	3	3	2	-	-	-	-	-	-	3	3	-	3	-
CO5	3	3	3	3	2	-	-	-	-	1	-	3	3	-	3	-

GE4204	ENVIRONMENTAL SCIENCE AND ENGINEERING	L	Τ	P	С
Common for all	Branches of B.E. / B. Tech Programmes	3	0	0	3
OBJECTIVES					

* To study the inter relationship between living organism and environment.

To appreciate the importance of environment by assessing its impact on the human world; envision the * surrounding environment, its functions and its value.

To find and implement scientific, technological, economic and political solutions to environmental * problems.

* To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

To study the dynamic processes and understand the features of the earth's interior and surface. *

ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY UNIT I

Definition, scope and importance of environment – Need for public awareness – Role of Individual in Environmental protection – Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Food chains, food webs and ecological pyramids – Ecological succession – Types, characteristic features, structure and function of forest, grass land, desert and aquatic (ponds, lakes, rivers, CO1 oceans, estuaries) ecosystem.

9

Biodiversity – Definition – Genetic, species and ecosystem diversity – Value of biodiversity – Consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega diversity nation – Hot spots of biodiversity -Threats to biodiversity– Habitat loss, poaching of wild life, human-wildlife conflicts – Wildlife

UNT II ENVIRONMENTAL POLLUTION 5 Definition Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Nuclear hazards – Solid waste management: causes, effects and control measures of municipal solidwastes CO2 Problems of e-waste – Role of an individual in prevention of pollution – Pollution causetudies – Diods, earthquake, cyclone, tsunami and landslides – Field study of local polluted site – Urban / Rural / Industrial / Agricultural. CO2 UNT III NATURAL RESOURCES S Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overtuilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources: Uses and exploitation – Environmental effects ofervatering and using mineral resources: Uses and exploitation – Environmental effects or forwing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources - Equitable use of resources to sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. S UNTT IV SOCIAL ISSUES AND THE ENVIRONMENT S From unsustainable life styles – Field study of local area to document environmental organization – Enviro	UNIT II ENVIRONMENTAL POLLUTION 9 Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management: causes, effects and control measures of municipal solidwastes CO2 Problems of e-waste – Role of an individual in prevention of pollution – Pollution casestudies – Disaster management – Floods, earthquake, cyclene, tsunami and landslides – Field study of local polluted site – Urban / Rural / Industrial / Agricultural. 9 Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overuitization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and using mineral resources – Case studies – Food resources: World food problems – Changes CO3 caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Case studies – Leand degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestybes – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. 9 Prom unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Widhle protection Act – Forest conservation A	protection act and forest conservation act - Endangered and endemic species - Conservation of	
Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management: causes, effects and control measures of municipal solidwastes Problems of e-waste – Role of an individual in prevention of pollution – Pollution casestudies – Disaster management – Floods, earthquake, cyclone, tsunami and landslides – Field study of local polluted site – Urban / Rural / Industrial / Agricultural. UNIT III NATURAL RESOURCES Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and over-utilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources: Uses and exploitation – Environmental effects ofextracting and using mineral resources – Case studies – Food resources: World food problems – Changes CO3 caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Case studies – Energy resources – Case studies – Land resources – Cand as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources if or sustainable lifestyles – Field study of local area to document environmental assets – River / Forset / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT S From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watersh	Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (c) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management: causes, effects and control measures of municipal solidwastes (CO2 – Problems of e-waste – Role of an individual in prevention of pollution – Pollution casestudies – Disaster management – Floods, earthquake, cyclone, tsumami and landslides – Field study of local polluted site – Urhan / Rural / Industrial / Agricultural. UNIT III NATURAL RESOURCES 9 Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on foresis and tribal people – Water resources – Use and overutilization of surface and ground water, floods, drought, conflicts over water – Damschenefits and problems – Mineral resources – Uses and exploitation – Environmental effects ofextracting and using mineral resources – Lase studies – Energy resources: Groung energy needs – Renewable and non renewable energy sources – Energy resources: Groung energy needs – Renewable and non renewable energy sources – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Gauitable use of resources for sustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and relabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warning – Acid rain, Ozone layer depletion – Act – Forest conservation Act – Enforcementmachinery involved in environment and concerns, case studies – Poludion control boards– N	biodiversity – In-situ and ex-situ conservation of biodiversity.	
(c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management: causes, effects and control measures of municipal solidwastes CO2 Problems of e-waste – Role of an individual in prevention of pollution – Pollution casestudies – Disaster management – Floods, earthquake, cyclone, tsunami and landslides – Field study of local polluted site – Urban / Rural / Industrial / Agricultural. Solid waste management – Floods, earthquake, cyclone, tsunami and landslides – Field study of local polluted site – Urban / Rural / Industrial / Agricultural. Solid Waste management – Floods, earthquake, cyclone, tsunami and landslides – Field study of local polluted site – Urban / Rural / Industrial / Agricultural. Solid Waste management – Floods, earthquake, cyclone, tsunami and landslides – Field study of local and problems – Mineral resources: Uses and exploitation – Environmental effects of fextracting and using mineral resources : Uses and exploitation – Environmental effects of Sextracting and using mineral resources – Case studies – Food resources: World food problems – Changes Co3 caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Case studies – Energy resources – Case studies – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. So UNIT IV So CAL ISSUES AND THE ENVIRONMENT So From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water paroducts – Principl	(c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management: causes, effects and control measures of municipal solidwastes CO2 Problems of e-waste Role of an individual in prevention of pollution Pollution Casestudies pollution start (e) and the prevention of pollution Pollution Casestudies (e)	UNIT II ENVIRONMENTAL POLLUTION	9
hazards – Solid waste management: causes, effects and control measures of nunicipal solidwastes – Problems of e-waste – Role of an individual in prevention of pollution – Pollution casestudies – Disaster management – Floods, earthquake, cyclone, tsunami and landslides – Field study of local polluted site – Urban / Rural / Industrial / Agricultural. UNIT III NATURAL RESOURCES Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overutilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and using mineral resources – Case studies – Food resources: World food problems – Changes CO3 caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer– pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Bole of non-governmental organization – Environmental legislation – Central and state pollution boards– National Green Tribunal – Public awarenes. UNIT V HUMAN POPULATION AND THE ENVIRONMENT Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID	hazards – Solid waste management: causes, effects and control measures of municipal solidwastes CO2 – Problems of e-waste – Role of an individual in prevention of pollution – Pollution casestudies – Disaster management – Floods, earthquake, cyclone, tsunami and landslides – Field study of local polluted site – Urban / Rural / Industrial / Agricultural. 90 VINT III NATURAL RESOURCES 9 Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and over-exploitation – Environmental effects of extracting and using mineral resources: Uses and exploitation – Environmental effects of extracting and using mineral resources – Case studies – Food resources: World food problems – Changes CO3 resources: Growing energy needs – Renewable and no renewable energy sources – Case dargatation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources: Ic drasstand / Hill / Mountain. 9 Piror IVI SOCIAL ISSUES AND THE ENVIRONMENT 9 Promunental ethics – Issues and possible solutions – Clame groupoversement and rehabilitator of people; its problems and concerns, case studies – Resettlement and rehabilitator of people; its problems and concerns, case studies – Resettlement and rehabilitator of Pollution / Act – Wildlife protection Act – Forest conservation Act – Enforcementmanton Pollement – Urban group explication – Harvesting, watershed management – Resettlement and rehabilitator of Pollution / Act – Wildlife protection Act – Forest conservation Act – Enforcementmation of Pollution / Act – Wildlife protection Act – Forest conservation Act –	Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution	
Problems of e-waste – Role of an individual in prevention of pollution – Pollution casestudies – Disaster management – Floods, earthquake, cyclone, tsunami and landslides – Field study of local polluted site – Urba / Rural / Industrial / Agricultural. (VITT III NATURAL RESOURCES 5 Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overutilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources: Uses and exploitation – Environmental effects of extracting and using mineral resources: Uses and exploitation – Environmental effects of extracting and using mineral resources – Case studies – Food resources: World food problems – Changes CO3 caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Case studies – Energy resources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 5 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclea	Problems of e-waste – Role of an individual in prevention of pollution – Pollution casestudies – Disaster management – Floods, earthquake, cyclone, tsunani and landslides – Field study of local polluted site – Urban / Rural / Industrial / Agricultural. UNIT III NATURAL RESOURCES 9 Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overutilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources - Case studies – Food resources: Worlf food problems – Changes CO3 caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer- pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Luse of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and descrification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. 9 Prior unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Lorionmental editics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – National dreen ribuiton at – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife p	(c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear	
Disaster management – Floods, earthquake, cyclone, tsunami and landslides – Field study of local polluted site – Urban / Rural / Industrial / Agricultural. 90 UNIT III NATURAL RESOURCES 93 Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overtilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and using mineral resources - Case studies – Food resources: World food problems – Changes CO3 caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Case studies – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. 93 UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 93 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of fon-governmental organization – Environmental ethics – Issues and possible solutions – Clemate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – National control of Pollution) Act – With (Prevention and Control of Pollution) Act – Enforcementmachinery involved in environmental ethics – Issues – Polucial and state pollution control boards– National Green Tribunal – Public awareness.	Disaster management – Floods, earthquake, cyclone, tsunami and landslides – Field study of local polluted site – Urban / Rural / Industrial / Agricultural. UNIT III	hazards – Solid waste management: causes, effects and control measures of municipal solidwastes	CO2
polluted site – Urban / Rural / Industrial / Agricultural. 9 UNT III NATURAL RESOURCES 9 Forest resources: Uses and over-exploitation — Deforestation — Case studies — Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overutilization of surface and ground water, floods, drought, conflicts over water — Dams:benefits and problems — Mineral resources: Uses and exploitation — Environmental effects ofextracting and using mineral resources: Uses and exploitation — Environmental effects of changes (CO3 caused by agriculture and overgrazing — Effects of modern agriculture: fertilizer — pesticide problems, water logging, salinity — Case studies — Energy resources: Growing energy needs — Renewable and non renewable energy sources — Use of alternate energy sources – Case studies — Land resources: Land as a resource — Land degradation, man induced landslides, soil erosion and desertification — Role of an individual in conservation of natural resources — Equitable use of resources for sustainable lifestyles — Field study of local area to document environmental assets — River / Forest / Grassland / Hill / Mountain. 9 UNTT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development — Urban problems related to energy — Water conservation, rain water harvesting, watershed management — Resettlement and rehabilitation of people; its problems and concerns, case studies — Role of non-governmental organization — Environmental ethics — Issues and possible solutions — Change Global warming — Acid rain, Ozone layer depletion –Nuclear accidents and holocaust — Case studies — Wasteland reclamation of Pollution) Act — With (Prevention and Control of Pollution) control boards— National Green Tribunal – Publi	polluted site – Urban / Rural / Industrial / Agricultural. 9 UNIT III NATURAL RESOURCES 9 Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overruilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources: Uses and exploitation – Environmental effects ofertracting and using mineral resources – Case studies – Food resources: World food problems – Changes CO3 caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land desources: Land as a resource – Land degradation, man induced landslides, soil erosion and descrification – Role of an individual in conservation of natural resources: – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachin	- Problems of e-waste - Role of an individual in prevention of pollution - Pollution casestudies -	
polluted site – Urban / Rural / Industrial / Agricultural. 9 UNT III NATURAL RESOURCES 9 Forest resources: Uses and over-exploitation — Deforestation — Case studies — Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overutilization of surface and ground water, floods, drought, conflicts over water — Dams:benefits and problems — Mineral resources: Uses and exploitation — Environmental effects ofextracting and using mineral resources: Uses and exploitation — Environmental effects of changes (CO3 caused by agriculture and overgrazing — Effects of modern agriculture: fertilizer — pesticide problems, water logging, salinity — Case studies — Energy resources: Growing energy needs — Renewable and non renewable energy sources — Use of alternate energy sources – Case studies — Land resources: Land as a resource — Land degradation, man induced landslides, soil erosion and desertification — Role of an individual in conservation of natural resources — Equitable use of resources for sustainable lifestyles — Field study of local area to document environmental assets — River / Forest / Grassland / Hill / Mountain. 9 UNTT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development — Urban problems related to energy — Water conservation, rain water harvesting, watershed management — Resettlement and rehabilitation of people; its problems and concerns, case studies — Role of non-governmental organization — Environmental ethics — Issues and possible solutions — Change Global warming — Acid rain, Ozone layer depletion –Nuclear accidents and holocaust — Case studies — Wasteland reclamation of Pollution) Act — With (Prevention and Control of Pollution) control boards— National Green Tribunal – Publi	polluted site – Urban / Rural / Industrial / Agricultural. 9 UNIT III NATURAL RESOURCES 9 Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overruilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources: Uses and exploitation – Environmental effects ofertracting and using mineral resources – Case studies – Food resources: World food problems – Changes CO3 caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land desources: Land as a resource – Land degradation, man induced landslides, soil erosion and descrification – Role of an individual in conservation of natural resources: – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachin	Disaster management – Floods, earthquake, cyclone, tsunami and landslides – Field study of local	
UNIT III NATURAL RESOURCES 5 Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overutilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources: Uses and exploitation – Environmental effects of extracting and using mineral resources – Case studies – Food resources: World food problems – Changes CO3 caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. 9 UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental alegislation – Central and state pollution control boards– National Green Tribunal – Public awareness.	UNIT III NATURAL RESOURCES 9 Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overutilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources: Uses and exploitation – Environmental effects ofextracting and using mineral resources – Case studies – Food resources: World food problems – Changes (CO3 caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. 9 Prom unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Clase tudies – Wasteland reclamation – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation – Central and state pollution control boards– National Green Trihunal – Public awareness. 9 UNIT V HUMAN POPULATION AND THE ENVIRONME		
extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overtuilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources: Uses and exploitation – Environmental effects of extracting and using mineral resources – Case studies – Food resources: World food problems – Changes Caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation Protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COV	extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overuilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources: Uses and exploitation – Environmental effects of sextracting and using mineral resources: Uses and exploitation – Environmental effects of problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land degradation, man induced landSildes, soil erosion and desertification – Role of an individual in conservation of natural resources – Gase studies – Energy resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 Form unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environment et elistyle protection Act – Forest conservation Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation – Central and state pollution control boards – National Green Tribunal – Public awareness. UNITY HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Human rights – Value deucation – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment		9
extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overtuilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources: Uses and exploitation – Environmental effects of extracting and using mineral resources – Case studies – Food resources: World food problems – Changes Caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation Protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COV	extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overuilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources: Uses and exploitation – Environmental effects of sextracting and using mineral resources: Uses and exploitation – Environmental effects of problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land degradation, man induced landSildes, soil erosion and desertification – Role of an individual in conservation of natural resources – Gase studies – Energy resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 Form unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environment et elistyle protection Act – Forest conservation Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation – Central and state pollution control boards – National Green Tribunal – Public awareness. UNITY HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Human rights – Value deucation – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment	Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber	
overutilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources: Uses and exploitation – Environmental effects of extracting caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer– pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. 9 UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation Protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. 9 UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environ	overutilization of surface and ground water, floods, drought, conflicts over water – Dams:benefits and problems – Mineral resources: Uses and exploitation – Environmental effects of extracting and using mineral resources: Uses and exploitation – Environmental effects of contracting caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources: I canad as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – 1 - Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Enforcementmachinery involved in environment	=	
and problems – Mineral resources: Uses and exploitation – Environmental effects of extracting and using mineral resources – Case studies – Food resources: World food problems – Changes caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer– pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT SOURCE – Restlement and rehabilitation of people; its problems and concerns, case studies – Rele of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Water (Prevention and Control of Pollution) Act – Water (Prevention and Control of Pollution) Act – Water (Prevention and Control of Pollution) Act – Enforcementmachinery involved in environmental degislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies – NortaL : 45 HOURS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	and problems – Mineral resources: Uses and exploitation – Environmental effects of extracting and using mineral resources: Case studies – Food resources: World food problems – Changes CO3 caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid more consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS TOTAL : 45 HOURS TOTAL : 45 HOURS 1. Benny Joseph, Environmental Science an		
and using mineral resources – Case studies – Food resources: World food problems – Changes CO3 caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer– pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 90 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holcaust – Case studies – Water (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies – Sudies	and using mineral resources – Case studies – Food resources: World food problems – Changes CO3 caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer– pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. 9 Torm unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – CO4 — Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. 10 11 11 11 11 11 11 12 12		
caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer– pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies 1. Benny Joseph, Environmental Science and Engineering ⁴ , Tata McGraw-Hill, New Delhi, (2014).	caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer– pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies 1. Benny Joseph, Environmental Science and Engineering [*] , Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science [*] , 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, –Environm		CO3
problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid arin, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation CO4 – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness.	problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation CO4 — Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Widlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. 9 UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case		000
Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation CO4 CO4 – Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. 9 UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies CO5 <t< td=""><td>Renewable and non renewable energy sources – Use of alternate energy sources – Case studies - Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation – Central and state pollution control boards – National Green Tribunal – Public awareness. 9 VUNT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies – Coto information technology in environment and human health – Case studies – Coto information technology in environmen</td><td></td><td></td></t<>	Renewable and non renewable energy sources – Use of alternate energy sources – Case studies - Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation – Central and state pollution control boards – National Green Tribunal – Public awareness. 9 VUNT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies – Coto information technology in environment and human health – Case studies – Coto information technology in environmen		
 Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation CO4 C Cosumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Luman rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS 1. Benny Joseph, Environmental Science and Engineering*, Tata McGraw-Hill, New Delhi, (2014). 	 Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. VUNT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid CO4 – Consumerism and waste products — Principles of Green Chemistry — Environment protection and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection ACt – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS 1. Benny Joseph, Environmental Science and Engineering ', Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineering, Airwalk Publications, Chennai, (2018). TEXTENEOCE BOOKS 1. Dharmendra S. Sengar, Environmental law', Prentice hall of Indi		
and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation Protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcement machinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and child welfare – Role of information technology in environment and human health – Case studies 1 TOTAL : 45 HOURS 1. Benny Joseph, Environmental Science and Engineering*, Tata McGraw-Hill, New Delhi, (2014).	and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS 1. Benny Joseph, Environmental Science and Engineering ', Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineering!, Airwalk Publications, Chennai, (2018). REFFERCUE BOOKS 1. Dharmendra S. Sengar, Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).		
resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcement machinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. 9 UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies COS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). COS	resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain. 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation — Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering ⁴ , Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science ⁴ , 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineeringl, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, Environmental law ⁴ , Prentice hall of India Pvt Ltd, New Delhi, (2007).	-	
River / Forest / Grassland / Hill / Mountain. 9 UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. 9 UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies COS TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	River / Forest / Grassland / Hill / Mountain. 9 UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. 9 UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies CO5 1 Benny Joseph, Environmental Science and Engineering*, Tata McGraw-Hill, New Delhi, (2014). Co 2 Gilbert M.Masters, Introduction to Environmental Engineering and Science*, 2nd edition, Pearson Education, (2004). Environmental Science and Engineering!, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS		
UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation – Central and state pollution control boards – National Green Tribunal – Public awareness. 9 UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies CO5 TEXT BOOKS 1. Benny Joseph, "Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. 9 UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies 9 TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering ', Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineering , Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, Environmental law', Prentice hall of Ind		
From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcement machinery involved in environmental legislation – Central and state pollution control boards – National Green Tribunal – Public awareness. 9 UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies CO5 TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). Public.	From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS 1 . Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). 2 . Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 3 . Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineeringl, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1 . Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).		9
conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation — Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcement machinery involved in environmental legislation– Central and state pollution control boards– National Green <u>Tribunal – Public awareness.</u> UNIT V HUMAN POPULATION AND THE ENVIRONMENT Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies 1. Benny Joseph, Environmental Science and Engineering ⁴ , Tata McGraw-Hill, New Delhi, (2014).	conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Covamerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Sas studies 9 TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). CO5 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). Environmental Science and Engineering and Science', 2nd edition, Pearson Education, (2018). REFERENCE BOOKS 1. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineeringl, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, Environmental law', Prent		-
people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation CO4 – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Fribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies CO5 TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	 people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineering!, Airwalk Publications, Chennai, (2018). REFFRENCE BOOKS Dharmendra S. Sengar, Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007). 		ĺ
Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation CO4 – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS CO5 COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcement machinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS TEXT BOOKS 1. Benny Joseph, "Environmental Science and Engineering", Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, "Introduction to Environmental Engineering and Science", 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineering!, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).		ĺ
rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation — Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcement machinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcement machinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS 1. Benny Joseph, Environmental Science and Engineering ⁴ , Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science ⁴ , 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineering, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, Environmental law ⁴ , Prentice hall of India Pvt Ltd, New Delhi, (2007).		
Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies CO5 TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	 Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcement machinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS 1. Benny Joseph, "Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineering!, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007). 		
protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies COS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS 1 . Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineeringl, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).		
Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TEXT BOOKS 1. Benny Joseph, "Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, "Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineering", Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).	· · · ·	
involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness. UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineeringl, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).		
Tribunal – Public awareness. Image: Constraint of the service of	Tribunal – Public awareness. 9 UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare 9 programme – Environment and human health – Human rights – Value education – HIV / AIDS 0 – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies CO5 TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 2. Gilbert M.Masters, Introduction to Environmental Science and Engineering I, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).		ĺ
UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies CO5 TOTAL : 45 HOURS TEXT BOOKS 1. Benny Joseph, _Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	UNIT V HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS COS PCOVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies CO5 TEXT BOOKS TOTAL : 45 HOURS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineering!, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).	0 1	ĺ
Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineeringl, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007). 		0
programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS 1 . Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	 programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineering, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007). 		9
 COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). 	 COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies TOTAL : 45 HOURS TEXT BOOKS Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineeringl, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS Dharmendra S. Sengar, Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007). 		
human health – Case studies TOTAL : 45 HOURS TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	human health – Case studies TOTAL : 45 HOURS TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineeringl, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).		COF
TOTAL : 45 HOURS TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	TOTAL : 45 HOURS TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineering , Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).		COS
TEXT BOOKS 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	 TEXT BOOKS Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineering, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007). 		
1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).	 Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineeringl, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007). 		UKS
(2014).	 (2014). 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineeringl, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007). 		11 •
2 Gilbert M Masters Introduction to Environmental Engineering and Science' 2nd edition	 Pearson Education, (2004). 3. Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineeringl, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007). 		lhı,
	 Dr. A. Sheik Mideen and S.Izzat Fathima, —Environmental Science and Engineeringl, Airwalk Publications, Chennai, (2018). REFERENCE BOOKS Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007). 		on,
	Publications, Chennai, (2018). REFERENCE BOOKS 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).		valk
	REFERENCE BOOKS 1.Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).		vain
	1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).		
	z. Erach Dharucha, rexubok of Environmental Studies. Universities Press (1) PVL LIC		
Z. ETACH DHALUCHA. TOXIDOON OF CHVHOHHCHLAF SLUUICS, UHIVCISILICS FICSS (1) FVL. LLU.	Hydrabad, (2015).		

Hydrabad, (2015).

3.	G. Tyler	Miller,Scott E.	Spoolman,	"Environmental	Science",	Cengage	Learning	IndiaPvt.
Ltd,	Delhi, (2014)).						

4. R. Rajagopalan, Environmental Studies-From Crisis to Cure', Oxford University Press, (2005).

5. Anubha Kaushik , C.P. Kaushik, "Perspectives in Environmental Studies", New Age International Pvt. Ltd, New Delhi, (2004).

6. Frank R. Spellman, "Handbook of Environmental Engineering", CRC Press, (2015).

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 To obtain knowledge about environment, ecosystems and biodiversity.

CO2 To take measures to control environmental pollution.

CO3 To gain knowledge about natural resources and energy sources.

CO4 To find and implement scientific, technological, economic and political solutions to environmental problems.

CO5 To understand the impact of environment on human population.

				N	IAP	PINC	G OF	COs	WI	ГН РС)s AN	D PSC)s			
			1	PDO	СРА	мо	UTC	COM	FS/P	206)				GRAM TCOM		
COs					GNA				E9(1				00			505)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	3	3	3	3	3	2	2	2	3	2	1	2	2
CO2	3	2	3	3	2	3	3	3	3	2	2	3	2	2	2	3
CO3	3	3	2	2	3	3	2	2	1	2	1	3	2	2	2	3
						-	-		-				_			
CO4	3	3	3	3	1	2	3	3	2	2	2	2	2	1	2	3
CO5	3	2	3	2	3	3	3	2	2	2	2	3	3	2	3	3

EE4205 CIRCUIT ANALYSIS

OBJECTIVES:

• To introduce the basic concepts of DC and AC circuits behavior

• To study the transient and steady state response of the circuits subjected to step and sinusoidal excitations.

L

3 1

Т

Р

0

С

4

• To introduce different methods of circuit analysis using Network theorems, duality and topology.

UNIT I	BASIC CIRCUITS ANALYSIS AND NETWORK TOPOLOGY	12					
Ohm's Law –	Kirchhoff's laws – Mesh current and node voltage method of analysis for D.C and						
A.C. circuits - Network terminology - Graph of a network - Incidence and reduced incidence							
matrices – Trees –Cut sets - Fundamental cut sets - Cut set matrix – Tie sets –Link currents and							
Tie set schedules -Twig voltages and Cut set schedules, Duality and dual networks							
UNIT II	NETWORK THEOREMS FOR DC AND AC CIRCUITS	12					
Network theorems -Superposition theorem, Thevenin's theorem, Norton's theorem, Reciprocity							
theorem, Millman's theorem, and Maximum power transfer theorem ,application of Network							
theorems- Net	work reduction: voltage and current division, source transformation - star delta						

UNIT III	RESONANCE AND COUPLED CIRCUITS	12
Variation in cu Selectivity. Sel	f-inductance - Mutual inductance - Dot rule - Coefficient of coupling - Analysis of oupled circuits - Series, Parallel connection of coupled inductors - Single tuned	CO3
UNIT IV	TRANSIENT ANALYSIS	12
Natural response	se-Forced response - Transient response of RC, RL and RLC circuits to excitation	
by Step Signal,	Impulse Signal and exponential sources - Complete response of RC, RL and RLC	CO4
	soidal excitation.	
UNIT V	TWO PORT NETWORKS	12
Two port netw	orks, Z parameters, Y parameters, Transmission (ABCD) parameters, Hybrid	CO5
-	s, Interconnection of two port networks, Symmetrical properties of T and π	
networks.		
TEXT BOOK 1.William H. H	layt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", M	
TEXT BOOK 1.William H. H Hill Science Er 2. Joseph Edmi Hill Publishing C REFERENCE 1. Charles	S layt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", M ngineering, Eighth Edition, 11th Reprint 2016. nister and Mahmood Nahvi, "Electric Circuits, Schaum's Outline Series", Tata McG Company, New Delhi, Fifth Edition Reprint 2016. BOOKS K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth	/IcGrav
TEXT BOOK 1.William H. H Hill Science Er 2. Joseph Edmi Hill Publishing C REFERENCE 1. Charles 2. Edition,	S layt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", M ngineering, Eighth Edition, 11th Reprint 2016. nister and Mahmood Nahvi, "Electric Circuits, Schaum's Outline Series", Tata McG Company, New Delhi, Fifth Edition Reprint 2016. BOOKS K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth McGraw Hill, 9th Reprint 2015.	/IcGrav
TEXT BOOK 1.William H. F. Hill Science Er 2. Joseph Edmi Hill Publishing C REFERENCE 1. Charles 2. Edition, 3. A. Bruc	 S Iayt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", Megineering, Eighth Edition, 11th Reprint 2016. nister and Mahmood Nahvi, "Electric Circuits, Schaum's Outline Series", Tata McG Company, New Delhi, Fifth Edition Reprint 2016. BOOKS K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth McGraw Hill, 9th Reprint 2015. e Carlson, "Circuits: Engineering Concepts and Analysis of Linear Electric 	/IcGrav
TEXT BOOK 1.William H. H Hill Science Er 2. Joseph Edmi Hill Publishing (REFERENCE 1. Charles 2. Edition, 3. A. Bruc 4. Circuits	 S Iayt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", Magineering, Eighth Edition, 11th Reprint 2016. nister and Mahmood Nahvi, "Electric Circuits, Schaum's Outline Series", Tata McG Company, New Delhi, Fifth Edition Reprint 2016. BOOKS K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth McGraw Hill, 9th Reprint 2015. e Carlson, "Circuits: Engineering Concepts and Analysis of Linear Electric ", Cengage Learning, India Edition 2nd Indian Reprint 2009. 	/IcGrav
TEXT BOOK 1.William H. H. Hill Science Er 2. Joseph Edmi Hill Publishing C REFERENCE 1. Charles 2. Edition, 3. A. Bruc 4. Circuits 5. Allan H	S layt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", M ngineering, Eighth Edition, 11th Reprint 2016. nister and Mahmood Nahvi, "Electric Circuits, Schaum's Outline Series", Tata McG Company, New Delhi, Fifth Edition Reprint 2016. BOOKS K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth McGraw Hill, 9th Reprint 2015. e Carlson, "Circuits: Engineering Concepts and Analysis of Linear Electric ", Cengage Learning, India Edition 2nd Indian Reprint 2009. I. Robbins, Wilhelm C.Miller, "Circuit Analysis Theory and Practice", Cengage	/IcGrav
TEXT BOOK 1.William H. H Hill Science Er 2. Joseph Edmi Hill Publishing C REFERENCE 1. Charles 2. Edition, 3. A. Bruc 4. Circuits 5. Allan H Learnin	 S Iayt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", Magineering, Eighth Edition, 11th Reprint 2016. nister and Mahmood Nahvi, "Electric Circuits, Schaum's Outline Series", Tata McG Company, New Delhi, Fifth Edition Reprint 2016. BOOKS K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth McGraw Hill, 9th Reprint 2015. e Carlson, "Circuits: Engineering Concepts and Analysis of Linear Electric ", Cengage Learning, India Edition 2nd Indian Reprint 2009. I. Robbins, Wilhelm C.Miller, "Circuit Analysis Theory and Practice", Cengage g, Fifth Edition, 1st Indian Reprint 2013. 	/IcGrav
TEXT BOOK 1.William H. H. Hill Science Er 2. Joseph Edmi Hill Publishing C REFERENCE 1. Charles 2. Edition, 3. A. Bruc 4. Circuits 5. Allan H Learnin COURSE OU	S layt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", M ngineering, Eighth Edition, 11th Reprint 2016. nister and Mahmood Nahvi, "Electric Circuits, Schaum's Outline Series", Tata McG Company, New Delhi, Fifth Edition Reprint 2016. BOOKS K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth McGraw Hill, 9th Reprint 2015. e Carlson, "Circuits: Engineering Concepts and Analysis of Linear Electric ", Cengage Learning, India Edition 2nd Indian Reprint 2009. I. Robbins, Wilhelm C.Miller, "Circuit Analysis Theory and Practice", Cengage g, Fifth Edition, 1st Indian Reprint 2013. ICOMES	/IcGrav
TEXT BOOK 1.William H. H Hill Science Er 2. Joseph Edmi Hill Publishing (REFERENCE 1. Charles 2. Edition, 3. A. Bruc 4. Circuits 5. Allan H Learnin COURSE OU Upon complet	S layt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", M ngineering, Eighth Edition, 11th Reprint 2016. nister and Mahmood Nahvi, "Electric Circuits, Schaum's Outline Series", Tata McG Company, New Delhi, Fifth Edition Reprint 2016. BOOKS K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth McGraw Hill, 9th Reprint 2015. e Carlson, "Circuits: Engineering Concepts and Analysis of Linear Electric ", Cengage Learning, India Edition 2nd Indian Reprint 2009. I. Robbins, Wilhelm C.Miller, "Circuit Analysis Theory and Practice", Cengage g, Fifth Edition, 1st Indian Reprint 2013. FCOMES	IcGrav iraw
TEXT BOOK 1.William H. H. Hill Science Er 2. Joseph Edmi Hill Publishing O REFERENCE 1. Charles 2. Edition, 3. A. Bruc 4. Circuits 5. Allan H Learnin COURSE OU' Upon completi CO1 To De	 S Iayt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", Magineering, Eighth Edition, 11th Reprint 2016. nister and Mahmood Nahvi, "Electric Circuits, Schaum's Outline Series", Tata McG Company, New Delhi, Fifth Edition Reprint 2016. BOOKS K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth McGraw Hill, 9th Reprint 2015. e Carlson, "Circuits: Engineering Concepts and Analysis of Linear Electric ", Cengage Learning, India Edition 2nd Indian Reprint 2009. I. Robbins, Wilhelm C.Miller, "Circuit Analysis Theory and Practice", Cengage g, Fifth Edition, 1st Indian Reprint 2013. FCOMES ion of the course, students will be able to velop the capacity and analyze electrical circuits, apply the circuit theorems in real present. 	IcGrav iraw
TEXT BOOK 1.William H. H Hill Science En 2. Joseph Edmine Hill Publishing O REFERENCE 1. Charles 2. Edition, 3. A. Bruc 4. Circuits 5. Allan H Learnin COURSE OU Upon completi CO1 To De CO2	S Iayt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", M ngineering, Eighth Edition, 11th Reprint 2016. nister and Mahmood Nahvi, "Electric Circuits, Schaum's Outline Series", Tata McG Company, New Delhi, Fifth Edition Reprint 2016. BOOKS K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth McGraw Hill, 9th Reprint 2015. e Carlson, "Circuits: Engineering Concepts and Analysis of Linear Electric ", Cengage Learning, India Edition 2nd Indian Reprint 2009. I. Robbins, Wilhelm C.Miller, "Circuit Analysis Theory and Practice", Cengage g, Fifth Edition, 1st Indian Reprint 2013. ICOMES ion of the course, students will be able to velop the capacity and analyze electrical circuits, apply the circuit theorems in real to part knowledge on solving circuits using network theorems	IcGrav iraw
TEXT BOOK 1.William H. F. Hill Science Er 2. Joseph Edmi Hill Publishing O REFERENCE 1. Charles 2. Edition, 3. A. Bruc 4. Circuits 5. Allan F Learnin COUR SE OU CO1 To De CO2 To int	S Iayt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", M ngineering, Eighth Edition, 11th Reprint 2016. nister and Mahmood Nahvi, "Electric Circuits, Schaum's Outline Series", Tata McG Company, New Delhi, Fifth Edition Reprint 2016. BOOKS K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth McGraw Hill, 9th Reprint 2015. e Carlson, "Circuits: Engineering Concepts and Analysis of Linear Electric ", Cengage Learning, India Edition 2nd Indian Reprint 2009. H. Robbins, Wilhelm C.Miller, "Circuit Analysis Theory and Practice", Cengage g, Fifth Edition, 1st Indian Reprint 2013. FCOMES ion of the course, students will be able to velop the capacity and analyze electrical circuits, apply the circuit theorems in real to part knowledge on solving circuits using network theorems roduce the phenomenon of resonance in coupled circuits.	IcGrav iraw
TEXT BOOK 1.William H. F. Hill Science Er 2. Joseph Edmi Hill Publishing O REFERENCE 1. Charles 2. Edition, 3. A. Bruc 4. Circuits 5. Allan H Learnin COURSE OU Upon completi CO2 To im CO3 To inti CO4	S Iayt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", M ngineering, Eighth Edition, 11th Reprint 2016. nister and Mahmood Nahvi, "Electric Circuits, Schaum's Outline Series", Tata McG Company, New Delhi, Fifth Edition Reprint 2016. BOOKS K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth McGraw Hill, 9th Reprint 2015. e Carlson, "Circuits: Engineering Concepts and Analysis of Linear Electric ", Cengage Learning, India Edition 2nd Indian Reprint 2009. I. Robbins, Wilhelm C.Miller, "Circuit Analysis Theory and Practice", Cengage g, Fifth Edition, 1st Indian Reprint 2013. ICOMES ion of the course, students will be able to velop the capacity and analyze electrical circuits, apply the circuit theorems in real to part knowledge on solving circuits using network theorems	IcGrav

					MA	PPIN	GO	F CO	s Wľ	TH PO	Os AN	D PS	Os					
	PROGRAM OUTCOMES (POs) PROGRAM SPEC												PROGRAM SPECIFIC					
COs													OUTCOMES (PSOs)					
	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO		
	PUI	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4		
CO1	3	3	2	3	2	1	-	-	-	-	1	1	3	1	-	-		
CO2	3	3	2	3	2	1	-	-	-	-	1	1	3	1	-	-		
CO3	3	3	2	3	2	1	-	-	-	-	1	1	3	1	-	-		
CO4	3	3	2	3	2	1	-	-	-	-	1	1	3	1	-	-		
CO5	3	3	2	3	2	1	-	-	-	-	1	1	3	1	-	-		

EC4206		С
		3
OBJE	CTIVE	
• To	acquaint the students with the construction, theory and operation of the basic electronic	
device	s such as PN junction diode, Bipolar and Field-effect Transistors,	
•	Power control devices, LED, LCD and other Opto-electronic devices.	
UNIT I	SEMICONDUCTOR DIODES	Ģ
PN junc	tion diode, Current equations, Energy Band diagram, Diffusion and drift current densities,	
forward	and reverse bias characteristics, Transition and Diffusion Capacitances, Switching	CO
Characte	eristics, Breakdown in PN Junction Diodes, Zener Diode – Reverse Bias Characteristics.	
UNIT I	BIPOLAR JUNCTION TRANSISTORS	9
NPN -P	NP -Operations-Early effect-Current equations – Input and Output characteristics of	
CE,CB,	CC - Hybrid -π model - h-parameter model, Ebers Moll Model- Gummel Poonmodel, Multi-	CO2
Emitter	Fransistor.	
UNIT I	I FIELD EFFECT TRANSISTOR	Ģ
JFETs -	Drain and Transfer characteristics,-Current equations-Pinch off voltage and its significance	
MOSFE	T- Characteristics- Threshold voltage -Channel length modulation, D-MOSFET, E-	CO
MOSFE	T Characteristics – Comparison of MOSFET with JFET	
UNIT I	V SPECIAL SEMICONDUCTOR DEVICES	Ģ
Metal-S	emiconductor Junction- MESFET, FINFET, PINFET, CNTFET, DUAL GATE MOSFET,	
Schottky	barrier diode-Zener diode-Varactor diode – Tunnel diode- Gallium Arsenide device,	
LASER	diode, LDR	CO4
UNIT V	POWER DEVICES AND DISPLAY DEVICES	9
UJT, SO	CR, Diac, Triac, Power BJT- Power MOSFET- DMOS-VMOS. LED, LCD,	COS
Phototra	nsistor, Opto Coupler, Solar cell, CCD.	
	TOTAL : 45 HC)URS
TEXT I	BOOKS	
	.Donald A Neaman, - Semiconductor Physics and Devices , Fourth Edition, Tata Mc	
	Braw Hill Inc. 2012.	
	. Salivahanan. S, Suresh Kumar. N, Vallavaraj. A, - Electronic Devices and circuits, 'hird Edition, Tata McGraw- Hill, 2008.	
	ENCE BOOKS	
	Robert Boylestad and Louis Nashelsky,- Electron Devices and Circuit Theory Pearson	
	Prentice Hall, 10th edition, July 2008.	
	. R.S.Sedha, - A Text Book of Applied Electronics S.Chand Publications, 2006.	
	8. Yang, - Fundamentals of Semiconductor Devices, McGraw Hill International Edition, 197	'8.
	SE OUTCOMES	
-	ompletion of the course, students will be able to	
CO1	To analyze the operation and characteristics of the PN junction diode	
CO2	To analyze the operation and characteristics of Bipolar junction transistor (BJT).	
CO3	To understand and analyze the Field-effect transistor – JFET, MOSFET.	
CO4	To study and analyze the special semiconductor devices like MESFET, FINFET, PINFET, CNTFET, Varactor diode, Tunnel Diode, GaAs Devices, LASER, and LDR Diode	ð.
	40	

CO5 To understand the basic concepts of Power and Display devices

					MA	PPIN	GO	F CO	s WI	ГН Р	Os AN	D PS	Os			
COs				PRO	PROGRAM SPEC OUTCOMES (P											
	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
		2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	3	2	3	1	1	-	-	-	-	2	2	3	2	-	-
CO2	3	3	2	3	1	1	-	-	-	-	2	2	3	2	-	-
CO3	3	3	2	3	1	1	-	-	-	-	2	2	3	2	-	-
CO4	3	3	2	3	1	1	-	-	-	-	2	3	3	2	-	-
CO5	3	3	2	3	1	1	-	-	-	-	2	3	3	2	-	-

GE4251	TAMILS AND TECHNOLOGY	L	Т	Р	C
	Common for all branches of B.E. / B. Tech Programmes	1	0	0	1
UNIT I	WEAVING AND CERAMIC TECHNOLOGY			3	; ;
Weaving Indu	stry during Sangam Age – Ceramic technology – Black and Red Ware Po	tteri	es		
(BRW) – Gra	ffiti on Potteries.			C	0 1
UNIT II	DESIGN AND CONSTRUCTION TECHNOLOGY			3	\$
Designing and	Structural construction House & Designs in household materials during Sanga	am A	Age		
Building mate	rials and Hero stones of Sangam age — Details of Stage Constructions in Silappatl	nikaı	ram		
- Sculptures a	and Temples of Mamallapuram - Great Temples of Cholas and otherworship	place	es -		02
Temples of N	ayaka Period - Type study (Madurai Meenakshi Temple)- Thirumalai Nayakar	Mah	al -		U4
Chetti Nadu H	ouses, Indo - Saracenic architecture at Madras during British Period.				
UNIT III	MANUFACTURING TECHNOLOGY			3	;
Art of Ship B	uilding - Metallurgical studies - Iron industry - Iron smelting, steel -Copper an	d go	old-		
Coins as sour	ce of history - Minting of Coins - Beads making-industries Stone beads -Glass	bead	ds -		
Terracotta bea	nds -Shell beads/ bone beats - Archeological evidences - Gem stone types descr	ribec	l in		0.
Silappathikara	um.				U:
UNIT IV	AGRICULTURE AND IRRIGATION TECHNOLOGY			3	, ,
Wells designe	onds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husb d for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries - ng - Ancient Knowledge of Ocean - Knowledge Specific Society.			C	: O 4
UNIT V	SCIENTIFIC TAMIL & TAMIL COMPUTING			3	;
Development	of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Devel	opr	nent		
of Tamil Soft	ware – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dicti	onaı	ries		
– Sorkuvai P	roject.			C	0
	TOTAL	.:1	5 PE	RIC	D

TEXT-CUM-REFERENCE BOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் கே கே பிள்ளை (வெளியீடு தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்)
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம் (விகடன் பிரசுரம்)
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr. K. K. Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr. S. Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr. S. V. Subatamanian, Dr. K. D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- Studies in the History of India with Special Reference to Tamil Nadu (Dr. K. K. Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R. Balakrishnan) (Published by: RMRL) Reference Book.

GE4251	தமிழரும் தொழில்நுட்பம்	L	Т	Ρ	С
	Common for all branches of B.E. / B. Tech Programmes	1	0	0	1
ച്ച ക്ര I	நெசவு மற்றும் பானை தொழில்நுட்பம்			3	\$
	ந்தில் நெசவு தொழில் - பானை தொழிநுட்பம் - கருப்பு ச ள் - பாண்டங்களில் கீறல் குறியீடுகள்.	ിഖ	Ŀц		
				С	01
அலகு II	வடிவறமப்பு மற்றும் கட்டிடத்மதொழில்நுட்பம்			3	;
வீட்டுப் பொ பொருட்களு விவரங்கள் பெருங்கோ கோயில்கள்	பத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க கால ரருட்களில் வடிவமைப்பு- சங்க காலத்தில் கட்டு நம் நடுகல்லும் – சிலப்பதிகாரத்தில் மேடை அமைப்பு ப – மாமல்லபுரச் சிற்பங்களும், கோவில்களும் –சோழர்கால யில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் – நொயக்கர் க பில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் – நொயக்கர் க ப - மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீன லயம் மற்றும் திருமலை நாயக்கர் மஹால் - செட்டிநாட்டு வீ)மா ற்றி லத்த கால கால	ன பெ ப்ப பக் _தி	с	02

– பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோசாரோசெனிக் கட்டிடக் கலை. உற்பத்தித் தொழில்நுட்பம் 3 அலகு III கப்பல் கட்டும் கலை - உலோகவியல் - இரும்புத் தொழிற்சாலை - இரும்பை உருக்குதல், எஃகு - வரலாற்று சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் அச்சடித்தல் - மணி உருவாக்கும் தொழிற்சாலைகள்-- நாணயங்கள் கல்மணிகள் - கண்ணாடி மணிகள்- சுடுமண் மணிகள் - சங்கு மணிகள்-CO3 எலும்புத்துண்டுகள் தொல்லியல் சான்றுகள் சிலப்பதிகாரத்தில் --மணிகளின் வகைகள். வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில் நுட்பம் அலகு IV 3 அணை, ஏரி, குளங்கள், மதகு - சோழர்காலக் குமிழித் தூம்பின் முக்கியத்துவம் – கால்நடை பராமரிப்பு - கால்நடைகளுக்கு வடிவமைக்கப்பட்ட கிணறுகள் -வேளாண்மை மற்றும் வேளாண்மையைச் சார்த்த செயல்பாடுகள் - கடல்சார் CO4 அறிவு – மீன்வளம் - முத்து மற்றும் முத்துக்குளித்தல் - பெருங்கடல் குறித்த பண்டைய அறிவு - அறிவுசார் சமூகம். அறிவியல் தமிழ் மற்றும் கணித்தமிழ் அலகு V 3 அறிவியல் தமிழின் வளர்ச்சி - கணித்தமிழ் வளர்ச்சி - தமிழ் நூல்களை மின்பதிப்பு செய்தல் - தமிழ் மென்பொருட்கள் உருவாக்கம் - தமிழ் இணையக் கல்விக்கழகம் - தமிழ் மின் நூலகம் இணையத்தில் தமிழ் அகராதிகள் CO5 சொற்குவை திட்டம். **TOTAL: 15 PERIODS**

TEXT-CUM-REFERENCE BOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் கே கே பிள்ளை (வெளியீடு தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்)
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம் (விகடன் பிரசுரம்)
- கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr. K. K. Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr. S. Singaravelu) (Published by: International Institute of Tamil Studies.
- Historical Heritage of the Tamils (Dr. S. V. Subatamanian, Dr. K. D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).

- 8. The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Published by: International Institute of Tamil Studies.)
- Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr. K. K. Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R. Balakrishnan) (Published by: RMRL) Reference Book.

GE 4207	ENGINEERING PRACTICES LABORATORY	L	Р	Т	С
	(Common to all branches of B.E. / B. Tech Programmes)	0	0	4	2
OBJECTIVI	ES				
 To pro 	ovide exposure to the students with hands on experience on various basic e	engin	leeri	ng	
practi	ces in Civil, Mechanical, Electrical and Electronics Engineering	-		-	
LIST OF EX	PERIMENTS				
GROUP A	(CIVIL & MECHANICAL)				
I CIVIL F	NGINEERING PRACTICE		13	5	
Building	s:				
(a) Stuc	ly of plumbing and carpentry components of residential and industrial buil	ding	s.		
Safe	ty aspects.				
Plumbin	g Works:				
(a) Stuc	ly of pipeline joints, its location and functions: valves, taps, couplings,				CO
unic	ns, reducers, elbows in household fittings.				
(b) Stuc	ly of pipe connections requirements for pumps and turbines.				
(c) Prep	aration of plumbing line sketches for water supply and sewage works.				
(d) Han	ds-on-exercise: Basic pipe connections – Mixed pipe material connection	ι —			
Pipe	connections with different joining components.				
-	ionstration of plumbing requirements of high-rise buildings.				
()	ry using Power Tools only:				
-	ly of the joints in roofs, doors, windows and furniture.				
,	ds-on-exercise: Wood work, joints by sawing, planing and cutting.				

II ME	CHANICAL ENGINEERING PRACTICE 18	
We	ding:	
a)	Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding.	
b)	Gas welding practice	
Bas	ic Machining:	
a)	Simple Turning and Taper turning	
b)	Drilling Practice	
She	et Metal Work:	
a)	Forming & Bending.	
b)	Model making – Trays and funnels.	
c)	Different type of joints.	
Ma	chine assembly practice:	CO2
a)	Study of centrifugal pump	
b)	Study of air conditioner	
Den	nonstration on:	
a)	Smithy operations, upsetting, swaging, setting down and bending. Example - Exercise	
	– Production of hexagonal headed bolt.	
b)	Foundry operations like mould preparation for gear and step cone pulley.	
c)	Fitting – Exercises – Preparation of square fitting and V – fitting models.	

GROUP B (ELECTRICAL & ELECTRONICS)					
IIIELECTRICAL ENGINEERING PRACTICE13					
1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.					
2.Fluorescent lamp wiring.	CO3				
3.Stair case wiring					
4.Measurement of electrical quantities – voltage, current, power & power factor in RLCcircuit.					
5.Measurement of energy using single phase energy meter.					
6.Measurement of resistance to earth of an electrical equipment.					
IV ELECTRONICS ENGINEERING PRACTICE 16					
1. Study of electronic components and equipment's — Resistor, colour coding measurement					
of AC signal parameter (peak-peak, rms period, frequency) using CR.					
2. Study of logic gates AND, OR, EX-OR and NOT.					
3. Generation of Clock Signal.	CO5				
4. Soldering practice – Components Devices and Circuits – Using general purpose PCB. Measurement of ripple factor of HWR and FWR.					
TOTAL: 60	HOUR				

	LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS								
S.No.									
	CIVIL								
1.	Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings.	15 sets							

2.	Carpentry vice (fitted to work bench)	15 Nos						
3.	Standard woodworking tools 15 Sets.	15 Sets.						
4.	Models of industrial trusses, door joints, furniture joints	5 each						
5.	Power Tools: (a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw	2 Nos						
MEC	CHANICAL							
1.	Arc welding transformer with cables and holders.	5 Nos						
2.		5 Nos						
3.	Welding accessories like welding shield, chipping hammer, wire brush, etc.							
4.		2 Nos						
5.		2 Nos						
6.		2 Sets						
7.		2 Sets 2 Nos						
8.	Power Tool: Angle Grinder.							
9.	Study-purpose items: centrifugal pump, air-conditioner.	1 each						
ELE	CTRICAL							
1.	Assorted electrical components for house wiring.	15 Sets						
2.	Electrical measuring instruments.	10 Sets						
3.	Study purpose items: Iron box, fan and regulator, emergency lamp.	1 each						
4.	Megger (250V/500V).	1 No.						
5.	Power Tools: (a) Range Finder (b) Digital Live-wire detector	2 Nos						
ELE	CTRONICS							
1.	Soldering guns 10 Nos.	10 Nos.						
2.	Assorted electronic components for making circuits 50 Nos.	50 Nos.						
3.	Small PCBs.	10 Nos.						
4.	Multimeters	10 Nos.						
5.	Study purpose items: Telephone, FM radio, low-voltage power supply	1 each						
COUR	SE OUTCOMES							
Upon completion of the course, students will be able to								
CO1	CO1 Fabricate carpentry components and pipe connections including plumbing works. Use welding equipment's to join the structures.							
CO2	Carry out the basic machining operations Make the models using sheet metal works							
CO3	Carry out basic home electrical works and appliances.							

CO4	Meas	ure the	elec	trical	quan	tities										
CO5	Elabo	Elaborate on the components, gates, soldering practices														
	MAPPING OF COs WITH POs AND PSOs															
				PRO	GRA	MO	UTC	OM	ES (P	Os)			PR	OGRAM	SPECI	FIC
~~~													0	UTCOM	ES (PS	Os)
COs	<b>PO1</b>	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
		2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
C01	3	1	3	-	-	3	-	-	-	-	-	3	2	2	1	2
CO2	3	2	3	-	-	3	-	-	-	-	-	3	2	2	1	2
CO3	3	1	2	-	-	2	-	-	-	-	-	3	2	2	1	2
CO4	3	2	3	3	1	3	1	1	1	1	2	3	2	2	1	2
CO5	3	2	3	3	1	2	1	1	1	1	2	3	2	2	1	2

EC 4208	CIRCUITS AND DEVICES LA	ABORATORY	L	T	P	С
			0	0	4	2
<b>OBJECTIVES:</b>						
• To learn the ch	naracteristics of basic electronic devices	such as Diode, BJT, FET, SCR	L			
	the working of RL, RC and RLC circui					
• To gain hand o	on experience in Thevenin & Norton the	orems, KVL & KCL, and Supe	erposi	itio	n the	orems.
LIST OF EXPE	RIMENTS:					
1. Charac	teristics of PN Junction Diode					
2. Zener d	liode Characteristics and Regulator usin	g Zener diode				
	on Emitter input-output Characteristics					
	on Base input-output Characteristics					
	haracteristics					
	haracteristics					
	and Clamper & FWR					
	ations of Thevenin & Norton theorem					
	ations of KVL & KCL					
	cations of Super Position Theorem					
	cations of maximum power transfer & r					
	mination of Resonance Frequency of Ser	ries & Parallel RLC Circuits				
13. Transi	ient analysis of RL and RC circuits					
		TOTAL: 60	HOU	U <b>R</b>	S	
	Y REQUIREMENTS:					
	BC 107, BC 148,2N2646, BFW10	25 each				
2. 1	N4007, Zener diodes	25 each				
3. R	Resistors, Capacitors, Inductors	Sufficient Quantities				
4. E	Bread Boards	15 Nos.				
5. 0	CRO (30MHz)	15 Nos.				
6. F	Function Generators (3MHz)	10 Nos.				

7.	MSO- Mixed Signal Oscilloscope (100 MHz)	04 Nos.						
8.	Dual Regulated Power Supplies (0 –	10 Nos.						
	30V)							
COURSE OUTCOMES:								
At the	e end of the course, the student should be able to:							
•	Analyze the characteristics of basic electronic de	evices						
•	Design RL and RC circuits							
•	Verify Thevenin's & Norton's theorem KVL & KCL, and Super Position							
	Theorems							

# MAPPING OF COs WITH POS AND PSOS

COs			]	PROG	RAM		PROGRAM SPECIFIC OUTCOMES (PSOs)									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	-	-	-	-	-	2	2	3	1	-	-
CO2	3	3	3	3	1	-	-	-	-	-	2	2	3	-	-	-
CO3	3	3	3	3	1	-	-	-	-	-	2	2	3	-	-	-

## **SEMESTER III**

MA4352	TRANSFORMS AND COMPLEX FUNCTIONS	L	Т	Р	С
	(Common to MECH, EEE & ECE)	3	1	0	4
OBJECTIV	ES			I	
<ul> <li>This of</li> </ul>	course is designed to cover topics such as Complex Analysis, Ordinary Differ	renti	al Ec	quat	ions,
Z- Tra	ansforms and Laplace Transform.			-	
<ul><li>To de</li></ul>	velop an understanding of the standard techniques analytic function and its n	napp	ing 1	orop	erty
	niliarize the students with complex integration and contour integration techn				
be use	ed in real integrals.	-			
<ul><li>To ac</li></ul>	quaint the students with Differential Equations which are significantly used it	n en	gine	erin	g
proble	ems.		-		-
<ul> <li>To int</li> </ul>	roduce the effective mathematical tools for the solutions of partial differentia	al eq	uatic	ons 1	that
mode	l several physical processes and to develop Z-transform techniques for discre	ete ti	me s	yste	ems
	ply Laplace transforms for solving the problems that occur in various branch				
discip	lines.		-		
UNIT I	ANALYTIC FUNCTIONS				9+3
Analytic fund	tions – Necessary and sufficient conditions for analyticity in Cartesian and p	olar			
coordinates -	Properties - Harmonic conjugates - Construction of analytic function - Con	ıforn	nal		<b>CO</b> 1
nanning – M	apping by functions $w = Z + C$ , $CZ$ , $1/Z$ - Bilinear transformation				

UNIT I	II COMPLEX INTEGRATION	9+3
Singula	y's integral theorem – Cauchy's integral formula – Taylor's and Laurent's series – arities – Residues – Residue theorem – Application of residue theorem for evaluation of real ls – Use of circular contour and semi-circular contour(excluding poles on the real line)	CO2
UNIT 1		9+3
Higher parame	order linear differential equations with constant coefficients - Method of variation of eters– Homogenous equation of Euler's and Legendre's type – System of simultaneous linear ntial equations with constant coefficients	CO3
UNIT I	IV Z – TRANSFORMS AND DIFFERENCE EQUATIONS	9+3
Initial a	forms – Elementary properties – Inverse Z-transform (using partial fraction and residues) – and final value theorems – Convolution theorem – Formation of difference equations – on of difference equations using Z – transform.	CO4
UNIT <b>V</b>		9+3
transfor periodi	nce conditions – Transforms of elementary functions –Basic properties - Shifting theorems - rms of derivatives and integrals — Inverse transforms – Convolution theorem – Transform of c functions – Application to solution of linear second order ordinary differential equations onstant coefficients	CO5
	TOTAL : 60 H	OURS
TEXT	BOOKS:	
2.	Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, New Delhi, 43 rd Edition, 2 Kreyszig Erwin, "Advanced Engineering Mathematics", John Wiley and Sons, 10 th Edition, N Delhi, 2016.	
REFEI	RENCE BOOKS:	
1. 2.	G Bali N., Goyal M. and Watkins C., "Advanced Engineering Mathematics", Firewall Media imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009. Jain R.K. and Iyengar S.R.K., — Advanced Engineering Mathematics, Narosa Publications, Delhi, 3rd Edition, 2007.	Ì
3.	O_Neil, P.V. —Advanced Engineering Mathematics, Cengage Learning India Pvt., Ltd, New Delhi, 2007.	
4. 5.	Sastry, S.S, "Engineering Mathematics", Vol. I & II, PHI Learning Pvt. Ltd, 4 th Edition, New Delhi, 2014 Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics" Tata McGraw Hill	7
	Education Pvt. Ltd, 6th Edition, New Delhi, 2012	
	SE OUTCOMES	
Upon c	completion of the course, students will be able to	
CO1	Understand Analytic functions, conformal mapping & Bilinear transformation.	
CO2	Evaluate real integration by Complex integration techniques.	
CO3	Apply various techniques in solving ordinary differential equations.	
CO4	Use the effective mathematical tools for the solutions of partial differential equations by using transform techniques for discrete time systems.	-
CO5	Apply Laplace transform and inverse transform of simple functions, properties, various relate theorems in solving differential equations with constant coefficients.	;d
MAPP	ING OF COS WITH POS AND PSOS	
COs	PROGRAM OUTCOMES (POs) PROGRAM SPECIFIC OUTCOMES (PSOs)	С

	PO1	PO2	PO3	PO 4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2	2	1	1	-	-	-	-	1	2	2	3	1
CO2	3	3	3	2	2	2	1	-	-	-	-	1	3	2	2	1
CO3	3	3	3	2	3	3	2	-	-	1	1	3	2	2	3	1
CO4	3	1	1	1	2	1	1	1	2	2	1	-	3	2	2	1
CO5	3	3	3	2	2	2	1	-	-	-	-	1	2	2	2	1

CS4352	DATA STRUCTURES USING C	L	Τ	Р	С				
		3	0	0	3				
OBJECTI									
	introduce the basics of C programming language.								
	learn the concepts of advanced features of C.								
	understand the concepts of ADTs and linear data structures.								
* To	know the concepts of non-linear data structure and hashing.								
* To:	familiarize the concepts of sorting and searching techniques								
UNIT I	C PROGRAMMING FUNDAMENTALS				9				
Data Types – Variables – Operations – Expressions and Statements – Conditional Statements –									
	– Recursive Functions – Arrays – Single and Multi-Dimensional Arrays.								
UNIT II	C PROGRAMMING - ADVANCED FEATURES				9				
Structures	- Union - Enumerated Data Types - Pointers: Pointers to Variable	s, A	rrays	and	CO2				
	- File Handling – Preprocessor Directives.								
UNIT III LINEAR DATA STRUCTURES									
Abstract Data Types (ADTs) – List ADT – Array-Based Implementation – Linked List – Doubly									
	ts – Circular Linked List – Stack ADT – Implementation of Stack –								
	T – Priority Queues – Queue Implementation – Applications.	11							
UNIT IV NON-LINEAR DATA STRUCTURES									
Trees – Bir	ary Trees – Tree Traversals – Expression Trees – Binary Search Tree – H	Iashi	ng –	Hash	CO4				
	- Separate Chaining – Open Addressing – Linear Probing– Quadratic Pro								
	Rehashing - Graph and its representations – Graph Traversals.	- 2	,						
UNIT V	SORTING AND SEARCHING TECHNIQUES				9				
	ort – Quick Sort – Heap Sort – Merge Sort –Linear Search – Binary Sear	ch.			CO5				
		То	tal H	lours	45				
	TEXTBOOKS								
1	Reema Thareja, "Programming in C", Second Edition, Oxford University	sity I	Press	, 2016					
2	Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", S	econ	d Ed	ition,	Pearson				
	Education, 1997.								
	<b>REFERENCE BOOKS</b>								
1.	Brian W. Kernighan, Rob Pike, "The Practice of Programming", Pears	on E	duca	tion,	1999.				
2.	Paul J. Deitel, Harvey Deitel, "C How to Program", Seventh Edition, I	Pears	son E	ducat	ion,				
	2013.								
3.	Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures	and	Algo	orithm	s",				
	Pearson Education, 1983.								
4.	Ellis Horowitz, Sartaj Sahni and Susan Anderson, "Fundamentals of D	ata S	Struc	tures"	,				

	Galgotia, 2008
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Describe linear data structures using array and linked list
CO2	Apply data structures like stacks, queues in linear data structure
CO3	Discuss non-linear data structures tree and its application
CO4	Apply various algorithms in graph
CO5	Solve searching, sorting and hashing techniques in data structures

		]	MAPI	PING	BETV	VEEN	CO	AND	PO, P	SO WIT	ГН СОЕ	RELA	<b>FION L</b>	EVEL	1/2/3						
COs		PROGRAMME OUTCOMES												PROGRAMME SPECIFIC OUTCOMES							
	<b>PO1</b>	<b>PO2</b>	<b>PO3</b>	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4					
CO1	2	2	1	-	1	-	1	-	1	-	1	2	1	1	1	1					
CO2	2	2	1	-	1	-	1	-	1	-	1	2	1	1	1	1					
CO3	3	2	2	2	1	-	1	-	1	-	1	2	1	1	1	1					
<b>CO4</b>	3	2	2	2	1	-	1	-	1	-	1	2	1	1	1	1					
CO5	3	2	2	2	1	-	1	-	1	-	1	2	1	1	1	1					

EC4303	ELECTRONIC CIRCUITS AND ITS APPLICATIONS	L	Τ	Р	С		
		3	0	0	3		
OBJECTIVE	S:						
• To une	lerstand the methods of biasing transistors						
• To analyze the frequency response of transistors							
• To stu	dy about feedback amplifiers, tuned amplifiers and oscillators principle	es					
• To des	ign and analyze single stage and multistage amplifier circuits						
• To des	ign and analyze the power supplies & DC/DC converters						
UNIT I	BJT & MOSFET AMPLIFIERS				9		
Load line, operating point, biasing methods for BJT and MOSFET, BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response –MOSFET small signal model– Analysis of CS, CG and Source follower – Gain and frequency response- High frequency analysis, Practical applications of BJT & MOSFET amplifiers.							
UNIT II	MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIF	IER	ł		9		
-	nplifier, Cascade & Cascode amplifiers, Differential amplifier – Con e mode analysis, Configurations of Differential Amplifier.	mmo	on m	ode	CO2		
UNIT III	FEEDBACK & TUNED AMPLIFIERS				9		
Feedback Typ circuits, small	<b>FEEDBACK &amp; TUNED AMPLIFIERS</b> es, Analysis of series-series, shunt-shunt and shunt-series feedback am signal tuned amplifiers - double tuned amplifier, effect of cascading ned amplifiers on bandwidth, Practical applications of tuned amplifiers	sing			9 CO3		
Feedback Typ circuits, small	es, Analysis of series-series, shunt-shunt and shunt-series feedback am signal tuned amplifiers - double tuned amplifier, effect of cascading	sing					

UNIT V	POWER SUPPLIES & DC CONVERTERS	9
Full- Wave I	ated power supply — Rectifiers — Filters — Half-Wave Rectifier Power Supply — Rectifier Power Supply, Switched mode power supply (SMPS) — DC/DC convertors ost, Buck-Boost analysis and design, Practical applications of Power supply.	CO5
,	Total Hours:	45
	TEXTBOOKS	
1.	David A. Bell, "Electronic Devices and Circuits", Oxford Higher Education press, 5 Edition, 2010.(UNIT I, II, III, IV)	
2.	Sedra and Smith, "Micro Electronic Circuits"; Sixth Edition, Oxford University Pre 2011. (UNIT III,IV,V)	ess,
	<b>REFERENCE BOOKS</b>	
1.	Robert L. Boylestad and Louis Nasheresky, "Electronic Devices and Circuit Theory 10th Edition, Pearson Education / PHI, 2008.	y",
2.	Salivahanan and N. Suresh Kumar, Electronic Devices and Circuits, 4th Edition, , M Graw Hill Education (India) Private Ltd., 2017.	Мс
3.	Millman J, Halkias.C.and Sathyabrada Jit, Electronic Devices and Circuits, 4th Edi Mc Graw Hill Education (India) Private Ltd., 2015.	tion,
	COURSE OUTCOMES:	
	After completing this course, the students will be able to	
CO1	Acquire knowledge of working principles, characteristics, performance of small sig and MOSFET amplifiers.	nal BJT
CO2	Acquire knowledge of multistage amplifiers.	
CO3	Understand the design of feedback & tuned amplifiers	
CO4	Understand the design LC and RC oscillators &, multivibrators,	
CO5	Acquire knowledge of power supplies & DC/DC converters and its applications.	

		MAP	PING	BET	WEEN	N CO A	AND P	PO, PS	O WI	ТН СО	ORRE	LATI	ON LI	EVEL	1/2/3					
COs		PROGRAMME OUTCOMES											PROGRAMME SPECIFIC OUTCOMES							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4				
CO1	3	3	2	2	1	2	-	-	-	-	-	1	2	1	1	1				
CO2	3	3	3	2	2	2	-	-	-	-	-	1	2	1	1	1				
<b>CO3</b>	3	3	3	3	2	2	-	-	-	-	-	1	2	1	1	1				
<b>CO4</b>	3	3	3	1	2	2	-	-	-	-	-	1	2	1	1	1				
<b>CO5</b>	3	3	3	1	3	2	-	-	-	-	-	1	3	1	1	1				

EC4304	DIGITAL CIRCUITS AND DESIGNLT	Р	С
	3 0	0	3
OBJECTI			
	present the basics of digital circuits and simplification methods		
	design various combinational digital circuits using logic gates		
✤ To	bring out the analysis and design procedures for synchronous and asynchronous S	equen	tial
circ	puits		
✤ To	understand programmable concepts using Verilog for combinational and sequentia	al circ	uits
✤ To	learn working of IC families and introduce configuration of semiconductor memor	ries ar	d its
app	lications.		
UNIT I	FUNDAMENTALS OF DIGITAL SYSTEMS		9
Review of:	number systems-representation-conversions, Review of Boolean algebra- theorems	, sum	CO1
of product	and product of sum simplification, Minterm and Maxterm, Standard representati	on of	
Boolean H	Function, Simplification of Boolean expressions-Karnaugh map, completely	and	
incomplete	ly specified functions, Implementation of Boolean expressions using universal g	gates,	
Quine-Mc	Cluskey methods.		
UNIT II	COMBINATIONAL LOGIC CIRCUITS		9
Analysis a	nd design procedure of combinational circuits - Half and Full Adders, Binary Pa	rallel	CO2
Adder – Ca	rry look ahead Adder, BCD Adder, Code-Converters, Magnitude Comparator, Dec	oder,	
Encoder, P	riority Encoder, Multiplexer, Demultiplexer, Case studies: Design of 8 bit Arith	metic	
	nit, Parity Generator/Checker, Seven Segment display decoder – Introduction to Ve		
-	r Combinational Circuits	-	
UNIT III	SYNCHRONOUS SEQUENTIAL LOGIC		9
	ments-Latches, Flip flops – SR, JK, T, D, Master/Slave FF, Triggering of FF, – D	esign	CO3
-	Mealy models Analysis and design of clocked sequential circuits, state minimize	-	
	ment, lock - out condition circuit implementation - Counters, Ripple Counters, Sp		
-	Shift registers, Universal Shift Register. Designing of rolling display/real time clo		
	n to Verilog program for Sequential Circuits.		
UNIT IV	ASYNCHRONOUS SEQUENTIAL LOGIC		9
	tates-state reduction-state assignment-Analysis of Asynchronous circuits, cycles	s and	<b>CO4</b>
. 1	free assignments, Hazards - types, Implementation of Hazard free circuits. Analy		
	bus sequential circuits, Design of Fundamental and Pulse mode asynchronous sequences		
circuits.			
UNIT V	DIGITAL INTEGRATED CIRCUITS AND PROGRAMMABLE LOGIC		9
	DEVICES		
Logic fami	lies - RTL, TTL, ECL, CMOS - Characteristics of Logic families, - Propagation		CO5
e	- In and Fan - Out - Noise Margin – Structure of Memory, static ROM, PROM,		000
-	EAPROM; Implementation of circuits by programmable logic devices – PROM, F	PLA	
and PAL.		2.1	
	Total H	ours:	45
T	EXTBOOKS		
	. Morris Mano and Michael D. Ciletti, 'Digital Design', Pearson, 5th Edition, 201	3 (Uni	t - I -

	REFERENCE BOOKS
1.	Charles H. Roth, Jr, 'Fundamentals of Logic Design', Jaico Books, 4th Edition, 2002.
2.	William I. Fletcher, "An Engineering Approach to Digital Design", Prentice- Hall of India,
	1980.
3.	Floyd T.L., "Digital Fundamentals", Charles E. Merril publishing company,1982.
4.	John. F. Wakerly, "Digital Design Principles and Practices", Pearson Education, 4 th
	Edition,2007.
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Use Boolean algebra and simplification procedures relevant to digital logic.
CO2	Design various combinational digital circuits using logic gates.
CO3	Analyze, design and simulate synchronous sequential circuits.
<b>CO4</b>	Analyze design and simulate asynchronous sequential circuits
CO5	Build logic gates and use programmable devices

		MAP	PING	BET	VEEN	CO A	ND P	PO, PS	O WI	TH CO	ORRE	LATI	ON L	EVEL	1/2/3						
COa		PROGRAMME OUTCOMES											PROGRAMME SPECIFIC OUTCOMES								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4					
CO1	3	3	3	2	1	2	-	-	-	-	2	2	3	3	2	1					
CO2	3	3	3	2	2	2	-	-	-	-	2	3	3	3	2	2					
CO3	3	3	3	2	2	2	-	-	-	-	2	3	3	3	2	2					
<b>CO4</b>	3	3	3	2	2	2	-	-	-	-	2	3	3	3	2	2					
CO5	3	3	3	3	3	2	-	-	-	-	3	3	3	3	3	3					

EC4305	CONTROL SYSTEMS	L	Т	Р	С	
		3	0	0	3	
OBJECTI	VES:					
• To learn systems.	luce the components and their mathematical models various methods for analyzing the time response, frequency response a the various approaches for the state variable analysis.	nd s	tabil	ity o	f the	
UNIT I	MATHEMATICAL MODELS OF CONTROL SYSTEMS				9	
and Mecha	Basic Structure of Control System – Closed loop and Open Loop System – Modeling of Electrical and Mechanical System - Transfer Function - Block diagram Models – Reduction method - Signal flow graphs models - DC and AC Servo Systems					
UNITII	TIME RESPONSE ANALYSIS				9	
response an	st signals - Measures of performance of the standard first order system – Imp nalysis of second order system-effect of adding a zero to the system - steady e pe number – P, PD, PI, PID controllers			-	CO2	

UNIT I	II FREQUENCY RESPONSE ANALYSIS	9					
	ance specification in frequency domain - Frequency response of standard second order - Bode Plot - Polar Plot - Design of compensators using Bode plots – lead, lag, lag-lead sation.	CO3					
UNIT I	V CONCEPTS OF STABILITY ANALYSIS	9					
-	t of stability - Bounded-Input Bounded-Output stability - Routh stability criterion - Root Rules for sketching root locus - Nyquist stability criterion	CO4					
UNIT	V STATE VARIABLE ANALYSIS	9					
State variable representation-Conversion of state variable models to transfer functions-Conversion of transfer functions to state variable models - Concepts of Controllability and Observability - State variable analysis of digital control system							
	Total Hours:	45					
	TEXTBOOKS						
1.	M.Gopal,"Control System – Principles and Design", Tata McGraw Hill, 4th Edition, 2012.						
2.	K.Ogata, "Modern Control Engineering", PHI, 5th Edition, 2012.						
	REFERENCE BOOKS						
1.	Nagrath and M.Gopal, "Control System Engineering", New Age International Publisher Edition, 2007.	s, 5 th					
2.	S.K.Bhattacharya, "Control System Engineering", Pearson, 3rd Edition, 2013.						
3.	Benjamin.C.Kuo, "Automatic Control Systems", Prentice Hall of India, 7th Edition, 1995.						
4.	A NagoorKani, "Control Systems", CBS Publishers and Distributors Private Limited, 5 th Edition, 2019						
	COURSE OUTCOMES:						
	After completing this course, the students will be able to						
CO1	Compute the transfer function of different physical systems.						
CO2	Analyse the time domain specification and calculate the steady state error.						
CO3	Illustrate the frequency response characteristics of closed loop system.						
CO4	Analyse the stability using Routh and root locus techniques.						
CO5	Illustrate the state space models of a physical system and discuss the concepts of sampled data control system						
	data control system.						

		Μ	APPIN	NG BE	TWEF	<b>EN CO</b>	AND I	PO, PS	O WI	гн со	RREL	ATIO	N LEV	EL 1/2	2/3	
COs		PROGRAMME OUTCOMES PROGRAMME SPECIFIC OUTCOMES													IC	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4
CO1	3	3	3	2	2	2	-	-	-	-	2	3	3	2	-	2
CO2	3	3	3	3	2	3	-	-	-	-	2	2	3	2	-	2
CO3	3	2	3	3	2	2	-	-	-	-	2	3	3	2	-	2
<b>CO4</b>	3	3	3	2	2	2	-	-	-	-	2	2	3	2	-	2
CO5	2	2	3	3	2	3	-	-	-	-	2	3	3	2	-	2

EC4306	ELECTROMAGNETIC FIELDS	L	Τ	Р	С
	(Common to Electronics and Communication Engineering)	3	0	0	3
OBJECTIV	ES:				
• To gain	knowledge on the basics of vector calculus and coordinate systems.				
To attain	n comprehensive knowledge in static electric and magnetic fields.				
• To gain	conceptual understating of time varying electric and magnetic fields us	ing	Max	well's	
Equation		0			
-	insight into the propagation of EM waves.				
	tically solve problems in all the above topics.				
UNIT I	VECTOR ANALYSIS OF ELECTROMAGNETIC MODEL				9
	f Vector Calculus, Introduction to different Coordinate Systems	—-F	Recta	ngular.	CO1
	nd Spherical, Gradient of a scalar, Line, Surface and Volume Integrals			-	001
	Divergence Theorem , Curl of vector field, Stokes Theorem, Electron				
	nstants, Null identities, Helmholtz's Theorem.	0-			
UNIT II	STATIC ELECTRIC FIELD				9
	en charges – Law and its applications, Electric Field Strength, Electric	c Fl	ux I	Density.	-
	veen Flux density and charge – Law and its applications, Electric Dipol			-	
	etween Electric Field and Potential, Current and Current Density v				
	rrent, Boundary Conditions of Electric field, Analytical study of Poiss				
0	lectric energy storage devices with its types- Capacitor.				
UNIT III	STATIC MAGNETIC FIELD				9
	on on moving charges, Force produced by the current element -Biot-Sa	vart	's La	w with	CO3
	ns, Relation between magnetic field intensity and current -Ampere Cir				
	ons, Properties of Magnetic Circuits and Torque .Types of magnetic				
11	ector magnetic potential analysis, Types of Magnetic Forces and Mate	-			
-	onditions with its applications, Magnetic Energy storage devices and its			-	
and Toroid.		71			
UNIT IV	TIME VARYING ELECTRIC AND MAGNETIC FIELDS				9
Faraday's Pr	nciple based on electromagnetic induction, Displacement current, Maxy	vell	's Eq	uations	CO4
•	and integral form, Analysis of Maxwell's Equation using differe				
	etic Boundary Conditions, Maxwell's equation in time varying Ha				
	he Wave Equations with its mathematical Solution.				
_					
UNIT V	PLANE WAVE PROPAGATION AND REFLECTION				9
Analysis of F	ropagation of wave in different mediums -Free space, Dielectric and Go	bod	Cond	luctors	CO5
	veen electric and magnetic field, Electromagnetic power flow for a plane				000
	lent normally on conductor and dielectric boundary.	wu	, 1	inury 515	
		T	otal	Hours:	45
	TEXTBOOKS				
1.	William H Hayt and Jr John A Buck, "Engineering Electromagnetic	s".	Tata	n Mc Gra	awHill
	Publishing Company Ltd, New Delhi, 2008.	,			
2	D.K. Cheng, Field and wave electromagnetics, 2nd ed., Pearson (Indi	ia).	1989		
2.			レノロノ	•	
2.				•	
	REFERENCE BOOKS				TT'11
1.	REFERENCE BOOKS           John D Kraus and Daniel A Fleisch, "Electromagnetics with Applic				w Hill
	REFERENCE BOOKS         John D Kraus and Daniel A Fleisch, "Electromagnetics with Applic Book Co, 2005.	atio	ns",	Mc Gra	
1.	REFERENCE BOOKS           John D Kraus and Daniel A Fleisch, "Electromagnetics with Applic	atio	ns",	Mc Gra	

	Ashutosh Pramanic, "Electromagnetism", Prentice Hall of India , New Delhi, 2006.
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Understand and apply the knowledge of vector calculus and coordinate system in
	electromagnetic fields.
CO2	Describe and analyze the concept of electrostatics for electromagnetics systems.
CO3	Describe and analyze the concept of Magnetostatics for electromagnetic systems.
CO4	Characterize and apply the concept of time varying electric and magnetic fields.
CO5	Understand and evaluate wave propagation in different mediums.

	MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3         PROGRAMME OUTCOMES       PROGRAMME SPECIFIC															
COs				PRO	GRAM		PRO	GRAM	<b>IME</b>	SPECI	FIC					
	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS         PS															
	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS											PS	PS	PS		
													01	02	03	04
CO1	3	2	2	1	2	2	-	-	-	-	1	3	3	2	1	2
CO2	3	3	3	3	2	2	-	-	-	-	2	3	3	2	1	2
CO3	3	3	3	3	2	2	-	-	-	-	2	3	3	2	1	2
CO4	3	3	3	3	2	2	-	-	-	-	2	3	3	2	1	2
CO5	3	3	3	3	2	2	-	-	-	-	2	3	3	2	1	2

EC4307ANALOG AND DIGITAL CIRCUITS LABORATORYLTPC0042										
		0	0	4	2					
OBJECTI	VES:									
The student	should be made to:									
<ul> <li>Stud</li> </ul>	y the Frequency response of CE, CB and CC Amplifier									
🛠 Leai	n the frequency response of CS Amplifiers									
<ul> <li>Stud</li> </ul>	y the Transfer characteristics of differential amplifier									
<ul><li>Perf</li></ul>	orm experiment to obtain the bandwidth of single stage and multistage amp	olifie	rs							
<ul><li>Perf</li></ul>	orm SPICE simulation of Electronic Circuits									
✤ Desi	gn and implement the Combinational and sequential logic circuits									
	ANALOG EXPERIMENTS				18					
1. Design	and study the Frequency Response of BJT Amplifiers-CE, CB, CC amplified	ers			CO1					
2. Design	and study the Frequency Response of CS amplifiers				CO2					
3. Darlingto	on Amplifier				CO3					
4. Different	ial Amplifiers - Transfer characteristics, CMRR Measurement									
5. Cascode	and Cascade amplifiers									
6. Determin	nation of bandwidth of single stage and multistage amplifiers									
	EXPERIMENTS using Simulation				12					
1.Analysis	of BJT with Fixed bias and Voltage divider bias using Spice				CO4					
2. Analysis	of FET, MOSFET with fixed bias, self-bias and voltage divider bias using	g sin	nulat	ion						
software us	ing Spice									
3. Analysis	of Cascode and Cascade amplifiers using Spice									
4. Analysis	of Frequency Response of BJT and FET amplifiers using Spice									
5. Analysis	of TTL NAND Gate									

	DIGITAL EXPERIMENTS	30
1. Desig	n and implementation of code converters using logic gates	CO5
(i)	) BCD to excess-3 code and vice versa (ii) Binary to gray and vice-versa	
2. Design	and implementation of 4 bit binary Adder/ Subtractor and BCD adder using IC 7483	
3. a. Desi	gn and implementation of Multiplexer and De-multiplexer using logic gates	
	gn and implementation of Combinational Circuits using Multiplexer	
	and implementation of encoder and decoder using logic gates	
-	uction and verification of 4 bit ripple counter and Mod-10 / Mod-12 Ripple counters	
6. Design	and implementation of 3-bit synchronous up/down counter	
	Total Hours:	60
LAB R	REQUIREMENTS FOR A BATCH OF 30 STUDENTS, 2 STUDENTS / EXPERIMEN	IT:
1.	EQUIPMENTS FOR ANALOG LAB	
	CRO/DSO (30MHz) - 15 Nos.	
	Signal Generator /Function Generators (3 MHz) – 15 Nos	
	Dual Regulated Power Supplies $(0 - 30V) - 15$ Nos.	
	Standalone desktop PCs with SPICE software – 15 Nos.	
	Transistor/FET (BJT-NPN-PNP and NMOS/PMOS) – 50 Nos	
	Components and Accessories: Resistors, Capacitors, Inductors, diodes, Zener Diodes,	
	Bread Boards,	
	SPICE Circuit Simulation Software: (any public domain or commercial software)	
	EQUIPMENTS FOR DIGITAL LAB	
5.	Dual power supply/ single mode power supply - 15 Nos	
	IC Trainer Kit - 15 Nos	
	Bread Boards - 15 Nos	
	Seven segment display -15 Nos	
	Multimeter - 15 Nos	
	ICs each 50 Nos	
	7400/7402/7404/7486/7408/7432/7483/74150/74151/74147/7445/7476/74	491/
	555 / 7494 / 7447 / 74180 / 7485 / 7473 / 74138 / 7411 / 7474	
	COURSE OUTCOMES:	
	On completion of this laboratory course, the student should be able to:	
CO1	Design and Test BJT/JFET amplifiers.	
CO2	Analyze the limitation in bandwidth of single stage and multi stage amplifier, cascode	and
	cascade amplifiers.	
CO3	Measure CMRR in differential amplifier	
CO4	Simulate and analyze amplifier circuits using PSpice.	
CO5	Design and test the digital logic circuits.	

		MAI	PPINC	LATI	ON L	EVEL	1/2/3									
COs				PF	ROGR	AMM	E OU'	тсом	1ES					<b>SPE</b> (	RAMM CIFIC COME	
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1												PS O2	PS O3	PS O4
CO1	3	3     3     2     2     1     1     -     -     -     1     2     1     1														
CO2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1	2	1		
<b>CO3</b>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												2	1	1	1
<b>CO4</b>	3 3 2 3 1 1												3	1	1	1
CO5	3	3	2	3	1	1	_	-	-	-	-	2	3	1	1	1

C4307	DATA STRUCTURES LABORATORY	L	Τ	P	С
		0	0	4	2
<b>)BJECT</b> I	IVES:				
	develop applications in C				
	implement linear and non-linear data structures				
	understand the different operations of search trees				
🏼 🛠 To	get familiarized to sorting and searching algorithms				
	ANALOG EXPERIMENTS				18
1. Pra	ctice of C programming using statements, expressions, decision making a	and i	terati	ve	CO1
stat	tements				CO2
	ctice of C programming using Functions and Arrays				CO3
	plement C programs using Pointers and Structures				CO4
	plement C programs using Files				CO5
	velopment of real time C applications				
	ray implementation of List ADT				
	ray implementation of Stack and Queue ADTs				
	ked list implementation of List, Stack and Queue ADTs				
	plications of List, Stack and Queue ADTs				
	plementation of Binary Trees and operations of Binary Trees				
	plementation of Binary Search Trees				
-	plementation of searching techniques				
	plementation of Sorting algorithms : Insertion Sort, Quick Sort, Merge So	ort			
14. Im	plementation of Hashing – any two collision techniques				
			То	tal H	ours: (
	COURSE OUTCOMES:				
	On completion of this laboratory course, the student should be able to:				
CO1	Use different constructs of C and develop applications				
CO2	Write functions to implement linear and non-linear data structure operat				
CO3	Suggest and use the appropriate linear / non-linear data structure operation				
CO4	Apply appropriate hash functions that result in a collision free scenar. Retrieval	io fo	r dat	a sto	rage ar
CO5	Implement Sorting and searching algorithms for a given application				

		N	<b>IAPPI</b>	NG BE	ATIO	N LEV	EL 1/2	2/3								
COs				Р	PROGE	RAMM	E OUI	ГСОМ	ES					SPE(	RAMM CIFIC COMES	
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO												PS O1	PS O2	PS O3	PS O4
CO1													1	1	1	1
CO2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1	1	1	1
CO3												2	1	1	1	1
CO4	2 2 2 2 1 - 1 - 1 1												1	1	1	1
CO5	1	1	1	2	1	-	1	-	1	-	1	2	1	1	1	1

### SEMESTER IV

MA4401	(Common for all branches of B.E. / B. Tech Programmes)												
	3	1	0	4									
<ul> <li>To intr</li> <li>To intr</li> <li>To proengine</li> <li>To intr</li> </ul>	burse aims at providing the required skill to apply the statistical tools in engine roduce the basic concepts of probability and random variables. Tooluce the basic concepts of two-dimensional random variables. Tovide necessary basic concepts of probability and random processes for the produce the basic concepts and important roles in the statistical quality contra- ted to the basic concepts and important roles in the statistical quality contra-	or ap	01										
UNIT I	PROBABILITY AND RANDOM VARIABLES			9-	-3								
	continuous random variables – P.d.f, Moments – Moment generating function Poisson, Geometric, Uniform, Exponential and Normal distributions.	ons		CC	01								
UNIT II	TWO - DIMENSIONAL RANDOM VARIABLES			9+	-3								
	itions – Marginal and conditional distributions – Covariance – Correlation a sion – Transformation of random variables	and		СС	02								
UNIT III	RANDOM PROCESSES			<b>9</b> +	-3								
	n – Stationary process – Markov process – Poisson process – Discr farkov chain – Chapman Kolmogorov equations (Statement only) – Limit			СС	)3								
UNIT IV	NON-PARAMETRIC TESTS			9+	-3								
	<ul> <li>The Sign test – The Signed – Rank test – Rank – sum tests – The U tes</li> <li>Tests based on Runs – Test of randomness – The Kolmogorov Test.</li> </ul>	st —		CC	)4								
UNIT V	STATISTICAL QUALITY CONTROL			<b>9</b> +	-3								
	ts for measurements (X and R charts) – Control charts for attributes (p, c a Tolerance limits - Acceptance sampling			CO									
	ΤΟΤ	AL	: 60	НО	URS								
TEXT BOO	KS:												
	on, R.A., Miller, I and Freund J., "Miller and Freund's Probability a eers", Pearson Education, Asia, 8th Edition, 2015.	and	Stat	istic	s for								
	n. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata In, 2007.	McC	Braw	Hill	l, 4th								

3. Ibe, O.C., "Fundamentals of Applied Probability and Random Processes", Elsevier,1st Indian Reprint, 2007

# **REFERENCE BOOKS:**

1. Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill Edition, New Delhi, 2004.

2.	Papor	lis. A	anc	d Un	nikris	hnapil	lai.S	"Prol	babilit	v. Ra	andom	1	/ariable	es	and	Stoc	hastic
	1	,				1						lhi, 201					
		,						,		,		,	and S	cient	ists",	3rd E	dition,
		ier, 20						5				0			,		,
		,		Schi	ller. J	I. and	Sriniv	vasan,	R.A.,	"Sch	aum's	Outline	e of Tł	neory	and 1	Proble	ms of
						, Tata I								2			
		•										ility an	d Stati	stics	for Er	nginee	rs and
	-			•		tion, A	•									C	
											g and the	he Scie	ncesl,	Cenga	age Le	earning	g, New
	Delhi	, 8th E	diti	on, 2	014.						-			Ĩ	-		_
		E OUI			-												
Upo	on cor	npleti	on e	of the	e cour	rse, stu	idents	will b	e able	e to							
CO	)1	Under	rsta	nd th	e funo	damen	tal kno	owledg	ge of t	he con	ncepts	of prob	ability	and h	nave k	nowle	dge of
		<ul> <li>Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon.</li> <li>Understand the basic concepts of one and two dimensional random variables and apply in</li> </ul>															
CO	)2	Understand the basic concepts of one and two dimensional random variables and apply in															
		Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.Apply the concept of random processes in engineering disciplines															
CO	)3	Apply	the	e con	cept o	of rand	om pro	ocesse	s in er	nginee	ring dis	scipline	s				
CO	)4	Apply	the	e basi	ic con	cepts of	of stati	stical	quality	y cont	rol.						
	\ <b>F</b>	Have	the	e noti	on of	samp	ling di	stribu	tions a	and st	atistica	l techn	iques i	ised i	n eng	ineerii	ng and
CO	)5	mana	gen	nent p	oroble	ms.											
												D PSO	S				
					PR	OGRA	M O	UTCC	<b>)MES</b>	(POs	)					GRAN	
CO	)s													OUT		CIFIC IES (P	
	PC	01 PC	)2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	<b>PO12</b>				,
со				3	-	-	-	-	-	2	3	-	1	2	1	1	1
-		2	)	2	_	_	_	_	_	1	2	_	1	2	1	1	1
CO	4				-	-	-	-	-	1		-					
CO	<b>3</b> 3	3	3	3	-	-	-	-	-	2	2	-	1	3	3	2	2
со	<b>4</b> 3	2	2	2	-	-	-	-	-	2	1	-	2	1	1	2	2
СО	<b>5</b> 3		3	2	-	-	-	-	-	2	2	-	2	1	2	2	1

EC4402       SIGNALS AND SYSTEMS       L       T       I         3       1       0								
		3	1	0	4			
OBJECTIV	/ES:							
• To	understand the fundamental properties of signals and systems							
• To	understand the techniques for characterizing LTI systems in time domain							
• To :	analyze continuous time signals and system in the Fourier and Laplace do	mair	1					
• To :	analyze discrete time signals and system in the Fourier and Z transform do	omai	n					
UNIT I	INTRODUCTION TO SIGNALS AND SYSTEMS				12			
Introducti	on to Continuous time (CT) and Discrete Time (DT) signals- E	Elem	enta	ry	<b>CO1</b>			
	s on independent variables-Step, Ramp, Pulse, Impulse, Real and							
exponenti	als and Sinusoids-Classification of signals — Continuous time and Disc	crete	Tin	ne				

signals I	Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power	
•	Odd & Even signals — Classification of systems- Continuous Time systems and	
	Time systems- — Linear & Nonlinear, Time-variant & Time-invariant, Causal	
	ausal, Stable & Unstable- Invertible and non-invertible systems.	
UNIT II	CONTINUOUS TIME SIGNAL ANALYSIS	12
	ies for periodic signals –Exponential Fourier series, Trigonometric Fourier Series-	CO2
	ansform and properties- Laplace Transforms and properties	002
UNIT III	ANALYSIS AND DESIGN OF LINEAR TIME INVARIANT CONTINUOUS TIME SYSTEMS	12
Equations -	sponse - convolution integrals- Differential Equation – Solutions to Differential Fourier and Laplace transforms in Analysis of Continuous Time systems - Systems n series / parallel.	CO3
UNIT IV	DISCRETE TIME SIGNALS ANALYSIS	12
	signal Sampling – Effects of Aliasing – Fourier Transform of discrete time signals Properties of DTFT – Introduction to Z Transform & Properties.	CO4
(DIFI) - 1		12
UNIT V Impulse re	ANALYSIS AND DESIGN OF LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z	
UNIT V Impulse re Transform	<b>TIME SYSTEMS</b> sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z Analysis of Recursive & Non-Recursive systems- Discrete Time systems in series and parallel.	CO5
UNIT V Impulse re Transform	TIME SYSTEMS         sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z         Analysis of Recursive & Non-Recursive systems- Discrete Time systems         in series and parallel.         Total Hours:	
UNIT V Impulse re Transform connected	TIME SYSTEMS         sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z         Analysis of Recursive & Non-Recursive systems- Discrete Time systems         in series and parallel.         Total Hours:         TEXTBOOKS	CO5
UNIT V Impulse re Transform connected 1.	TIME SYSTEMS         sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z         Analysis of Recursive & Non-Recursive systems- Discrete Time systems         in series and parallel.         Total Hours:         TextBooks         Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and Systems  , Pearson, 201	<b>CO5</b> <b>60</b>
UNIT V Impulse re Transform connected	TIME SYSTEMS         sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z         Analysis of Recursive & Non-Recursive systems- Discrete Time systems         in series and parallel.         Total Hours:         TEXTBOOKS         Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and Systems  , Pearson, 201         Simon Haykin and Barry Van Veen, "Signals & Systems", John Wiley and Sons Inc.,	<b>CO5</b> <b>60</b>
UNIT V Impulse re Transform connected 1. 2.	TIME SYSTEMS         sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z         Analysis of Recursive & Non-Recursive systems- Discrete Time systems         in series and parallel.         Total Hours:         Total Hours:         TextBooks         Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and Systems  , Pearson, 201         Simon Haykin and Barry Van Veen, "Signals & Systems", John Wiley and Sons Inc.,         REFERENCE BOOKS	<b>CO5</b> <b>60</b>
UNIT V Impulse re Transform connected 1.	TIME SYSTEMS         sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z         Analysis of Recursive & Non-Recursive systems- Discrete Time systems         in series and parallel.         Total Hours:         TEXTBOOKS         Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and Systems  , Pearson, 201         Simon Haykin and Barry Van Veen, "Signals & Systems", John Wiley and Sons Inc.,	<b>60</b> 60
UNIT V Impulse re Transform connected 1. 2. 1.	TIME SYSTEMS         sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z         Analysis of Recursive & Non-Recursive systems- Discrete Time systems         in series and parallel.         Total Hours:         Total Hours:         TextBooks         Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and Systems , Pearson, 201         Simon Haykin and Barry Van Veen, "Signals & Systems", John Wiley and Sons Inc.,         REFERENCE BOOKS         B. P. Lathi, Principles of Linear Systems and Signals , Second Edition, Oxford, 2009.         R.E.Zeimer, W.H.Tranter and R.D.Fannin, —Signals & Systems - Continuous and	<b>60</b> 60
UNIT V Impulse re Transform connected 1. 2. 1. 2.	TIME SYSTEMS         sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z         Analysis of Recursive & Non-Recursive systems- Discrete Time systems         in series and parallel.         Total Hours:         Total Hours:         TextBooks         Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and Systems ^{II} , Pearson, 201         Simon Haykin and Barry Van Veen, "Signals & Systems", John Wiley and Sons Inc.,         REFERENCE BOOKS         B. P. Lathi, Principles of Linear Systems and Signals ^{II} , Second Edition, Oxford, 2009.         R.E.Zeimer, W.H.Tranter and R.D.Fannin, —Signals & Systems - Continuous and Discrete ^{II} , Pearson, 2007.	<b>60</b> 60
UNIT V Impulse re Transform connected 1. 2. 1. 2. 3.	TIME SYSTEMS         sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z         Analysis of Recursive & Non-Recursive systems- Discrete Time systems         Interview & Non-Recursive systems- Discrete Time systems         in series and parallel.         Total Hours:         TextBooks         Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and Systems", Pearson, 201         Simon Haykin and Barry Van Veen, "Signals & Systems", John Wiley and Sons Inc.,         REFERENCE BOOKS         B. P. Lathi, Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.         R.E.Zeimer, W.H.Tranter and R.D.Fannin, —Signals & Systems - Continuous and Discrete", Pearson, 2007.         John Alan Stuller, —An Introduction to Signals and Systems", Thomson, 2007.	<b>60</b> 60
UNIT V Impulse re Transform connected 1. 2. 1. 2. 3.	TIME SYSTEMS         sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z         Analysis of Recursive & Non-Recursive systems- Discrete Time systems         in series and parallel.         Total Hours:         TextBooks         Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and Systems", Pearson, 201         Simon Haykin and Barry Van Veen, "Signals & Systems", John Wiley and Sons Inc.,         REFERENCE BOOKS         B. P. Lathi, Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.         R.E.Zeimer, W.H.Tranter and R.D.Fannin, —Signals & Systems - Continuous and Discretel, Pearson, 2007.         John Alan Stuller, —An Introduction to Signals and Systems", Tata Mc Graw Hill Publications, 2008.	<b>60</b> 60
UNIT V Impulse re Transform connected 1. 2. 1. 2. 3.	TIME SYSTEMS         sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z         Analysis of Recursive & Non-Recursive systems- Discrete Time systems         in series and parallel.         Total Hours:         Total Hours:         TexTBOOKS         Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and Systemsl, Pearson, 201         Simon Haykin and Barry Van Veen, "Signals & Systems", John Wiley and Sons Inc.,         REFERENCE BOOKS         B. P. Lathi, Principles of Linear Systems and Signalsl, Second Edition, Oxford, 2009.         R.E.Zeimer, W.H.Tranter and R.D.Fannin, —Signals & Systems - Continuous and Discretel, Pearson, 2007.         John Alan Stuller, —An Introduction to Signals and Systemsl, Thomson, 2007.         P.Ramakrishna Rao, "Signals and Systems", Tata Mc Graw Hill Publications, 2008.         COURSE OUTCOMES:	<b>60</b> 60
UNIT V Impulse re Transform connected 1. 2. 1. 2. 3. 4.	TIME SYSTEMS         sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z         Analysis of Recursive & Non-Recursive systems- Discrete Time systems         in series and parallel.         Total Hours:         Total Hours:         TextBOOKS         Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and Systems", Pearson, 201         Simon Haykin and Barry Van Veen, "Signals & Systems", John Wiley and Sons Inc.,         REFERENCE BOOKS         B. P. Lathi, Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.         R.E.Zeimer, W.H.Tranter and R.D.Fannin, —Signals & Systems - Continuous and Discrete", Pearson, 2007.         John Alan Stuller, —An Introduction to Signals and Systems", Thomson, 2007.         P.Ramakrishna Rao, "Signals and Systems", Tata Mc Graw Hill Publications, 2008.         COURSE OUTCOMES:         After completing this course, the students will be able to	<b>60</b> 15. 2005
UNIT V Impulse re Transform connected 1. 2. 1. 2. 3. 4. <b>CO1</b>	TIME SYSTEMS         sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z         Analysis of Recursive & Non-Recursive systems- Discrete Time systems         in series and parallel.         Total Hours:         Total Hours:         TEXTBOOKS         Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and Systems ^{II} , Pearson, 201         Simon Haykin and Barry Van Veen, "Signals & Systems", John Wiley and Sons Inc., <b>REFERENCE BOOKS</b> B. P. Lathi, Principles of Linear Systems and Signals ^{II} , Second Edition, Oxford, 2009.         R.E.Zeimer, W.H.Tranter and R.D.Fannin, —Signals & Systems - Continuous and Discrete ^{II} , Pearson, 2007.         John Alan Stuller, —An Introduction to Signals and Systems ^{II} , Thomson, 2007.         P.Ramakrishna Rao, "Signals and Systems", Tata Mc Graw Hill Publications, 2008. <b>COURSE OUTCOMES:</b> After completing this course, the students will be able to         Analyze whether a given system is linear, causal, and stable, and to classify signals.	<b>CO5</b> <b>60</b> 15. 2005 1
UNIT V Impulse re Transform connected 1. 2. 1. 2. 3. 4. 4. <b>CO1</b> <b>CO2</b>	TIME SYSTEMS         sponse – Difference equations-Convolution sum- Discrete Fourier Transform - Z         Analysis of Recursive & Non-Recursive systems- Discrete Time systems in series and parallel.         Total Hours:         Total Hours:         TextBooks         Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and Systems!, Pearson, 201         Simon Haykin and Barry Van Veen, "Signals & Systems", John Wiley and Sons Inc.,         REFERENCE BOOKS         B. P. Lathi, Principles of Linear Systems and Signals!, Second Edition, Oxford, 2009.         R.E.Zeimer, W.H.Tranter and R.D.Fannin, —Signals & Systems - Continuous and Discrete!, Pearson, 2007.         John Alan Stuller, —An Introduction to Signals and Systems!, Thomson, 2007.         P.Ramakrishna Rao, "Signals and Systems", Tata Mc Graw Hill Publications, 2008.         COURSE OUTCOMES:         After completing this course, the students will be able to         Analyze whether a given system is linear, causal, and stable, and to classify signals.         Determine the frequency components present in a deterministic continuous time signal	CO5 60 15. 2005 1

		MAI	PPING	G BET	WEE	ORRE	LATI	ON L	EVEL	1/2/3						
COs		PROGRAMME OUTCOMES												ROGE SPEC DUTC	CIFIC	
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PS O2	PS O3	PS O4
CO1	3													3	2	1
CO2	3												3	3	2	1
CO3	3	3 3 3 1 2												3	2	1
<b>CO4</b>	3	3 3 3 2 2												3	2	1

CO5	3	3	3	1	2	-	-	-	-	-	-	2	3	3	2	1	
-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

EC4403	COMMUNICATION SYSTEMS	L	Т	Р	C	
	(Common to Electronics and Communication Engineering)	3	0	0	3	
<ul><li>To ge</li><li>To ga</li><li>To stu</li></ul>	ES: in knowledge about signals and system and Amplitude Modulation. t in-depth understanding of Angle modulation. in conceptual understating of random process in communication systems. idy the various digital modulation techniques. idy the principles behind information theory and coding.					
UNIT I	AMPLITUDE MODULATION				9	
Amplitude M Generation – VSB Generat	gnals and systems - Time and Frequency domain representation of signals - fodulation Systems-Amplitude Modulation- DSBSC, DSBFC, SSB, VS Balanced and Ring Modulator, SSB Generation – Filter, Phase Shift and Th ion – Filter Method, Hilbert Transform, Pre-envelope & complex envelope M techniques, Superheterodyne Receiver	B - ird N	DSI Aeth	BSC ods,	CO1	
UNIT II ANGLE MODULATION						
Power relation	equency modulation, Narrow Band and Wide band FM – Modulation incomes and Transmission Bandwidth - FM modulation –Direct and Indirect r n – FM to AM conversion, FM Discriminator - PLL as FM Demodulator.				CO2	
UNIT III	RANDOM PROCESSING				9	
Covariance for of a Random bandwidth -	brobability and random process - Stationary Processes, Mean, and Counctions - Power Spectral Density - Ergodic Processes - Gaussian Process - Process Through a LTI filter- Noise sources – Noise figure, noise temperate Noise in Frequency modulation systems - Pre-emphasis and De-emphasis e modulation.	Fran ure a	smis .nd n	sion oise	CO3	
UNIT IV	DIGITAL TECHNIQUES				9	
and ADM- P	pling theorem – Quantization – PAM – Line coding – PCM, DPCM, DM, hase shift keying – BPSK, DPSK, QPSK – Principles of M-ary signaling M parison, ISI – Pulse shaping – Duo binary encoding – Cosine filters –	1-ary	PS]	K &	CO4	
UNIT V	INFORMATION THEORY AND CODING				9	
Coding, LZ C	information – Entropy – Source coding theorem – Shanon–Fano codin Coding – Chanel capacity – Shanon-Hartley law – Shanon's limit – Error co codes, Cyclic codes, Syndrome calculation – Convolution Coding, Se ling	ntro	l cod	es –	CO5	
		[ota]	l Ho	urs:	45	
	TEXTBOOKS				1	
1. 2.	Simon Haykins," Communication Systems", Wiley, 5th Edition, 2009.(U J.G.Proakis, M.Salehi, —Fundamentals of Communication Systems, Pea 2014.				n	

	REFERENCE BOOKS
1.	Wayner Tomasi, Electronic Communication System, 5th Edition, Pearson Education, 2008.
2.	A.Papoulis, "Probability, Random variables and Stochastic Processes", McGraw Hill, 3rd
	edition, 1991.
3.	Ashutosh Pramanic, "Electromagnetism", Prentice Hall of India, New Delhi, 2006.
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Gain knowledge in amplitude modulation techniques.
CO2	Describe and analyze the concept of Angle Modulation.
CO3	Understand the concepts of Random Process to the design of communication systems
<b>CO4</b>	Gain knowledge in digital techniques
CO5	Understand the importance of Information Coding.

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATIO												EL 1/2	2/3	
					PROGRAMME SPECIFIC OUTCOMES											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4
CO1	2	2	3	3	3	1	-	-	-	-	2	2	3	2	1	1
CO2	3	3	3	3	3	2	-	-	-	-	2	2	3	2	1	2
CO3	3	3	3	3	3	2	-	-	-	-	2	2	3	2	1	2
CO4	3	3	3	3	3	1	-	-	-	-	2	2	3	2	1	2
CO5	3	3	3	3	3	1	-	-	-	-	2	2	3	2	1	2

EC4404	LINEAR INTEGRATED CIRCUITS	L	Т	Р	С
		3	0	0	3
<ul><li> To familiarize</li><li> To introduce</li><li> To teach the t</li></ul>	: IC fabrication and the basic building blocks of linear integrated circuits. Ic the applications of operational amplifiers. The theory and applications of analog multipliers and PLL. Theory of ADC and DAC few special function integrated circuits and waveform generator designs				
UNIT1	BASICS OF IC FABRICATION AND OPERATIONAL AMPLIF	IER	Ł		9
Components of References, Intr operational amp	f Monolithic IC Technology - Fabrication of a Typical Circuit, Active a IC, Current mirror and current sources, Current sources, Voltage source oduction to op-amps – Ideal Operational Amplifier and its characteristic olifier stages - and internal circuit diagrams of IC 741, DC and AC perslew rate, Open and closed loop configurations.	es, V s - C	⁷ olta Gene	nge eral	

UNIT II	LINEAR AND NON-LINEAR APPLICATIONS OF OPERATIONAL AMPLIFIERS	9
Amplifier, V- amplifier, Int Comparators, S	figuration, Non-Inverting Configuration, Amplifier, Phase Shift Circuits, Buffer to-I and I-to-V converters, Summer, Differential Amplifier, Instrumentation tegrator, Differentiator, Logarithmic amplifier, Antilogarithmic amplifier, Schmitt trigger, Precision rectifier, peak detector, Clipper and Clamper, Filter Design and Second Order - High Pass - Low Pass - Band Pass - Butterworth Filter	
UNIT III	ANALOG MULTIPLIER AND PLL	9
– Variable tran Rooter - Freque analysis, Volta	lier using Emitter Coupled Transistor Pair – Single Quadrant - Gilbert Multiplier cell nsconductance technique – Four Quadrant, Analog multiplier applications - Square ency Divider - Frequency Doubler - Squarer, Operation of the basic PLL, closed loop age controlled oscillator, Monolithic PLL IC 565, Applications of PLL for AM detection, FSK modulation and demodulation and Frequency synthesizing.	
UNIT IV	A/D AND D/A CONVERTERS	9
sample-and-ho type - Single S	Ider type, Voltage Mode and Current mode - switches for D/A converters, high speed Id circuits, A/D Converters – specifications - Flash type - Successive Approximation Slope type – Dual Slope type – Pipelined Type - A/D Converter using Voltage-to- tion - Over-sampling A/D Converters, Sigma – Delta converters.	
UNIT V	WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS	9
IC 555- intern Timer, Sine-w generator, ICI switched capac	WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS al circuit diagrams, working, Astable and Monostable Multivibrators using 555 rave generators, Multivibrators and Triangular wave generator, Saw-tooth wave 28038 function generator, Voltage regulators-linear and switched mode types, citor filter, Frequency to Voltage converters, Tuned amplifiers, Power amplifiers and lifiers, Video and audio amplifiers.	9
IC 555- intern Timer, Sine-w generator, ICI switched capac	al circuit diagrams, working, Astable and Monostable Multivibrators using 555 yave generators, Multivibrators and Triangular wave generator, Saw-tooth wave 28038 function generator, Voltage regulators-linear and switched mode types, pettor filter, Frequency to Voltage converters, Tuned amplifiers, Power amplifiers and lifiers, Video and audio amplifiers.	
IC 555- intern Timer, Sine-w generator, ICI switched capac	al circuit diagrams, working, Astable and Monostable Multivibrators using 555 yave generators, Multivibrators and Triangular wave generator, Saw-tooth wave 28038 function generator, Voltage regulators-linear and switched mode types, pettor filter, Frequency to Voltage converters, Tuned amplifiers, Power amplifiers and lifiers, Video and audio amplifiers.	
IC 555- intern Timer, Sine-w generator, ICI switched capac	al circuit diagrams, working, Astable and Monostable Multivibrators using 555 rave generators, Multivibrators and Triangular wave generator, Saw-tooth wave 28038 function generator, Voltage regulators-linear and switched mode types, ritor filter, Frequency to Voltage converters, Tuned amplifiers, Power amplifiers and lifiers, Video and audio amplifiers. <b>Total Hours</b>	45
IC 555- intern Timer, Sine-w generator, ICI switched capac Isolation Ampl	A al circuit diagrams, working, Astable and Monostable Multivibrators using 555 rave generators, Multivibrators and Triangular wave generator, Saw-tooth wave 28038 function generator, Voltage regulators-linear and switched mode types, bitor filter, Frequency to Voltage converters, Tuned amplifiers, Power amplifiers and lifiers, Video and audio amplifiers. Total Hours TEXTBOOKS D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits", New Age International F	45 Pvt.
Timer, Sine-w generator, ICI switched capac Isolation Ampl	al       circuit diagrams, working, Astable and Monostable Multivibrators using 555         vave generators, Multivibrators and Triangular wave generator, Saw-tooth wave 28038 function generator, Voltage regulators-linear and switched mode types, citor filter, Frequency to Voltage converters, Tuned amplifiers, Power amplifiers and lifiers, Video and audio amplifiers.         Total Hours         Total Hours         TextBOOKS         D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits", New Age International F         Ltd., 2018, Fifth Edition. (Unit I – V)         Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits"	45 Pvt.
IC 555- intern Timer, Sine-w generator, ICI switched capac Isolation Ampl	al circuit diagrams, working, Astable and Monostable Multivibrators using 555 rave generators, Multivibrators and Triangular wave generator, Saw-tooth wave 28038 function generator, Voltage regulators-linear and switched mode types, eitor filter, Frequency to Voltage converters, Tuned amplifiers, Power amplifiers and lifiers, Video and audio amplifiers.           Total Hours           TextBOOKS           D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits", New Age International F Ltd., 2018, Fifth Edition. (Unit I – V)           Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits Edition, Tata Mc Graw-Hill, 2016 (Unit I – V)	45 Pvt. s", 4th

3	S.Salivahanan & V.S. Kanchana Bhaskaran, "Linear Integrated Circuits", TMH,2nd Edition, 4th Reprint, 2016.
	<b>COURSE OUTCOMES:</b> After completing this course, the students will be able to
CO1	Understand IC Fabrication and OP-AMP design
CO2	Design linear and nonlinear applications of OP – AMPS
CO3	Design applications using analog multiplier and PLL
CO4	Design ADC and DAC using OP – AMPS
CO5	Generate waveforms using OP – AMP Circuits and Analyze special function ICs

				Μ	APPI	NG O	F COs	WIT	H POs	AND	PSOs						
COs													PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	<b>O4</b>	
CO1	3	3	3	3	3	2	-	-	-	-	1	2	2	1	1	1	
CO2	3	2	2	2	2	1	-	-	-	-	1	2	2	1	1	1	
CO3	3	2	2	2	2	1	-	-	-	-	1	1	2	2	1	1	
<b>CO4</b>	3	2	2	2	3	1	-	-	-	-	1	1	2	2	1	2	
CO5	2	2	3	2	3	2	-	-	-	-	1	1	3	1	1	2	

EC4405	SENSORS AND ACTUATORS	L	Т	Р	С
	·	3	0	0	3
<ul><li>To lear</li><li>To und</li></ul>	erstand the concepts of measurement technology. n the various sensors used to measure various physical parameter erstand the design concepts of actuators.	S.			
UNIT I	INTRODUCTION				9
characteristics Sensor calibra	asurement – Classification of errors – Error analysis – Sta of transducers – Performance measures of sensors – Classifica tion techniques – Sensor Output Signal Types. Mathematical mo I order transducers.	tion	of sens	sors –	CO1
UNIT II	MOTION, PROXIMITY AND RANGING SENSORS				9
LVDT - RVD	s – Potentiometers, Resolver, Encoders – Optical, Magnetic, Indu T – Synchro – Microsyn, Accelerometer – GPS, Bluetooth, Ra sonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR ineering.	nge	Sensor	s - RF	CO2

UNIT III	FORCE, MAGNETIC AND HEADING SENSORS	9
	ad Cell, Magnetic Sensors–types, principle, requirement and advantages: Magneto Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers.	CO3
UNIT IV	OPTICAL, PRESSURE AND TEMPERATURE SENSORS	9
Diaphragm, Be Thermocouple.	ve cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – ellows, Piezoelectric – Tactile sensors, Temperature – IC, Thermistor, RTD, Acoustic Sensors – flow and level measurement, Radiation Sensors – Smart sensor, MEMS & Nano Sensors, LASER sensors. Applications of Medical	CO4
UNIT V	SENSOR MATERIALS AND ACTUATORS	9
Actuation princ micro actuators	nsors: Silicon, Plastics, metals, ceramics, glasses, Nano materials. Exiple, shape memory effects-one way, two way and pseudo elasticity. Types of - Electrostatic, Magnetic, Fluidic, Inverse piezo effect, other principles. exhaust n actuators, stepper motor actuator, vacuum operated actuator. Case studies of hetic actuators.	CO5
	Total Hours:	45
	TEXTBOOKS	
1.	Ernest O Doebelin, "Measurement Systems – Applications and Design", Tata Mc Hill, 2009	Graw-
2.	Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2011.	
	REFERENCE BOOKS	
1	Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw New Delhi,2002.	Hill,
2	Vinod Kumar Khanna, Nanosensors: Physical, Chemical, and Biological, CRC pr First Edition, 2012.	
3	Chang Liu, Foundations of MEMS, Pearson education India limited, Second Edit 2006.	tion,
4	Ramon Pallás Areny and John G. Webster, Sensors and Signal conditioning, John Wiley and Sons, Second Edition, 2000.	1
5	Jack P Holman, Experimental Methods for Engineers, McGraw Hill, USA, Sever Edition, 2001.	nth
	<b>COURSE OUTCOMES:</b> After completing this course, the students will be able to	
CO1	Familiar with various calibration techniques and Mathematical model of signal ty for sensors.	pes
CO2	Apply the various sensors in the Automotive and Mechatronics applications.	
CO3	Describe the working principle and characteristics of force, magnetic and heading sensors.	
CO4	Understand the basic principles of various pressure and temperature, smart sensor	s.

CO5

Understand the basic sensor materials and principles of various actuators.

	MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3																			
PROGRAM OUTCOMES (POs) COs							PROGRAM OUTCOMES (POs)													
	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4				
CO1	3	3	3	3	3	2	2	1	3	2	1	2	3	1	2	2				
<b>CO2</b>	3	3	3	2	3	2	2	1	2	2	2	1	2	1	3	3				
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	2	2	2				
<b>CO4</b>	3	3	2	2	2	1	1	1	1	1	1	3	3	1	3	3				
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	1	3	3				

EC4406	TRANSMISSION LINES AND RF SYSTEMSLT	C					
	(Common to ECE Departments) 3 0 0	3					
OBJECTI	VES:	<u> </u>					
• To :	introduce the general transmission lines and its properties						
• To	give thorough understanding about high frequency line, power and impedance measureme	ents					
• To :	impart technical knowledge in impedance matching using smith chart						
• To :	introduce passive filters and basic knowledge of active RF components						
• To :	get acquaintance with RF system transceiver design						
UNIT I	TRANSMISSION LINE FUNDAMENTALS	9					
Wavelengtl different m	n to Transmission lines - general solution of transmission line - The infinite line - n, velocity of propagation - Waveform distortion - the distortion-less line - Loading and ethods of loading - Line not terminated in $Z_0$ - Reflection coefficient, reflection factor on loss, - Input and transfer impedance - Open and short circuited lines - S-parameters perties.	CO1					
UNIT II	HIGH SPEED TRANSMISSION LINES	9					
the dissipat less line - l	on line equations at high frequencies - Line of Zero dissipation - Voltage and current on ion-less line, Standing Waves, Standing Wave Ratio - Input impedance of the dissipation- Power and impedance measurement on lines - Reflection losses, Case Studies: Modern asmission lines, Transmission line for high-speed PCB Layout.	CO2					
UNIT III	IMPEDANCE MATCHING	9					
Impedance matching – Impedance matching by Quarter wave transformer and stubs - Single stub and double stub matching - Smith chart - Solutions of problems using Smith chart - Single and double stub matching using Smith chart.							
UNIT IV	TE,TM AND TEM WAVEGUIDES	9					
	eory of Transverse Electromagnetic Waves, Transverse Magnetic Waves, Transverse aves – TM and TE Waves between parallel plates. Field Equations of TM and TE waves	CO4					

waveguide		_					
UNIT V	RF SYSTEM DESIGN	9					
	nents design using Semiconductor – BJT, FET – High electron mobility transistors design ers, Filter, LNA, VCO – RF Power Amplifier design: transducer power gain and stability ions.	COS					
	Total Hours:	45					
	TEXTBOOKS						
1.	John D Ryder, —Networks, lines and fields, 2nd Edition, Prentice Hall India, 2015. (U IV).	NIT I					
2.	Mathew M. Radmanesh, —Radio Frequency & Microwave Electronics, Pearson Edu Asia, Second Edition, 2002. (UNIT V)	cation					
	REFERENCE BOOKS						
5.	Reinhold Ludwig and Powel Bretchko, RF Circuit Design – Theory and Applications, Pearson Education Asia, First Edition, 2001.						
6.	D. K. Misra, —Radio Frequency and Microwave Communication Circuits- Analys Design, John Wiley & Sons, 2004.	is and					
7.	E.C.Jordan and K.G. Balmain, —Electromagnetic Waves and Radiating Systems Prentic of India, 2006.	e Hal					
8.	G.S.N Raju, "Electromagnetic Field Theory and Transmission Lines Pearson Education edition 2005.	n, Firs					
	COURSE OUTCOMES:						
	After completing this course, the students will be able to						
CO1	Analyze the line parameters and various losses in transmission lines.						
CO2	Acquire knowledge about high frequency transmission lines used at radio frequencies.						
CO3	Design impedance matching network using smith chart.						
CO4	Using vector calculus to solve Maxwell's equations and analyze the electromagnetic fiparallel plate waveguides and apply and analyze electromagnetic wave propagation the guiding structures.						
CO5	Acquire basic knowledge of active RF components.						

				N	IAPPI	NG O	F CO	s WIT	H POs	S AND	PSOs					
COs	COs PROGRAM OUTCOMES (POs) PROGRAM OUTCOM															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	2	3	2	-	-	-	-	-	1	2	1	1	2

CO2	3	3	3	3	2	2	-	-	-	-	-	1	2	1	1	2
CO3	3	3	3	2	2	1	-	-	-	-	-	1	2	1	1	2
<b>CO4</b>	3	3	2	3	2	1	-	-	-	-	-	1	2	1	2	2
CO5	3	3	3	3	2	1	-	-	-	-	-	2	1	1	2	2

EC4407	COMMUNICATION SYSTEMS LABORATORY	L	Т	Р	С
		0	0	4	2
OBJECT	VES:				
	• To visualize the effect of sampling and TDM in a transceiver.				
	• To implement AM & FM modulation and demodulation.				
	• To implement Line Coding, PCM & DM.				
	• To simulate Digital Modulation schemes.				
	To simulate Error control coding schemes.				
	List of Experiments				I
1. Signal S	ampling and reconstruction				
	vision Multiplexing				
3. AM Mo	dulator and Demodulator				
	lulator and Demodulator				
5. Pulse Co	ode Modulation and Demodulation				
	odulation and Demodulation				
	ling schemes				
,	FSK, and BPSK Modulators				
	ation of ASK, FSK, and BPSK generation & detection schemes				
	on of DPSK, QPSK and QAM generation & detection schemes				
	tion of signal constellations of BPSK, QPSK and QAM				
	tion of Linear Block and Cyclic error control coding schemes				
	tion of Convolutional coding scheme				
13.Commu	inication link simulation	-			
	COURSE OUTCOMES.	T	otal	Hou	rs: 60
	COURSE OUTCOMES:				
001	After completing this course, the students will be able to				
CO1	Simulate & validate the various functional modules of a communication	2		· ·	6
CO2	Demonstrate their knowledge in base band signaling schemes through in digital modulation schemes.	nplem	ienta	tion o	of
CO3	Apply various channel coding schemes.				
CO4	To study the error performance of various digital modulation schemes.				
CO5	To Simulate end-to-end communication Link.				

MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3									
COs	PROGRAMME OUTCOMES	PROGRAMME SPECIFIC OUTCOMES							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4
CO1	3	3	3	3	3	1	-	-	-	-	1	3	3	3	2	3
CO2	3	3	3	3	3	1	-	-	-	-	1	3	3	3	2	3
CO3	3	3	3	3	3	1	-	-	-	-	1	3	3	3	2	3
CO4	3	3	3	3	-	1	-	-	-	-	1	3	3	3	2	3
CO5	3	3	3	3	3	1	-	-	-	-	1	3	3	3	2	3

EC4408	LINEAR INTEGRATED CIRCUITS LABORATORY	L	Т	Р	С
		0	0	4	2
OBJECT	IVES:				
020201	• To understand the basics of operational amplifiers, characteristics and	circi	iits		
	construction.				
	• To apply operational amplifiers in linear and nonlinear applications.				
	• To construct oscillators for signal generation.				
	• To acquire the basic knowledge of special function IC.				
	• To learn simulation software for circuit design.				
	List of Experiments				
1. Inv	verting, Non inverting and differential amplifiers.				
2. Int	egrator and Differentiator.				I
3. Ins	trumentation amplifier				I
4. Ac	tive low-pass, High-pass and band-pass filters.				i i
5. As	table & Monostable multivibrators using Op-amp				i i
	ppers and Clampers				l.
	tenuators and Buffer Amplifiers				I
	hmitt Trigger using Op-amp.				i i
	ase shift and Wien bridge oscillators using Op-amp.				i i
	rtley Oscillator and Colpitts Oscillator using Op-Amp.				I
	table and Monostable multivibrators using NE555 Timer.				I
	alyse the operation of IC565 PLL.				l.
	Ilti-Waveform Generator				l.
	2R Ladder Type D- A Converter using Op-amp.				l.
	C power supply using LM317 and LM723.				I
	idy of SMPS.				I
	n Experiments				I
	tive low-pass, High-pass and band-pass filters using Op-amp.				I
	table and Monostable multivibrators using NE555 Timer.				I
- · · ·	D Converter.				I
4. D/2	A Converter.				
		To	tal H	lours	: 6
	COURSE OUTCOMES:				
	After completing this course, the students will be able to				

CO1	Design amplifiers, oscillators, multivibrators D-A converters using operational amplifiers.
CO2	Design filters using op-amp and performs an experiment on frequency response.
CO3	Design signal conditioning and shaping circuits.
CO4	Design DC power supply using ICs.
CO5	Analyze the performance of filters, multivibrators, A/D converter and D/A converter using SPICE.

		N	IAPPI	NG BE	TWE	EN CO	AND	PO, PS	SO WI	тн сс	ORREL	ATIO	N LEV	'EL 1/2	2/3	
COs	PROGRAMME OUTCOMES PROGRAMME OUTCOMES												CIFIC			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4
CO1	3	3	3	3	3	1	-	-	-	-	1	3	3	3	2	3
CO2	3	3	3	3	3	1	-	-	-	-	1	3	3	3	2	3
CO3	3	3	3	3	3	1	-	-	-	-	1	3	3	3	2	3
CO4	3	3	3	3	-	1	-	-	-	-	1	3	3	3	2	3
CO5	3	3	3	3	3	1	-	-	-	-	1	3	3	3	2	3

# SEMESTER V

EC4501	DISCRETE TIME SIGNAL PROCESSING	L	Т	P	С
		3	1	0	4
OBJECTIV	ES:				
• To stu	dy the concepts discrete Fourier transform, properties of DFT and	d its	appli	cation	n to linea
filteri	lg				
• To ur	derstand the characteristics of IIR filters and apply these filters to	filte	r und	esirat	le signals
in va	ious frequency bands				-
• To ur	derstand the characteristics of FIR filters and apply these filters to	filte	r und	esirat	le signals
	ious frequency bands				U
• To un	derstand the Finite word length effects in digital filters.				
• To kr	ow the fundamental concepts of multi rate signal processing and i	its ap	oplica	tions	
• To un	derstand the concepts of adaptive filters and its application to comr	nuni	catio	n engi	neering
UNIT I	DISCRETE FOURIER TRANSFORM				9
Review of sig	nals and systems, concept of frequency in discrete-time signals, D	Discr	ete F	ourier	
transform (D	FT) - DFT as a linear transformation, properties of DFT - period	licity	, line	earity,	CO1
time-reversal	, symmetry, multiplication, circular convolution. Linear filterin	ng u	sing	DFT.	
Filtering lon	g data sequences - overlap save and overlap add method. Computer	utati	on of	DFT	
using DIT-F	T and DIF-FFT.				

	II FINITE IMPULSE RESPONSE FILTERS	9
	ter structures - linear phase structure, direct form realizations, Design of FIR filters -	
~ / ******	tric and Anti-symmetric FIR filters - design of linear phase FIR filters using Fourier	CO2
	method - FIR filter design using windows (Rectangular, Hamming and Hanning	
	v), Frequency sampling method.	
UNIT		9
Design	of analog filters - Chebyshev filter, Butterworth filter. Design of digital IIR filters	
from a	nalog filters (LPF, HPF, BPF, BRF) - Approximation of derivatives, Impulse	<b>CO3</b>
invaria	nce method, Bilinear transformation. Frequency transformation in the analog domain.	
Realiza	ation structure of IIR filter - direct form I, direct form II, Cascade, parallel realizations.	
UNIT	IV FINITE WORD LENGTH EFFECTS	9
Binary	fixed point and floating-point number representation - ADC - quantization - truncation	
	Inding - quantization noise - input / output quantization - coefficient quantization error	CO4
- prod	act quantization error - overflow error - limit cycle oscillations due to product	
quantiz	ation and summation - scaling to prevent overflow.	
UNIT	V MULTI RATE SIGNAL PROCESSING AND DSP PROCESSORS	9
Multira	te signal processing: Decimation, Interpolation, Sampling rate conversion by a	
rationa	l factor	<b>CO5</b>
Adapti	ve Filters: Introduction, Applications of adaptive filtering to equalization.	
DSP A	rchitecture- Fixed- and Floating-point architecture principles.	
Total l	Hours:	45
Tutori	al Hours	15
	TEXTBOOKS	
1.	John G. Proakis and Dimitris G.Manolakis, Digital Signal Processing - Pri	nciples,
	Algorithms and Applications, Fourth Edition, Pearson Education / Prentice Hall, 200	
	A. V. Oppenheim, R.W. Schafer and J.R. Buck, -Discrete-Time Signal Process	
2.	Indian Reprint, Pearson, 2004.	-
	REFERENCE BOOKS	
1.		d Edition,
1.	REFERENCE BOOKS           Emmanuel C. Ifeachor & Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.	d Edition,
	Emmanuel C. Ifeachor & Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.	
1. 2.	Emmanuel C. Ifeachor & Barrie. W. Jervis, "Digital Signal Processing", Second	
	<ul> <li>Emmanuel C. Ifeachor &amp; Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.</li> <li>Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata 7</li> </ul>	
2.	<ul> <li>Emmanuel C. Ifeachor &amp; Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.</li> <li>Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata Hill, 2007.</li> </ul>	
2.	<ul> <li>Emmanuel C. Ifeachor &amp; Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.</li> <li>Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata Hill, 2007.</li> <li>Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.</li> </ul>	
2.	<ul> <li>Emmanuel C. Ifeachor &amp; Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.</li> <li>Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata Hill, 2007.</li> <li>Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.</li> <li>COURSE OUTCOMES:</li> </ul>	Mc Graw
2. 3.	<ul> <li>Emmanuel C. Ifeachor &amp; Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.</li> <li>Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata Hill, 2007.</li> <li>Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.</li> <li>COURSE OUTCOMES: After completing this course, the students will be able to</li> </ul>	Mc Graw
2.	<ul> <li>Emmanuel C. Ifeachor &amp; Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.</li> <li>Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata Hill, 2007.</li> <li>Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.</li> <li>COURSE OUTCOMES: After completing this course, the students will be able to</li> <li>Analyze the signal performance in frequency domain using Discrete Fourier transformation.</li> </ul>	Mc Graw
2. 3. CO1	<ul> <li>Emmanuel C. Ifeachor &amp; Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.</li> <li>Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata Hill, 2007.</li> <li>Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.</li> <li>COURSE OUTCOMES: After completing this course, the students will be able to</li> <li>Analyze the signal performance in frequency domain using Discrete Fourier transfo and also gathers knowledge about convolution with the help of linear filtering.</li> </ul>	Mc Graw
2. 3. CO1	<ul> <li>Emmanuel C. Ifeachor &amp; Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.</li> <li>Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata Hill, 2007.</li> <li>Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.</li> <li>COURSE OUTCOMES: After completing this course, the students will be able to</li> <li>Analyze the signal performance in frequency domain using Discrete Fourier transfo and also gathers knowledge about convolution with the help of linear filtering.</li> <li>Design finite impulse response (FIR) filters using different techniques and also investored and also investored for the student of the st</li></ul>	Mc Graw rm, FFT tigate its
2. 3. CO1 CO2	<ul> <li>Emmanuel C. Ifeachor &amp; Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.</li> <li>Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata Hill, 2007.</li> <li>Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.</li> <li>COURSE OUTCOMES: After completing this course, the students will be able to</li> <li>Analyze the signal performance in frequency domain using Discrete Fourier transfo and also gathers knowledge about convolution with the help of linear filtering.</li> <li>Design finite impulse response (FIR) filters using different techniques and also invest structure realization.</li> </ul>	Mc Graw rm, FFT tigate its
2. 3. CO1 CO2	<ul> <li>Emmanuel C. Ifeachor &amp; Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.</li> <li>Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata Hill, 2007.</li> <li>Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.</li> <li>COURSE OUTCOMES: After completing this course, the students will be able to</li> <li>Analyze the signal performance in frequency domain using Discrete Fourier transfo and also gathers knowledge about convolution with the help of linear filtering.</li> <li>Design finite impulse response (FIR) filters using different techniques and also invest structure realization.</li> <li>Design infinite impulse response (IIR) filters using different transformation technic</li> </ul>	Mc Graw rm, FFT tigate its jues and
2. 3. CO1 CO2 CO3	<ul> <li>Emmanuel C. Ifeachor &amp; Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.</li> <li>Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata Hill, 2007.</li> <li>Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.</li> <li>COURSE OUTCOMES: After completing this course, the students will be able to</li> <li>Analyze the signal performance in frequency domain using Discrete Fourier transfor and also gathers knowledge about convolution with the help of linear filtering.</li> <li>Design finite impulse response (FIR) filters using different techniques and also investigate its structure realization.</li> </ul>	Mc Graw rm, FFT tigate its jues and
2. 3. CO1 CO2 CO3	<ul> <li>Emmanuel C. Ifeachor &amp; Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.</li> <li>Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata Hill, 2007.</li> <li>Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.</li> <li>COURSE OUTCOMES: After completing this course, the students will be able to</li> <li>Analyze the signal performance in frequency domain using Discrete Fourier transfor and also gathers knowledge about convolution with the help of linear filtering.</li> <li>Design finite impulse response (FIR) filters using different techniques and also investigate its structure realization.</li> <li>Analyze finite word length effects for real time implementation and also gathers knowledge about number representation.</li> </ul>	Mc Graw rm, FFT tigate its ques and owledge
2. 3. CO1 CO2 CO3 CO4	<ul> <li>Emmanuel C. Ifeachor &amp; Barrie. W. Jervis, "Digital Signal Processing", Second Pearson Education / Prentice Hall, 2002.</li> <li>Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata Hill, 2007.</li> <li>Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.</li> <li>COURSE OUTCOMES: After completing this course, the students will be able to</li> <li>Analyze the signal performance in frequency domain using Discrete Fourier transfor and also gathers knowledge about convolution with the help of linear filtering.</li> <li>Design finite impulse response (FIR) filters using different techniques and also investigate its structure realization.</li> <li>Analyze finite word length effects for real time implementation and also gathers knowledge about structure realization.</li> </ul>	Mc Graw rm, FFT tigate its ques and owledge

		MAI	PPIN	G BI	ETW	EEN	CO	AND	PO,	PSO	WITE	I COR	RELAT	TION LI	EVEL 1/	2/3
COs				PRO	OGR	AMN		PROGRAMME SPECIFIC OUTCOMES								
	PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													PSO3	PSO4
CO1	3	3	3	3	1	2	-	-	-	-	2	2	2	2	1	1
CO2	3	3	3	3	1	2	-	-	-	-	2	2	3	2	1	1
CO3	3	3	3	3	1	2	-	-	-	-	2	2	3	2	1	1
<b>CO4</b>	3	3 3 3 1 2 2 2 2 2 1 1												1		
CO5	3	2	2	2	2	2	-	-	-	-	1	2	2	3	1	1

EC4502	VLSI DESIGN L		Т	Р	C
	3	T	0	0	3
OBJECT	IVES:	•			
	udy the fundamentals of CMOS circuits and its characteristics.				
	earn the design and realization of combinational & sequential digital circuits.				
	halyze Architectural choices and performance tradeoffs involved in designin	ıg a	and r	ealizi	ng
	e circuits in CMOS technology.				
	earn the different FPGA architectures and testability of VLSI circuits.				•
UNIT I	FUNDAMENTALS OF CMOS CIRCUITS	-	> 1		9
	gic, Inverter, NAND gate, NOR Gate, Compound Gates, Layout - Design				
	grams, MOS Transistor - Ideal I-V Characteristics, C-V Characteristics				001
	ffects, Complementary CMOS inverter DC Transfer characteristics, Inverte	r I	Delay	7	CO1
U	al Effort, Scaling				
					•
UNIT II	DESIGN OF LOGIC CIRCUITS				9
		mi	issior	n	9
Combina	tional circuit design - Static CMOS, Ratioed Circuits, Pass Transistors, Trans			、	
Combina Gates, Cas	tional circuit design - Static CMOS, Ratioed Circuits, Pass Transistors, Trans scode Voltage Switch Logic, Dynamic Circuits- Domino Logic, Dual Rail I	Do	omino	)	9 CO2
Combina Gates, Cas Logic, CP	tional circuit design - Static CMOS, Ratioed Circuits, Pass Transistors, Trans	Do	omino	)	
Combina Gates, Cas Logic, CP Static Pov	tional circuit design - Static CMOS, Ratioed Circuits, Pass Transistors, Trans scode Voltage Switch Logic, Dynamic Circuits- Domino Logic, Dual Rail I L, DCVSPG, DPL, Static and dynamic - latches and flip flops, Dynamic Po- ver Dissipation	Do	omino	)	CO2
Gates, Cas Logic, CP Static Pov UNIT III	tional circuit design - Static CMOS, Ratioed Circuits, Pass Transistors, Trans scode Voltage Switch Logic, Dynamic Circuits- Domino Logic, Dual Rail I L, DCVSPG, DPL, Static and dynamic - latches and flip flops, Dynamic Po- ver Dissipation ARITHMETIC BUILDING BLOCKS DESIGN	Do we	omino er and		
Combina Gates, Ca Logic, CP Static Pov UNIT III Design of	tional circuit design - Static CMOS, Ratioed Circuits, Pass Transistors, Trans scode Voltage Switch Logic, Dynamic Circuits- Domino Logic, Dual Rail I L, DCVSPG, DPL, Static and dynamic - latches and flip flops, Dynamic Po- ver Dissipation ARITHMETIC BUILDING BLOCKS DESIGN Adders- Static adder- Ripple carry, Mirror Adder, Carry Look ahead Adde	Do we	omino er and Carry	7	CO2
Combina Gates, Cas Logic, CP Static Pov <b>UNIT III</b> Design of save adde	tional circuit design - Static CMOS, Ratioed Circuits, Pass Transistors, Trans scode Voltage Switch Logic, Dynamic Circuits- Domino Logic, Dual Rail I L, DCVSPG, DPL, Static and dynamic - latches and flip flops, Dynamic Po- ver Dissipation ARITHMETIC BUILDING BLOCKS DESIGN Adders- Static adder- Ripple carry, Mirror Adder, Carry Look ahead Adde er, Carry skip adder, Multipliers- Array multiplier, Fast multipliers- Boo	Do we er,0	omino er and Carry s and	7 1	CO2 9
Combina Gates, Ca Logic, CP Static Pov UNIT III Design of save adde Modified	tional circuit design - Static CMOS, Ratioed Circuits, Pass Transistors, Trans scode Voltage Switch Logic, Dynamic Circuits- Domino Logic, Dual Rail I PL, DCVSPG, DPL, Static and dynamic - latches and flip flops, Dynamic Po- ver Dissipation ARITHMETIC BUILDING BLOCKS DESIGN Adders- Static adder- Ripple carry, Mirror Adder, Carry Look ahead Adder er, Carry skip adder, Multipliers- Array multiplier, Fast multipliers- Boo Booths Multiplier, Wallace tree multiplier, Divider – serial and parallel	Do we er,0	omino er and Carry s and	7 1	CO2
Combina Gates, Ca Logic, CP Static Pov UNIT III Design of save adde Modified	tional circuit design - Static CMOS, Ratioed Circuits, Pass Transistors, Trans scode Voltage Switch Logic, Dynamic Circuits- Domino Logic, Dual Rail I L, DCVSPG, DPL, Static and dynamic - latches and flip flops, Dynamic Po- ver Dissipation ARITHMETIC BUILDING BLOCKS DESIGN Adders- Static adder- Ripple carry, Mirror Adder, Carry Look ahead Adde er, Carry skip adder, Multipliers- Array multiplier, Fast multipliers- Boo	Do we er,0	omino er and Carry s and	7 1	CO2 9
Combina Gates, Ca Logic, CP Static Pov UNIT III Design of save adde Modified	tional circuit design - Static CMOS, Ratioed Circuits, Pass Transistors, Trans scode Voltage Switch Logic, Dynamic Circuits- Domino Logic, Dual Rail I PL, DCVSPG, DPL, Static and dynamic - latches and flip flops, Dynamic Po- ver Dissipation ARITHMETIC BUILDING BLOCKS DESIGN Adders- Static adder- Ripple carry, Mirror Adder, Carry Look ahead Adder er, Carry skip adder, Multipliers- Array multiplier, Fast multipliers- Boo Booths Multiplier, Wallace tree multiplier, Divider – serial and parallel	Do we er,0	omino er and Carry s and	7 1	CO2 9
Combina Gates, Cas Logic, CP Static Pov UNIT III Design of save adde Modified Shifter, Lo	tional circuit design - Static CMOS, Ratioed Circuits, Pass Transistors, Trans scode Voltage Switch Logic, Dynamic Circuits- Domino Logic, Dual Rail I L, DCVSPG, DPL, Static and dynamic - latches and flip flops, Dynamic Po- ver Dissipation ARITHMETIC BUILDING BLOCKS DESIGN Adders- Static adder- Ripple carry, Mirror Adder, Carry Look ahead Adder, carry skip adder, Multipliers- Array multiplier, Fast multipliers- Boo Booths Multiplier, Wallace tree multiplier, Divider – serial and parallel, ogarithmic Shifter MEMORY DESIGN	Do we er,( oths , E	omino er and Carry s and Barre	7 1 1 1 1 1	CO2 9 CO3
Combina Gates, Cas Logic, CP Static Pov UNIT III Design of save adde Modified Shifter, Lo UNIT IV Designing	tional circuit design - Static CMOS, Ratioed Circuits, Pass Transistors, Trans scode Voltage Switch Logic, Dynamic Circuits- Domino Logic, Dual Rail I L, DCVSPG, DPL, Static and dynamic - latches and flip flops, Dynamic Po- ver Dissipation ARITHMETIC BUILDING BLOCKS DESIGN Adders- Static adder- Ripple carry, Mirror Adder, Carry Look ahead Adde er, Carry skip adder, Multipliers- Array multiplier, Fast multipliers- Boo Booths Multiplier, Wallace tree multiplier, Divider – serial and parallel, ogarithmic Shifter	Do we er,( oths , F	Carry S- OR	0       1       7       1       1       1       2       7	CO2 9 CO3 9
Combina Gates, Cas Logic, CP Static Pov UNIT III Design of save adde Modified Shifter, Lo UNIT IV Designing ROM, NO	tional circuit design - Static CMOS, Ratioed Circuits, Pass Transistors, Trans scode Voltage Switch Logic, Dynamic Circuits- Domino Logic, Dual Rail I L, DCVSPG, DPL, Static and dynamic - latches and flip flops, Dynamic Po- ver Dissipation ARITHMETIC BUILDING BLOCKS DESIGN Adders- Static adder- Ripple carry, Mirror Adder, Carry Look ahead Adde er, Carry skip adder, Multipliers- Array multiplier, Fast multipliers- Boo Booths Multiplier, Wallace tree multiplier, Divider – serial and parallel ogarithmic Shifter MEMORY DESIGN g Memory and Array structures: Memory Architectures and Building Bloc	Do we er,( oths , F	Carry S and Carry S and Barre	0       1       7       1       1       1       2       7	CO2 9 CO3
Combina Gates, Cas Logic, CP Static Pov UNIT III Design of save adde Modified Shifter, Lo UNIT IV Designing ROM, NO	tional circuit design - Static CMOS, Ratioed Circuits, Pass Transistors, Trans scode Voltage Switch Logic, Dynamic Circuits- Domino Logic, Dual Rail I L, DCVSPG, DPL, Static and dynamic - latches and flip flops, Dynamic Po- ver Dissipation ARITHMETIC BUILDING BLOCKS DESIGN Adders- Static adder- Ripple carry, Mirror Adder, Carry Look ahead Adde er, Carry skip adder, Multipliers- Array multiplier, Fast multipliers- Boo Booths Multiplier, Wallace tree multiplier, Divider – serial and parallel, ogarithmic Shifter MEMORY DESIGN g Memory and Array structures: Memory Architectures and Building Bloc DR ROM, NAND ROM cell array, 6 T SRAM cell, 3 T DRAM Cell, N	Do we er,( oths , F	Carry S and Carry S and Barre	0       1       7       1       1       1       2       7	CO2 9 CO3 9

ASIC de	sign flow, FPGA Building Block Architectures, FPGA Interconnect Routing						
Procedure	es, VLSI testing, Design for Testability, Design for Manufacturability	CO5					
Total Ho		45					
TEXT BO							
	I.E. Weste, David Money Harris "CMOS VLSI Design: A Circuits and Systems Per	spective",					
	dition, Pearson, 2017 (UNIT I,II,V)						
	. Rabaey ,Anantha Chandrakasan, Borivoje. Nikolic, "Digital Integrated Circuits:	A Design					
	ctive", Second Edition, Pearson, 2016.(UNIT III,IV)						
	INCE BOOKS						
	mith, "Application Specific Integrated Circuits", Addisson Wesley, 1997						
0	Mo kang, Yusuf leblebici, Chulwoo Kim "CMOS Digital Integrated Circuits: Analysis	s &					
-	",4th edition McGraw Hill Education,2013						
-	e Wolf, "Modern VLSI Design: System On Chip", Pearson Education, 2007						
	Baker, Harry W.LI., David E.Boyee, "CMOS Circuit Design, Layout and Simulation	ı",					
Prentice F	Iall of India 2005.						
CO	COURSE OUTCOMES:						
CO1	Realize the concepts of digital building blocks using MOS transistor.						
CO2	Design MOS Logic circuits and power strategies.						
CO3	Design arithmetic building blocks .						
CO4	CO4 Design memory subsystems.						
CO5	CO5 Apply and implement FPGA design flow and testing.						

		Μ	APPI	NG BE	TWE	EN CO	AND	PO, P	SO W	TTH C	ORRE	LATIO	)N LE	VEL 1	/2/3				
		PROGRAMME OUTCOMES											P	PROGRAMME					
															FIC OUTCOMES				
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4			
CO 1	3	3	2	2	1	2	-	-	-	-	2	2	2	3	3	1			
CO 2	3	3	2	2	1	2	-	-	-	-	2	2	2	3	3	1			
CO 3	2	3	2	2	1	2	-	-	-	-	2	2	2	3	3	1			
CO 4	3	2	2	2	1	2	-	-	-	-	2	2	2	3	3	1			
CO 5	3	2	2	2	1	2	-	-	-	-	2	2	2	3	3	1			

EC4508	VLSI DESIGN LABORATORY	L	Τ	Р	С
		0	0	4	2

## **OBJECTIVES:**

• To introduce the relevance of this course to the existing technology through demonstration simulations

- To learn the Hardware Description Language -Verilog
- To learn the principles of VLSI circuit design in digital and analog domain
- To familiarize fusing of logical modules on FPGAs

# Part I: Digital System Design using HDL & FPGA

**1.** Design a half adder and full adder using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA

2. Design an 12 bit Ripple carry Adder using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA

3. Design a 4 bit shift and add multiplier and booths Multiplier using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA

4. Design an Arithmetic Logic Unit using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA

5. Design a Universal Shift Register using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA

6. Design Moore/Mealy finite state machine using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA

7. Design Memories using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA

8. Compare pre synthesis and post synthesis simulation for experiments 1 to 6.

Requirements: Xilinx ISE/Altera Quartus/ equivalent EDA Tools along with Xilinx/Altera/equivalent FPGA Boards

#### Part-II Digital Circuit Design

9. Simulate a CMOS inverter using digital design flow

10. Simulate T and D Flip-Flops using digital design flow

11. Design and simulate a 4-bit synchronous counter using digital design flow

### Part-III Analog Circuit Design

12. Design and Simulate universal gates using CMOS.

13. Design and Simulate a CMOS Inverting Amplifier.

14. Design and Simulate basic Common Source, Common Gate and Common Drain Amplifiers. Analyze the input impedance, output impedance, gain and bandwidth for experiments 10 and 11 by performing Schematic Simulations.

4 1 TT

10

15. Design and simulate simple 5 transistor differential amplifier. Analyze Gain, Bandwidth and CMRR by performing Schematic Simulations

	Total Hours: 60
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Realize the concepts of digital design system using HDL and FPGA.
CO2	Realize the concepts of digital design system using HDL and FPGA.
CO3	Design Digital circuits using HDL
CO4	Design and Simulate Analog circuits
<u>C</u> O5	Design and Simulate Analog circuits

	N	<b>IAP</b>	PINO	G BE	TW	EEN	CO	ANI	) PO	, PSO	WIT	H CO	RRELA	TION I	EVEL	1/2/3
COs				PRO	)GR	AMN		PROGRAMME SPECIFIC OUTCOMES								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	1	2	-	-	-	-	-	-	-	2	2	2	1
CO2	3	2	3	1	2	-	-	-	-	-	-	-	2	2	2	1
CO3	3	2	3	1	2	-	-	-	-	-	-	-	2	2	2	1
CO4	3 2 3 1 2 2												2	2	2	1
CO5	3	2	3	1	2	-	-	-	-	-	-	-	2	2	2	1

EC4509	DIGITAL SIGNAL PROCESSING LABORATORY	L	Т	Р	С
		0	0	4	2
BJECTIV	ES:				
he student	should be made:				
• To pe	rform basic signal processing operations such as Linear Convolution,	Ci	cular		
	olution, Auto Correlation, Cross Correlation and Frequency analysis in M	IAT	LAB		
	dy the architecture of DSP processor				
	plement FIR and IIR filters in MATLAB and DSP Processor				
• To im	plement up-sampling and down-sampling in MATLAB and DSP Process	sor			
	LIST OF EXPERIMENTS: MATLAB / EQUIVALENT SOFTW	AR	E		
. ~	PACKAGE				
	ation of elementary Continuous-Time and Discrete-Time sequences				
	r and Circular convolutions				
	correlation and Cross Correlation ency Analysis using DFT				
•	n of FIR filters (LPF/HPF/BPF/BSF) and demonstrates the filtering oper	otio	n		
0	n of Butterworth and Chebyshev IIR filters (LPF/HPF/BPF/BSF) and			trate	the
0	ng Operations	ue	110115	iiaic	uic
	rate signal processing (up-sampling and down sampling)				
,, 1,10101	DSP PROCESSOR BASED IMPLEMENTATION				
1. Study o	f architecture of Digital Signal Processor				
•	MAC operation using various addressing modes				
3. Linear o	convolution				
4. Circular	convolution				
	and demonstration of FIR Filter for Low pass, High pass, Bandpass and I				ring
	and demonstration of IIR Filters for Low pass, High pass, Band pass an	d Ba	and st	top	
filtering					
7. Implem	ent an Up-sampling and Down-sampling operation in DSP Processor wa	vefc	orm g	ener	ation
	· · · · · · · · · · · · · · · · · · ·	ГОТ	TAL:	60 I	Hour

	N	ЛАР	PIN	G BE	TW	EEN	CO	AND	) PO	, PSO	WIT	H CO	RRELA	TION I	LEVEL	1/2/3
				PRC	)GR/	PROGRAMME SPECIFIC OUTCOMES										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	2	2	-	-	-	-	2	2	3	3	2	3
CO2	3	3	3	3	2	2	-	-	-	-	2	2	2	2	2	3
CO3	3	3	3	3	2	2	-	-	-	-	2	2	1	2	3	3
CO4	3	3	3	2	3	2	-	-	-	-	1	2	2	1	2	3
CO5	3	2	2	2	3	2	-	-	-	_	1	2	2	2	1	3

# SEMESTER VI

EC4651	EMBEDDED SYSTEMS AND IoT SYSTEM DESIGNLT	Р	С
	3 0	0	3
for • To • Kr	IVES: provide students with good depth of knowledge of Designing Embedded and IoT various application understand the design of a IoT system nowledge for the design and analysis of Embedded and IoT Systems for Electro gineering students	-	ems
UNIT1	INTRODUCTION TO EMBEDDED SYSTEMS		9
Embedded Compariso	ion to Embedded Systems and Elements of embedded Systems, Classification of a system. Structural units in Embedded processor. Memory management metho on of General-purpose computers vs embedded system, Embedded System Des Design example: Model train controller- Design methodologies- Design flows.	ods,	
UNIT II	HARDWARE DESIGN FOR EMBEDDED SYSTEMS:		9
details, Th ARM Cor	rollers for embedded systems, Introduction to ARM Processors, ARM architect e ARM programmer's model, ARM development tools, Block Diagram of ARM9 tex M3 MCU. Peripheral Interfacing with ARM. Basic Wire and Wireless Proto T, I2C, SPI.	and	
UNIT III	EMBEDDED FIRMWARE DEVELOPMENT ENVIRONMENT A EMBEDDED OPERATING SYSTEMS	ND	9
system re (RTOS), ( Function,	Product Development Life Cycle- objectives, different phases of EDLC Opera quirements for Embedded systems, Fundamentals of Real Time Operating Sys Dperating system services, Process, Task and Thread, System calls, Timer and Ev Memory management, File and I/O subsystem management, Device Managem over programming.	tem vent	
UNIT IV	INTRODUCTION TO IoT BASED EMBEDDED SYSTEMS		9
Physical d	on to the concept of IoT, Basic architecture of an IoT based Embedded Syste lesign - protocols – Logical design of Embedded Hardware for IoT applications, ethodology – Specifications Integration and Application Development		
UNIT V	APPLICATIONS OF IoT BASED EMBEDDED SYSTEMS		9
Smart irrig	omation – Cities: Smart parking – Environment: Weather monitoring – Agricult gation – Data analytics for IoT – Software & management tools for IoT cloud stor Communication APIs – Cloud for IoT – Amazon Web Services for IoT.		
	Total Hor	urs:	45
	TEXTBOOKS		-
1.	Honbo Zhou, "Internet of Things in the cloud: A middleware perspective", CRC	press	,
2.	2012. Muhammad Ali Mazidi,Shujen Chen, Sepehr Naimi,Sarmad Naimi, "Embedded ProgrammingUsing C Language", 1st Edition, Freescale ARM Cortex-M		

	REFERENCE BOOKS
1.	Rajkamal, "Embedded System: Architecture, Programming and Design", TMH3.
2.	Dr. Ovidiu Vermesan, Dr. Peter Friess, "Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems", River Publisher
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Knowledge of theory and practice related to Embedded and IOT System.
CO2	Ability to identify, formulate and solve engineering problems by using Embedded Systemswith IoT.
CO3	Ability to implement real field problem by gained knowledge of Embedded Systems with IoTcapability.
CO4	Understand the OS based software Development of embedded systems.
CO5	To study the various introduction of IOT based embedded systems

		N	<b>IAPP</b>	PING ]	BETW	VEEN	N CO	AND	PO, I	PSO W	ITH (	CORR	ELATIO	ON LEVI	EL 1/2/3	
COs				PRO	OGRA	MM	E OU	тсо	MES				PRO		IE SPE COMES	CIFIC
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	2	3	-	-	-	-	2	2	3	3	2	1
CO2	2	3	2	2	3	3	-	-	-	-	2	2	3	3	2	2
CO3	3	2	2	2	3	3	-	-	-	-	2	2	3	3	2	1
CO4	3	1	2	2	3	3	-	-	-	-	2	2	3	3	2	2
CO5	3	1	2	2	3	3	-	-	-	-	1	2	3	2	2	2

EC4602	WIRELESS COMMUNICATION	L	Т	Р	С
		3	0	0	3
OBJECTIV	/ES:				
✤ To s	tudy the characteristic of wireless channel				
🔹 To u	nderstand the design of a cellular system				
✤ To s	tudy the various digital signaling techniques and multipath mitigation techn	ique	S		
🔹 To u	nderstand the concepts of MIMO techniques				
UNIT I	WIRELESS PROPAGATION CHANNELS				9
Straits of W	ireless Communication- Path loss models: Free Space and Two-Ray models	- lar	ge sc	ale	
path loss –	Analysis of Link Budget design - Small scale fading- Parameters of mobi	le m	ultip	ath	
channels, B	rewster angle – Time dispersion parameters-Coherence bandwidth – Doppl	er sp	ectra	n &	
Coherence t	ime, fading due to Multipath time delay spread - flat fading - frequency sele	ective	e fad	ing	
– Fading du	e to Temporal spread – fast fading – slow fading.				

UNIT II CELLULAR ARCHITECTURE	9
Multiple Access techniques - FDMA, TDMA, CDMA,SDMA, Packet radio - Applications	-
Capacity calculations, Cellular concepts- Frequency reuse - channel assignment- hand of	-
interference & system capacity- trunking & grade of service - Coverage and capacity improvement	
Evolution of Cellular Networks	
UNIT III SIGNALING TECHNIQUES FOR FADING CHANNELS	9
Elements of a wireless communication link, working of different Signaling Schemes-Offse	-
QPSK, D/4-DQPSK, Minimum Shift Keying, Gaussian Minimum Shift Keying, Error performance	e
in fading channels, OFDM principle - Cyclic prefix, Windowing, PAPR, ICI, Adaptive Modulation	
UNIT IV MULTIPATH MITIGATION TECHNIQUES	9
Multipath Mitigation techniques - Overview- Equalization: - Adaptive equalization, Linear and Nor	-
Linear equalization, Algorithms for equalization -Zero forcing and LMS Algorithms. Diversity:	
Principle, Micro and Macro diversity, Transmit Diversity, Correlation Coefficient, Diversity	
combining techniques, Error probability in fading channels with diversity reception, Rake receiver	
UNIT V MIMO TECHNIQUES	9
MIMO systems- Types - spatial multiplexing -System model- Channel state information - capacity	v
in fading and non-fading channels – Impact of Channel Diversity - Beam forming - transmitte	
diversity, receiver diversity Multiuser MIMO - Linear Pre-codingAlamouti coding scheme	
Total Hour	: 45
TEXT BOOKS	
1. Rappaport, T.S., —Wireless communications, Pearson Education, Second Edition, 20	10.
(UNIT I, II, IV)	
2. Andreas.F. Molisch, —Wireless Communications, John Wiley – India, 2006. (UNIT	III,V)
REFERENCE BOOKS	
1. Wireless Communication – Andrea Goldsmith, Cambridge University Press, 2011	
	1
2. Van Nee, R. and Ramji Prasad, —OFDM for wireless multimedia communicatio	is, Artech
House, 2000	
3. David Tse and Pramod Viswanath, —Fundamentals of Wireless Communication, O	ambridge
University Press, 2005.	
4. Upena Dalal, —Wireless Communication, Oxford University Press, 2009.	
COURSE OUTCOMES:	
After completing this course, the students will be able to	
CO1 To Model a wireless channel and evolve the system design specifications	
CO2 Design a cellular system based on resource availability and traffic demands	
<b>CO3</b> Explore an suitable signaling for the wireless channels and systems.	
CO4 Identify suitable multipath mitigation techniques for the wireless channels and system	IS
CO5 Understand the importance of MIMO techniques	

		MA	APPI	NG B	ETW	EEN	CO A	ND I	20, P	SO W	ITH C	ORRI	ELATIC	N LEV	EL 1/2/3	
COs				PR	OGR	AMN	IE OI	UTCO	OMES	5			PROG	RAMM OUTC		CIFIC
	<b>PO1</b>	<b>PO2</b>	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	1	2	-	-	-	-	2	1	3	2	1	1
CO2	3	3	2	2	1	2	-	-	-	-	2	1	3	2	1	1
CO3	3	3	2	2	1	2	-	-	-	-	2	1	3	2	1	1

CO4	3	3	2	2	2	2	-	-	_	-	2	2	3	2	1	1
CO5	3	3	2	2	2	2	-	-	-	-	2	2	3	2	1	1

EC4608	EMBEDDED and IoT LABORATORY	L	Т	Р	С
		0	0	4	2
OBJECT	IVES:				
• Le	arn the working of ARM processor				
• Un	derstand the Building Blocks of Embedded Systems				
• Le	arn the concept of memory map and memory interface				
	Write programs to interface memory, I/Os with processor.				
• Sti	idy the interrupt performance				
UNIT1	LIST OF EXPERIMENTS				
	idy of ARM evaluation system				
	erfacing ADC and DAC.				
	erfacing LED and PWM.				
	erfacing real time clock and serial port.				
	erfacing keyboard and LCD. erfacing EPROM and interrupt.				
7. Ma					
	errupt performance characteristics of ARM and FPGA.				
	ushing of LEDS.				
	erfacing stepper motor and temperature sensor.				
	plementing zigbee protocol with ARM. Explore different communica	tion meth	ods v	vith Io	т
	vices				
	velop simple application – testing infrared sensor – IoT Applications	-			
	velop simple application – testing temperature, light sensor – IOT Ap $(D_{1}, D_{2})$	plication	-usin	g ope	n
-	atform/Raspberry Pi.	z / Firaba			
<u>14. De</u>	ploy IOT applications using platforms such as Bluemix / Think Speal	x / I'llCUas		ntol II	lours: 60
	COURSE OUTCOMES:		1		
	After completing this course, the students will be able to				
<b>CO1</b>	Learn the working of ARM processor				
CO1 CO2	Understand the Building Blocks of Embedded Systems				
CO2	Learn the concept of memory map and memory interface				
<u>CO4</u>	To Write programs to interface memory, I/Os with processor				
		n.			

			MAP	PING	BET	WEEI	N CO	AND	PO,	PSO V	VITH (	CORR	ELATIO	N LEVEI	L 1/2/3	
COs				PR	OGR	AMM	E OU	тсо	MES				PRO	GRAMM OUTC	E SPEC OMES	CIFIC
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4

CO1	3	2	3	1	2	1	-	-	-	-	1	3	2	3	2	2
CO2	3	2	3	1	2	1	-	-	-	-	1	3	2	3	2	2
CO3	3	2	2	1	2	1	-	-	-	-	1	3	2	3	2	2
CO4	3	1	2	2	2	1	-	-	-	-	1	2	2	3	2	2
CO5	3	1	1	2	2	1	-	-	-	-	1	3	2	3	1	2

## EC4609 MINI PROJECT

#### **OBJECTIVES:**

• To develop their own innovative prototype of ideas.

• To train the students in preparing mini project reports and examination.

The students in a group of 4 to 5 works on a topic approved by the head of the department and prepares a comprehensive mini project report after completing the work to the satisfaction. The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A mini project report is required at the end of the semester. The mini project work is evaluated based on oral presentation and the mini project report jointly by external and internal examiners constituted by the Head of the Department.

## TOTAL: 60 HOURS

Т

0

L

0

Р

4

С

2

### **OUTCOMES:**

• On Completion of the mini project work students will be in a position to take up their final year project work and find solution by formulating proper methodology.

## SEMESTER VII

GE4791	HUMAN VALUES AND ETHICS	L	Т	Р	С
Common to	b ECE and Mech	3	0	0	3
	<b>IVES</b> enable the students to create an awareness on Engineering Ethics and Human ral and Social Values and Loyalty and to appreciate the rights of others.	n Val	ues,	to ins	till
UNIT I	HUMAN VALUES				10
others – Li Commitme	lues, and Ethics – Integrity – Work ethic – Service learning – Civic virtue - iving peacefully – Caring – Sharing – Honesty – Courage – Valuing time – C ent – Empathy – Self-confidence – Character – Spirituality – Introduction for professional excellence and stress management.	Coop	eratio	on –	CO1

UNIT II	ENGINEERING ETHICS	9
Moral Aut	'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – conomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models ional roles - Theories about right action – Self-interest – Customs and Religion – Uses of eories.	CO2
UNIT III	ENGINEERING AS SOCIAL EXPERIMENTATION	9
-	g as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Dutlook on Law.	CO3
UNIT IV	SAFETY, RESPONSIBILITIES AND RIGHTS	9
Respect f	Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk - or Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – nal Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) nation.	CO4
UNIT V	GLOBAL ISSUES	8
Engineers	nal Corporations – Environmental Ethics – Computer Ethics – Weapons Development – as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – dership –Code of Conduct – Corporate Social Responsibility.	CO5
	Total Hours:	45
	TEXTBOOKS	
1.	<b>TEXTBOOKS</b> Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003.	ew
1. 2.	Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.	
2.	Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004. <b>REFERENCE BOOKS</b>	f
	<ul> <li>Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003.</li> <li>Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.</li> <li><b>REFERENCE BOOKS</b></li> <li>Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.</li> <li>Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics –</li> </ul>	f
2. 1. 2.	<ul> <li>Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003.</li> <li>Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.</li> <li><b>REFERENCE BOOKS</b></li> <li>Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.</li> <li>Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts and Cases", Cengage Learning, 2009.</li> </ul>	f
2. 1. 2. 3.	<ul> <li>Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003.</li> <li>Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.</li> <li><b>REFERENCE BOOKS</b></li> <li>Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.</li> <li>Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts and Cases", Cengage Learning, 2009.</li> <li>John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2009.</li> </ul>	f
2. 1. 2.	<ul> <li>Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003.</li> <li>Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.</li> <li><b>REFERENCE BOOKS</b></li> <li>Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.</li> <li>Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts and Cases", Cengage Learning, 2009.</li> <li>John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2</li> </ul>	f
2. 1. 2. 3.	<ul> <li>Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003.</li> <li>Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.</li> <li><b>REFERENCE BOOKS</b></li> <li>Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.</li> <li>Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts and Cases", Cengage Learning, 2009.</li> <li>John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2</li> <li>Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.</li> <li>Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal</li> </ul>	f 2003
2. 1. 2. 3. 4. 5.	<ul> <li>Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003.</li> <li>Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.</li> <li><b>REFERENCE BOOKS</b></li> <li>Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.</li> <li>Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts and Cases", Cengage Learning, 2009.</li> <li>John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2</li> <li>Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.</li> <li>Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2</li> </ul>	f 2003 2013.
2. 1. 2. 3. 4.	<ul> <li>Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003.</li> <li>Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.</li> <li><b>REFERENCE BOOKS</b></li> <li>Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.</li> <li>Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts and Cases", Cengage Learning, 2009.</li> <li>John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2</li> <li>Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.</li> <li>Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2</li> </ul>	f 2003 2013.
2. 1. 2. 3. 4. 5.	<ul> <li>Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003.</li> <li>Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.</li> <li><b>REFERENCE BOOKS</b></li> <li>Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.</li> <li>Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts and Cases", Cengage Learning, 2009.</li> <li>John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2004.</li> <li>Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.</li> <li>Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2006.</li> <li><b>COURSE OUTCOMES:</b></li> </ul>	f 2003 2013.
2. 1. 2. 3. 4. 5. 6.	<ul> <li>Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003.</li> <li>Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.</li> <li><b>REFERENCE BOOKS</b></li> <li>Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.</li> <li>Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts and Cases", Cengage Learning, 2009.</li> <li>John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2</li> <li>Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.</li> <li>Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2</li> <li>World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 20</li> <li><b>COURSE OUTCOMES:</b></li> <li>After completing this course, the students will be able to</li> </ul>	f 2003 2013. 11.
2. 1. 2. 3. 4. 5.	<ul> <li>Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003.</li> <li>Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.</li> <li><b>REFERENCE BOOKS</b></li> <li>Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.</li> <li>Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts and Cases", Cengage Learning, 2009.</li> <li>John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2004.</li> <li>Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.</li> <li>Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2006.</li> <li><b>COURSE OUTCOMES:</b></li> </ul>	f 2003 2013. 11.
2. 1. 2. 3. 4. 5. 6. CO1	Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004. <b>REFERENCE BOOKS</b> Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts and Cases", Cengage Learning, 2009. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2 Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd.,New Delhi, 2 World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 20 <b>COURSE OUTCOMES:</b> After completing this course, the students will be able to Students should be able to apply ethics in society, and realize the responsibilities and righ the society.	f 2003 2013. 11.
2. 1. 2. 3. 4. 5. 6.	Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004. <b>REFERENCE BOOKS</b> Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts and Cases", Cengage Learning, 2009. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2 Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd.,New Delhi, 2 World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 20 <b>COURSE OUTCOMES:</b> After completing this course, the students will be able to Students should be able to apply ethics in society, and realize the responsibilities and righ the society. Students should be able to discuss the ethical issues related to engineering	f 2003 2013. 11.
2. 1. 2. 3. 4. 5. 6. CO1 CO2	Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, Ne Delhi, 2003. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004. <b>REFERENCE BOOKS</b> Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts and Cases", Cengage Learning, 2009. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2 Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd.,New Delhi, 2 World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 20 <b>COURSE OUTCOMES:</b> After completing this course, the students will be able to Students should be able to apply ethics in society, and realize the responsibilities and righ the society.	f 2003 2013. 11.

		Μ	APPIN	NG BE	TWEE	N CO	AND I	PO, PS	O WI	гн со	RREL	ATION	N LEV	EL 1/2	2/3	
<b>CO</b>				Pl	ROGR	AMM	E OUT	COM	ES						AMMI DUTCO	
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4
CO1	-	-	-	-	-	2	2	3	2	-	-	1	-	-	-	3
CO2	-	-	-	-	-	2	2	3	2	-	-	1	-	-	-	3
CO3	-	-	-	-	-	2	2	3	2	-	-	1	-	-	-	3
<b>CO4</b>	-	-	-	-	-	2	2	3	2	-	-	1	-	-	-	3
CO5	-	-	-	-	-	2	2	3	2	-	-	1	-	-	-	3

EC4702	MICROWAVE and OPTICAL COMMUNICATION	L	Т	Р	С
		3	0	0	3
<ul> <li>To I</li> <li>To I</li> <li>To I</li> <li>To I</li> </ul>	<b>IECTIVES:</b> Realize basic elements in optical fibers, different modes and configuration Analyze the transmission characteristics associated with dispersion and p Facilitate the knowledge about optical fiber sources and transmission tech Explore the trends of optical fiber measurement systems. Inhance the student knowledge in the area of microwave components for <b>OPTICAL WAVEGUIDE</b>	olari hniqu	ies		-
propagation Step Index,	Elements of Optical Fiber Communication link - Optical Fibers- Na – Optical laws – Ray theory, Total Internal Reflection - Optical Fiber – C Graded Index, Optical Modes and Configuration– Mode theory of circula erials – Techniques of Fiber Fabrication – Fiber optic cables	Classi	ficati	ion-	CO1
UNIT II	SIGNAL PROPAGATION EFFECTS IN FIBER				9
Signal Dist Calculation dispersion,	- Absorption losses, scattering losses, Bending Losses, Core and Cla ortion in optical fiber -Group Delay-Material Dispersion, Waveguid of Information Capacity, Signal impairments in SM fibers-Polar Intermodal dispersion, Design Optimization of SM fibers-RI profil , Pulse Broadening in GI fibers-Mode Coupling.	le Di izatio	sperson N	sion- Iode	CO2
UNIT III	LIGHT SOURCES AND DETECTORS				9
					9
LED struct light source LASER dia resonant fr temperature <b>Detectors:</b>	trinsic and extrinsic material-direct, indirect band gaps materials-Light sures, surface emitting LED-Edge emitting LED-quantum efficiency and materials-modulation of LED odes:-modes and threshold conditions-Rate equations-external quantue equencies-structures and radiation patterns-single mode laser-externate effort. PIN photo detector-Avalanche photo diodes-Photo detector noise-noise sponse time-Avalanche multiplication noise- Performance comparis	d LEI um ei il mo sourc	D po fficie odula ces-S	ency- tion-	CO3

of Error – Fiber Nun profile m	ers- Operation of optical receiver, Error sources – Receiver Configuration– Probability Quantum limit., Coupling Techniques, WDM, SONET/ SDH, herical Aperture Measurements - Dispersion measurements – Fiber Refractive index easurements – Fiber cut-off Wavelength Measurements – Fiber Attenuation ents- Fiber diameter measurements.	CO4
UNIT V	PASSIVE AND ACTIVE MICROWAVE DEVICES	9
resonator,	e Passive components: Directional Coupler, Power Divider, Magic Tee, attenuator, Principles of Microwave Semiconductor Devices: Gunn Diodes, IMPATT diodes, Barrier diodes, PIN diodes, Microwave tubes: Klystron, TWT, Magnetron.	CO5
	Total Hours:	45
	TEXT BOOKS	
1.	Gerd Keiser, "Optical Fiber Communication" Mc Graw -Hill International, 4th Edition	n.2010.
2	David M. Pozar, "Microwave Engineering", Fourth Edition, Wiley India, 2012. (UNIT	'V)
	REFERENCE BOOKS	
1.	John M. Senior, "Optical Fiber Communication", Second Edition, Pearson Education	, 2007.
2.	J.Gower, "Optical Communication System", Prentice Hall of India, 2001.	
3.	Govind P. Agrawal, "Fiber-optic communication systems", third edition, John Wiley,	2004.
4.	P Chakrabarti, "Optical Fiber Communication", McGraw Hill Education (India) Priva Limited, 2016 (UNIT I, II, III)	te
	<b>COURSE OUTCOMES:</b> After completing this course, the students will be able to	
CO1	Understand the basic elements in optical communication- fibers, different mod configurations.	
CO2	Analyze the transmission characteristics associated with dispersion and pola techniques.	rization
CO3	Design optical sources and detectors with their use in optical communication system.	
CO4	Evaluate fiber optic receiver systems, measurements and coupling techniques.	
CO5	Understand the working of passive and active microwave devices	

		]	MAPI	PING	BETV	VEEN	I CO	AND ]	PO, P	SO WI	TH C	ORRE	ELATIO	N LEVEI	L 1/2/3	
COs	PROGRAMME OUTCOMES           PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													PROGR CCIFIC C		<b>IES</b>
	<b>PO1</b>	<b>PO2</b>	<b>PO3</b>	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	<b>PO12</b>	PSO1	PSO2	PSO3	PSO4
CO1	2	3	2	2	2	1	-	-	-	-	-	1	2	1	2	1
CO2	3	3	2	2	2	1	-	-	-	-	-	1	2	1	2	2
CO3	3	3	2	3	3	1	-	-	-	-	-	1	3	1	2	1
CO4	3	3	2	3	3	1	-	-	-	-	-	1	2	2	2	2
CO5	3	3	2	3	3	1	-	-	-	-	-	3	3	2	2	1

EC4703 FIELD AND SERVICE ROBOTICS	L	Τ	P	С
	3	0	0	3

## **OBJECTIVES:**

- To Understand the fundamentals of robotics
- To Understand the robot kinematics
- To familiarize the concept on path planning in robotics
- To understand field robotics
- Explore on robotics control and applications

## UNIT I FUNDAMENTALS OF ROBOTICS

Definition and laws of robotics - History of service robotics - anatomy of robot - robot classifications-Need for service robots - specifications and configurations - links and joints - examples of service and field Robots

#### UNIT II KINEMATICS

Robot architecture - pose of a rigid body - coordinate transformation - homogenous coordinates -Denavit and Hartenborg (DH) parameters - forward position analysis - inverse position analysis -Localization: Challenges –Mapping - Probabilistic Map - Monte carlo localization -Globally unique localization- Positioning beacon systems- Route based localization

#### UNIT III PATH PLANNING

Path planning overview- Road map path planning- Cell decomposition path Planning-Potential field path planning-Obstacle avoidance - trajectory planning - joint interrelated trajectories - Cartesian path trajectories - Point to point vs continuous path planning

#### **UNIT IV** | **FIELD ROBOTICS**

Operator interface - Mobility or locomotion - Manipulators & Effectors – Programming: - Sensing & Perception: Sensors for Mobile Robots - Sensor classification - Characterizing sensor performance - Inertial Measurement Unit (IMU)

#### UNIT V ROBOTICS CONTROL AND APPLICATIONS

Single axis and Multi axis PID control- PD gravity control, computed torque control - Simulation of simple robot-control system-Matlab programming for control of robots– Safety and robustness - Wheeled and legged: locomotion and balance - Arm movement - Gaze and auditory orientation control - Sound and speech recognition - Motion sensing - - Unmanned aerial vehicles (UAVs) - Basic Aerodynamics - Stability and Control - Case studies

**Total Hours:** 45

9

9

9

9

9

	TEXTBOOKS
1.	Robert. J. Schilling, "Fundamentals of robotics – Analysis and control", Prentice Hall
	of India 1996
2.	John. J. Craig, "Introduction to Robotics (Mechanics and control)", Pearson Education
	Asia 2002.
	REFERENCE BOOKS
1.	Roland Siegwart, Illah Reza Nourbakhsh, Davide Scaramuzza, "Introduction to Autonomous
	Mobile Robots", Bradford Company Scituate, USA, 2004
2.	Richard D Klafter, Thomas A Chmielewski, Michael Negin, "Robotics Engineering - An
	Integrated Approach", Eastern Economy Edition, Prentice Hall of India P Ltd., 2006.
3.	Kelly, Alonzo; Iagnemma, Karl; Howard, Andrew, "Field and Service Robotics ", Springer,
	2011
4.	R K Mittal and I J Nagrath, "Robotics and Control", Tata McGraw Hill, New Delhi, 2003.
5.	Paul G. Fahlstrom, Thomas J.Gleason, "Introduction to UAV Systems", Wiley, 4th Edition, 2012
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Understand the anatomy, specifications and types of Robots
CO2	Understand the forward and inverse kinematic models of robotic manipulators

CO3	Examine the plan trajectories in joint space & cartesian space and avoid obstacles while robots are in motion
CO4	Attribute the dynamic model and design the controller for robotic manipulators
C05	Choose appropriate Robotic configuration and sensor for robots used in different applications

		Μ	APPIN	IG BE'	TWEE	N CO	AND I	PO, PS	O WI	гн со	RREL	ATIO	N LEV	'EL 1/2	2/3				
COs				]	PROGI	RAMM	E OUT	СОМЕ	S				PROGRAMME SPECIFIC OUTCOMES						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4			
CO1	3	3	3	3	2	2	-	-	-	-	1	2	3	2	2	2			
CO2	3	3	3	3	2	3	-	-	-	-	1	2	3	3	3	2			
CO3	3	3	3	3	2	3	-	-	-	-	1	2	3	3	3	2			
CO4	3	3	3	3	3	3	1	-	-	-	2	3	3	3	3	2			
CO5	3	3	3	3	3	3	1	-	-	-	2	3	3	3	3	2			

EC4706	ADVANCED COMMUNICATION LABORATORY	L	Т	Р	С
		0	0	4	2
OBJECTI	VES:				
• Une	derstand the working principle of optical sources, detector, fibers				
• Dev	velop understanding of simple optical communication link				
• Une	derstand the measurement of BER, Pulse broadening				
• Uno	derstand and capture an experimental approach to digital wireless comm	unica	ation		
	derstand actual communication waveforms that will be sent and received			reless	
cha	nnel				
PART I:	LIST OF OPTICAL EXPERIMENTS				
1. Measure	ment of connector, bending and fiber attenuation losses.				COI
2. Numeric	al Aperture and Mode Characteristics of Fibers.				CO2
3. DC Char	racteristics of LED and PIN Photo diode.				
4. Fiber op	tic Analog and Digital Link Characterization - frequency response(analo	g), e	ye		
diagram an	nd BER (digital)				
PART-II I	LIST OF WIRELESS COMMUNICATION EXPERIMENTS				
5. Analys	is of Rician fading channel using simulation				CO3
6. Analys	is of Rayleigh fading channel using simulation				
1	ve equalizer				
	signal transmission and reception using Software Defined Radios				
PART-III	LIST OF MICROWAVE EXPERIMENTS				
9. Gunn Os	scillator Characteristics				CO4
	rement of VSWR, frequency and wavelength.				CO5
	nance characteristics of Directional coupler.				
12. Perform	nance Measures of Isolator and Circulator.				
		Tot	al Ho	urs:	60

LA	AB R	EQUII								ENTS	, 2 ST	UDEN	TS / F	EXPE	RIME	NT					
1.		Traine		-	0																
		charac					· •	-							2 Nos						
2.		Traine				0									2 Nos						
3.		Traine										2 Mbp	s PRB			e, 10					
		MHz s													2 Nos						
4		Kit for	meas	uring N	Numeri	ical ap	erture	and A	ttenua	tion of	fiber			1	2 Nos						
5.		Advan	ced O	ptical f	iber tr	ainer k	tit for	PC to 1	PC con	nmuni	cation	, BER	Measu	ıremen	ıt,						
		Pulse	broad	lening.										/	2 Nos						
6.		MM/S	M Gla	iss and	plastic	c fiber	patch	chords	s with	ST/SC	/E200	0 conn	ectors	/	2 sets						
7.		LEDs	with S	T / SC	/ E20	00 rece	eptacle	es – 65	0 / 850	Onm				4	2 sets						
8.		PIN PI	Ds wit	h ST /	SC / E	2000 1	recepta	acles –	650 /8	850 nn	ı			/	2 sets						
9.		Digital	l Com	munica	ations '	Teachi	ng Bu	ndle							10 Use	ers					
		(LabV	IEW/N	MATL	AB/Eq	uivale	nt soft	ware t	ools)												
10		Softwa	are De	fine Ra	adio Ti	ranscei	iver Pl	atform	with a	antenn	as and	access	sories		2 Nos						
		COUF	RSE O	UTCO	OMES	:															
		After o	comple	eting th	is cou	rse, th	e stude	ents wi	ill be a	ble to											
CO1		Analyz	ze the	perfori	nance	of sim	ple op	tical li	ink by	measu	remen	t of los	sses an	d Ana	lyzing						
		the mo	de cha	aracter	istics c	of fiber	•														
CO2		Analyz	ze the	Eye Pa	ttern, İ	Pulse l	oroade	ning o	f optic	al fibe	r and t	he imp	oact on	BER							
CO3		Estima	te the	Wirele	ess Cha	annel (	Charac	teristic	cs and	Analy	ze the	perfor	mance	of Wi	reless						
		Comm	unicat	tion Sy	stem					•		-									
<b>CO4</b>		Analyz	zing si	gnal tr	ansmis	ssion in	n SDR														
CO5		Unders	stand t	he intr	icacies	s in Mi	crowa	ve Sys	stem de	esign											
		Μ	APPIN	NG BE'	TWEE	N CO	AND I	PO, PS	O WI	ГН СО	RREL			EL 1/2							
				PF	ROGRA	AMME	E OUT	COM	ES					ROGR							
COs							_						PS	PS	PS	PS					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	01	02	03	04					
CO1	3	3	2	2	2	2	-	-	-	-	-	-	2	3	1	2					
CO2	3	3	2	2	2	2	-	-	-	-	-	-	2	3	1	2					
CO3	3	3	2	2	2	2	-	-	-	-	-	-	2	3	1	2					
CO4 CO5	3	3	2	2	2	2	-	-	-	-	-	-	2	3	1	2					
		3	2	2	2	2	-	-	-	-	-	-	2	3	1	2					

EC470	7 ROBOTICS LABORATORY	L	Т	Р	C
		0	0	4	2
OBJEC	CTIVES:	1	1	l	
•	To learn the logics of Degrees of Freedom with path planner trajectories. Explore into modeling for kinematic and dynamic verification of robot. To design and analysis of grippers and to execute the sensor integration f application.	or th	ne gi	ven	robotic
•	To Develop Logical programming and Interfacing robot				
Part I:	Degrees of Freedom with path planner trajectories				
	Demonstration of robot with 6 Degrees of Freedom for pick and place applica	ntion			COI
2.	Execute the 3R planar for the given robotic links				CO2

2 1		
	nplement Cartesian path trajectories	
4. D	evelop logical programming for robot path planning (black line and white line follower	
Part-II N	Aodelling and Analysis	
	irtual modeling for kinematic and dynamic verification any one robotic structure using	CO3
	IATLAB	CO4
	esign, modeling and analysis of two different types of grippers.	
7. Ez	xecute the sensor integration for the given robotic application	
Part-III	Develop Logical programming and Interfacing robot	
8. D	emonstration of Articulated/ SCARA robot	CO5
9. C	onfigure different logical programming for obstacle following and avoiding robot.	
10. D	esign of self balancing Robot using PID control algorithm.	
11. D	esign of Unmanned aerial vehicles (UAVs)	
	Total Hours:	60
	COURSE OUTCOMES:	1
	After completing this course, the students will be able to	
CO1	Execute logics for 6 Degrees of Freedom pick and place and 3R planar 3R planar robotic	links
CO2	Implement Cartesian path trajectories and for robot path planning	
CO3	Examine modeling for kinematic and dynamic verification of robot	
<b>CO4</b>	Perform logical programming for obstacle following and avoiding robot using sensors g	rippers
CO5	Develop Articulated/ SCARA Robot, UAV and self-balancing Robot using PID control algorithm	

		M	APPIN	G BE	rwee	N CO	AND I	PO, PS	O WI	гн со	RREL	ATIO	N LEV	<b>/EL 1/</b> 2	2/3	
CO				Pł	ROGR	AMMI	E OUT	COM	ES					PROGR CIFIC (		
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4
CO1	3	3	3	3	3	-	-	-	1	-	1	2	3	3	3	1
CO2	3	3	3	3	3	-	-	-	1	-	1	2	3	3	3	1
<b>CO3</b>	3	3	3	3	3	-	-	-	1	-	1	2	3	3	3	1
CO4	3	3	3	3	3	-	-	-	1	-	1	2	3	3	3	1
CO5	3	3	3	3	3	-	-	-	1	-	1	2	3	3	3	1

EC4803 PROJECT WORK	L	Т	Р	С
	0	0	20	10
OBJECTIVES:				
The student should be made:				
• To learn how to address problems from identifying them and conducting app	oropr	iate 1	resear	ch to
delivering feasible, effective solutions.				
• To provide creative, cost-effective solutions to societal problems.				
• To prepare for reviews and oral examinations.				
Guidelines				

The students may be divided into groups of one or two, work under the supervision of a project supervisor, and compile a full project report after the supervisor is satisfied with their performance. Minimum of four reviews and two model reviews are used to evaluate the project's advancement. The Head of the department may establish the review committee. A project report is needed at the semester's conclusion. The external and internal examiners are appointed to evaluate the project work and the evaluation is based on the oral presentation and the project report.

on the ore	a presentation and the project report.	
Stage 1	: Determining the problem:	C01
i) A de	scription of the planned system and process specifications must be formulated along	CO2
with Bl	ock Diagram or Functional Diagram.	
ii) List	of potential solutions, including alternatives and limits must be presented	
iii) Cos	t-benefit evaluation	
Stage 2	: A presentation is shown, which includes the following:	CO3
i) The E	Execution Phase	CO4
ii) Valio	dation and Testing of the Developed System	
iii) Uni	fied report preparation	
Stage 3	B: A report outlining the completed design based on standards and functional	CO5
needs.		
	Total Hours:	200
	COURSE OUTCOMES:	
	After completing their project work, student will be prepared to	
CO1	Comprehend an industrial or real-world problem and identify the correct/real problem solution.	with a
CO2	Analyze the required literature that carried out in the past years to understand the solution	ons
002	suggested by different researchers.	
CO3	Construct the equipment setup that produces the optimal solution.	
CO4	Conclude the analysis with the necessary equations and block diagrams.	
CO5	Create a report on the project based on the results.	

		M	APPIN	G BE	ГWEE	N CO	AND I	PO, PS	O WI	ГН СО	RREL	ATIO	N LEV	/EL 1/2	2/3	
				Pł	ROGR	AMMI	E OUT	COM	ES				-		AMMI DUTCC	_
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS 03	PS O4
CO1	3	3	3	3	3	-	-	-	1	-	1	2	3	3	3	1
CO2	3	3	3	3	3	-	-	-	1	-	1	2	3	3	3	1
CO3	3	3	3	3	3	-	-	-	1	-	1	2	3	3	3	1
<b>CO4</b>	3	3	3	3	3	-	-	-	1	-	1	2	3	3	3	1
CO5	3	3	3	3	3	-	-	-	1	-	1	2	3	3	3	1

### VERTICAL -1

EC4511	RADAR TECHNOLOGIES	L	Т	Р	С
		3	0	0	3
OBJECTIV	VES:				
• To explore	e the concepts of radar and its frequency bands.				

• To in	part the knowledge of functioning of MTI and Tracking Radars.	
	plain the deigning of a Matched Filter in radar receivers.	
		9
Basics Diagra Minim Radar Radar	<b>of Radar:</b> Maximum Unambiguous Range, Simple form of Radar Equation, Radar Block m and Operation, Radar Frequencies and Applications. Prediction of Range Performance, um Detectable Signal, Receiver Noise, Modified Radar Range Equation. Equation: SNR, Envelope Detector – False Alarm Time and Probability, Integration of Pulses, Radar Cross Section of Targets, Transmitter Power, PRF and Range Ambiguities, Losses (qualitative treatment).	,
UNIT	II CW AND FREQUENCY MODULATED RADAR	9
zero IF	er Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non- Receiver, Receiver Bandwidth Requirements, Applications of CW radar.FM-CW Radar: and Doppler Measurement, Block Diagram and Characteristics, FM-CW altimeter.	
UNIT	III MTI AND PULSE DOPPLER RADAR	9
Cancel Gated I	ele, MTI Radar – Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line lers – Filter Characteristics, Blind Speeds, Double Cancellation, Staggered PRFs. Range Doppler Filters. MTI Radar Parameters, Limitations to MTI Performance, MTI versus Pulse er Radar.	
UNIT	IV TRACKING RADAR	9
Amplit	ng with Radar, Sequential Lobing, Conical Scan, Mono pulse Tracking Radar ude Comparison Mono pulse (one- and two- coordinates), Phase Comparison Mono pulse, ng in Range, Acquisition and Scanning Patterns, Comparison of Trackers.	
UNIT		9
Deriva Filters, Tempe Duplex	on of Radar Signals in Noise Matched Filter Receiver – Response Characteristics and tion, Correlation Function and Cross-correlation Receiver, Efficiency of Non-matched Matched Filter with Non-white Noise. Radar Receivers – Noise Figure and Noise rature, Displays – types. Duplexers – Branch type and Balanced type, Circulators as ters. Introduction to Phased Array Antennas – Basic Concepts, Radiation Pattern, Beam g and Beam Width changes, Applications, Advantages and Limitations.	
	Total Hours:	45
1	TEXTBOOKS	
1.	Introduction to Radar Systems – Merrill I. Skolnik, TMH Special Indian Edition, 2ndEd., 2007.	
2.	Radar: Principles, Technology, Applications – Byron Edde, Pearson Education, 2004.	
	REFERENCE BOOKS	
1. 2.	Radar Principles – Peebles, Jr., P.Z., Wiley, New York, 1998 Principles of Modern Radar: Basic Principles – Mark A. Richards, James A. Scheer, Wil A. Holm, Yesdee, 2013	liar

	COURSE OUTCOMES:	
	After completing this course, the students will be able to	
CO1	Understand the basics of Radar and derive the complete radar range equatio	
CO2	Understand the need and functioning of CW, FM-CW radars	
CO3	Know about MTI and Pulse Doppler Radar	
CO4	Analyze the various Tracking methods.	

**CO5** To study the transmitter design and receiver design of Radars.

		MA	PPINO	G BEI	WEE	N CO	AND	PO, I	PSO V	VITH	CORR	ELA	TION	LEVEI	L 1/2/3	
COs				PR	OGRA	AMMI	E OUI	ГСОМ	1ES						AMM DUTCO	
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	2	-	-	-	-	1	2	2	2	2	1
CO2	3	3	3	3	2	2	-	-	-	-	1	2	2	2	2	1
CO3	3	3	3	3	2	2	-	-	-	-	2	2	2	2	2	2
CO4	3	3	3	3	2	2	-	-	-	-	2	2	2	2	2	2
CO5	3	3	3	3	2	2	-	-	-	-	2	2	2	2	2	2

EC4512	BASICS OF AVIONICS SYSTEM	L	Τ	Р	С
		3	0	0	3

## **OBJECTIVES:**

• To introduce the components and their representation of avionics systems

• To learn various methods for analyzing the System Engineering as a process, System Architecture and integration, Maintainability and reliability.

• To learn the various approach on deploying these skills effectively in the design process of systems in an aircraft.

UNIT I BASICS ON AVIONICS	9
Role of Avionics with its Importance – Air Data Systems For Various Needs : A	Air Data CO1
Information and its Use, Air Data Laws and Relationships, Air Data Sensors and Comp	putations
, the Avionic Technologies and its Design .	
UNIT II DIGITAL AVIONICS SYSTEMS AND ARCHITECTURE	9
Digital number system- number systems and codes, Fundamentals of logic and combin	national CO2
logic circuits- Avionics Bus architecture - Data buses MIL-RS 232- RS422-R	S 485-
AFDX/ARINC-664-MIL STD 1553 B-ARINC 429-ARINC 629- Aircraft system Inter	rface
UNIT III INERTIAL SENSORS AND SYSTEMS	9
Laser and MEMS Gyros, Accelerometers, Attitude Heading Reference System - Nav	vigation CO3
Systems: Basic Principles, Inertial Navigation, Strapped-Down Inertial Systems - Intro	oduction
to Autopilot and UAV Avionics.	
UNIT IV TESTING OF AIRCRAFT PERFORMANCE	9
Communications and Criticism on Stake holders - Configuration Control Process-Po	ortrayal CO4
of a System- Varying Systems Configurations- Compatibility-Factors Af	ffecting
Compatibility –Systems Evolution. Considerations and Integration of Aircraft Syste	ems.
UNIT V SYSTEMS RELIABILITY AND SIMPLE MANOEUVRES	9
Systems and Components-Analysis-Influence, Economics, Design for Reliability-Fa	ault and CO5
Failure Analysis-Case Study-Maintenance Types-Program-Planning and Design-	Case
Studies Illustrating Importance of Embedded Systems in Avionics - Utility of	f Radio
Navigation Aids(RNA).	
	al Hours: 45
TEXTBOOKS	

1.	Introduction to Avionics Systems by R.P.G. Collinson, PHI, 5th Edition, 2012.
2.	The Principles of Integrated Technology in Avionics Systems by Guoqing Wang. Tata McGraw
	Hill, 4th Edition, 2012.
	REFERENCE BOOKS
1.	R. P. G Collinson, "Introduction to Avionics", Springer, 2002.
2.	Kaytonand Fried, "Avionics Navigation Systems", Wiley, 1997.
3.	Frank Vahid, Tony Givargis, "Embedded System Design", Wiley, 2006
4.	Aircraft Systems Mechanical, electrical, and avionics subsystems integration by Ian
	Moirand Allan Seabridge John Wiley & Sons Ltd (2009)
5.	Introduction to Systems Engineering by Andrew P.Sage and James E.Armstrong. CBS
	Publishers and Distributors Private Limited, 5 th Edition, 2019
	COURSE OUTCOMES:
	After completing this course, the students will be able to
<b>CO1</b>	Compute the concepts of System Engineering to the engineers.
CO2	Analysis of avionic systems and to optimize the design.
CO3	Illustrate on various topics such as the System Engineering as a process, System Architecture
	and integration, Maintainability and reliability.
<b>CO4</b>	Analysis on deploying these skills effectively in the design process of systems in an aircraft.
CO5	Compute the transfer function of different physical systems.

		MA	PPINC	G BET	WEE	N CO A	AND P	PO, PS	O WI	ГН СС	)RREI	LATI	ION LE	VEL 1	1/2/3	
COa				PRO	OGRA	MME	OUT	COME	ES			5	PR SPECII	OGRA		
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	2 <b>PSO</b> 1	PSO 2	PSO 3	PSO 4
<b>CO1</b>	3	3	3	2	2	2	-	-	-	-	2	3	3	2	2	1
CO2	3	3	3	3	2	2	-	-	-	-	2	2	3	2	2	1
<b>CO3</b>	3	2	3	3	2	2	-	-	-	-	2	3	3	2	2	1
<b>CO4</b>	3	3	3	2	2	2	-	-	-	-	2	2	3	2	2	1
CO5	2	2	3	3	2	2	-	-	-	-	2	3	3	2	2	1

EC4513	POSITIONING AND NAVIGATIONAL SYSTEMS	L	Τ	Р	С
		3	0	0	3
OBJECTI	VES:	·			
> Uno	lerstanding of Global Positioning System				
> To	study the different standard formats of GPS				
> App	plications of Global positioning Systems				
> To	study the Global navigation System receiver architectures				
> To	analyze the Space Weather and GNSS				
UNIT I	INTRODUCTION TO GPS				9
GPS Segm	ents-GPS Satellite Generations-Current GPS Satellite Constellation	on-Cont	rol si	tes-	
GPS the ba	sic idea-GPS Positioning service-GPS Signal structure-GPS Moder	nization-	Туре	s of	
GPS receiv	vers-Time Systems-Pseudo range measurements-Carrier Phase me	asuremer	ts-C	ycle	

cline_I ine?	r combination of observables-GPS enhemeric errors-Selective availability-Satellite	
-	r combination of observables-GPS ephemeris errors-Selective availability-Satellite er clock errors.	
UNIT II	GPS POSITIONING MODES AND GPS INTEGRATION	9
	and relative positioning-Static GPS surveying-Stop and go GPS surveying-RTK GPS-	
	differential GPS-Communication Link-DGPS radio beacon systems-Multisite RTK	
	NEX format-NGS-SP3 format-RTCM SC-104 standards for DGPS services-NMEA	
	nat-GPS/GIS Integration-GPS/LRF Integration-GPS/Dead reckoning integration-	
	ntegration-GPS/Pseudolite integration-GPS/Cellular integration.	
UNIT III	GPS APPLICATIONS	9
GPS for t	forestry and natural resources-Precision farming-Civil Engineering applications-	
Monitoring	g structural deformations-Open pit mining-Land seismic surveying-Marine Seismic	
surveying-	Airborne mapping-Seafloor mapping-Vehicle Navigation-Retail Industry-Cadastral	
surveying-	GPS stakeout(waypoint navigation)-GLONASS Satellite System.	
UNIT IV	GNSS RECEIVERS	9
Receiver	architecture: Technology, radio-frequency front end, signal processing system	
	nd software techniques, software defined radio; <b>Signal tracking</b> : Maximum likelihood	
	f delay and position, delay lock tracking of signal, coherent and non-coherent delay	
	ng of pseudo noise sequences, mean square error estimation, vector delay lock loop,	
	oise performance, maximum likelihood estimate, early late gating; Navigation	
-	Measurement of pseudo range, Doppler, decoding and using of navigation data, single	
	tion, precise point positioning, dynamics of user, Kalman filter, least-squares	
	, and other alternatives.	
UNIT V		Ω
Sources o magnetosp	SPACE WEATHER AND GNSS f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS;	9
Sources o magnetosp Satellites, precise (ge their impac	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and ct, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and	9
Sources o magnetosp Satellites, precise (ge their impac	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and et, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models.	
Sources o magnetosp Satellites, precise (ge their impac	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and ct, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and	<b>9</b> 45
Sources o magnetosp Satellites, precise (ge their impac	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and et, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. Total Hours: TEXTBOOKS Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec	45
Sources o magnetosp Satellites, precise (ge their impac space based 1.	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and et, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. Total Hours: TEXTBOOKS Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec 2002	45 ch Hou
Sources o magnetosp Satellites, precise (ge their impac space based	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and et, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. Total Hours: TEXTBOOKS Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec 2002 Understanding GPS Principles and Applications, Elliott D. Kaplan, Christopher J. He	45 ch Hou
Sources o magnetosp Satellites, precise (ge their impac space based 1.	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and et, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. Total Hours: TEXTBOOKS Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec 2002 Understanding GPS Principles and Applications, Elliott D. Kaplan, Christopher J. He Edition,2006	45 ch Hou
Sources o magnetosp Satellites, precise (ge their impac space based 1. 2.	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and et, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. Total Hours: TEXTBOOKS Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec 2002 Understanding GPS Principles and Applications, Elliott D. Kaplan, Christopher J. He Edition,2006 REFERENCE BOOKS	45 2h Hou garty,2
Sources o magnetosp Satellites, precise (ge heir impac space based 1.	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and et, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. Total Hours: TEXTBOOKS Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec 2002 Understanding GPS Principles and Applications, Elliott D. Kaplan, Christopher J. He Edition,2006 REFERENCE BOOKS Global Navigation Satellite Systems by Office For Outer Space Affairs United Nation	45 2h Hou garty,2
Sources o magnetosp Satellites, precise (ge heir impac space based 1. 2. 1.	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and et, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. Total Hours: TEXTBOOKS Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec 2002 Understanding GPS Principles and Applications, Elliott D. Kaplan, Christopher J. He Edition,2006 REFERENCE BOOKS Global Navigation Satellite Systems by Office For Outer Space Affairs United Nation at Vienna United Nations,2012	45 ch Hou garty,2 ns offic
Sources o nagnetosp Satellites, precise (ge heir impac space based 1. 2.	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and et, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. <b>Total Hours:</b> <b>TEXTBOOKS</b> Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec 2002 Understanding GPS Principles and Applications, Elliott D. Kaplan, Christopher J. He Edition,2006 <b>REFERENCE BOOKS</b> Global Navigation Satellite Systems by Office For Outer Space Affairs United Nation at Vienna United Nations,2012 Fundamentals of Global Positioning System Receivers: A Software Approach, James	45 ch Hou garty,2 ns offic
Sources o nagnetosp Satellites, precise (ge heir impac pace based 1. 2. 1.	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and t, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. <b>Total Hours:</b> <b>TEXTBOOKS</b> Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec 2002 Understanding GPS Principles and Applications, Elliott D. Kaplan, Christopher J. He Edition,2006 <b>REFERENCE BOOKS</b> Global Navigation Satellite Systems by Office For Outer Space Affairs United Nation at Vienna United Nations,2012 Fundamentals of Global Positioning System Receivers: A Software Approach, James Yen Tsui, John Wiley & Sons, Inc.,2000	45 ch Hou garty,2 ns offic
Sources o magnetosp Satellites, precise (ge heir impac space based 1. 2. 1.	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and tt, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. <b>Total Hours:</b> <b>TEXTBOOKS</b> Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec 2002 Understanding GPS Principles and Applications, Elliott D. Kaplan, Christopher J. He Edition,2006 <b>REFERENCE BOOKS</b> Global Navigation Satellite Systems by Office For Outer Space Affairs United Nation at Vienna United Nations,2012 Fundamentals of Global Positioning System Receivers: A Software Approach, James Yen Tsui, John Wiley & Sons, Inc.,2000 <b>COURSE OUTCOMES:</b>	45 ch Hou garty,2 ns offic
Sources o nagnetosp Satellites, precise (ge heir impac space based 1. 2. 1. 2.	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and et, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. <b>Total Hours:</b> <b>TEXTBOOKS</b> Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec 2002 Understanding GPS Principles and Applications, Elliott D. Kaplan, Christopher J. He Edition,2006 <b>REFERENCE BOOKS</b> Global Navigation Satellite Systems by Office For Outer Space Affairs United Nation at Vienna United Nations,2012 Fundamentals of Global Positioning System Receivers: A Software Approach, James Yen Tsui, John Wiley & Sons, Inc.,2000 <b>COURSE OUTCOMES:</b> After completing this course, the students will be able to	45 ch Hou garty,2 ns offic
Sources o magnetosp Satellites, precise (ge their impace space based 1. 2. 1. 2. CO1	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and et, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. <b>Total Hours:</b> <b>TEXTBOOKS</b> Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec 2002 Understanding GPS Principles and Applications, Elliott D. Kaplan, Christopher J. He Edition,2006 <b>REFERENCE BOOKS</b> Global Navigation Satellite Systems by Office For Outer Space Affairs United Nation at Vienna United Nations,2012 Fundamentals of Global Positioning System Receivers: A Software Approach, James Yen Tsui, John Wiley & Sons, Inc.,2000 <b>COURSE OUTCOMES:</b> After completing this course, the students will be able to Understand the basic concept of Global Positioning System(GPS)	45 ch Hou garty,2 ns offic
Sources o magnetosp Satellites, precise (ge their impaces space based 1. 2. 1. 2. CO1 CO2	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and t, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. <b>Total Hours:</b> <b>TEXTBOOKS</b> Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec 2002 Understanding GPS Principles and Applications, Elliott D. Kaplan, Christopher J. He Edition,2006 <b>REFERENCE BOOKS</b> Global Navigation Satellite Systems by Office For Outer Space Affairs United Natio at Vienna United Nations,2012 Fundamentals of Global Positioning System Receivers: A Software Approach, James Yen Tsui, John Wiley & Sons, Inc.,2000 <b>COURSE OUTCOMES:</b> After completing this course, the students will be able to Understand the basic concept of Global Positioning System(GPS) Understand the various modes and formats of GPS	45 ch Hou garty,2 ns offic
Sources o magnetosp Satellites, precise (ge their impac space based 1. 2. 1. 2. 0 1. 2. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and t, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. <b>Total Hours:</b> <b>TEXTBOOKS</b> Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec 2002 Understanding GPS Principles and Applications, Elliott D. Kaplan, Christopher J. He Edition,2006 <b>REFERENCE BOOKS</b> Global Navigation Satellite Systems by Office For Outer Space Affairs United Natio at Vienna United Nations,2012 Fundamentals of Global Positioning System Receivers: A Software Approach, James Yen Tsui, John Wiley & Sons, Inc.,2000 <b>COURSE OUTCOMES:</b> After completing this course, the students will be able to Understand the basic concept of Global Positioning System(GPS) Understand the various modes and formats of GPS Apply various applications of GPS in real time life	45 ch Hou garty,2 ns offic
Sources o magnetosp Satellites, precise (ge their impac space based 1. 2. 1.	f space weather and related background physics: Sun, galactic cosmic rays, here, thermosphere, ionosphere coupling; Impact of space weather events on GNSS; interference with solar radio emission, radio wave propagation; Different view in odesy, DGPS) and safety of life (aviation) applications; Ionospheric scintillations and t, monitoring and modeling; GNSS-based monitoring of the ionosphere by ground and d measurements; Ionospheric correction and threat models. <b>Total Hours:</b> <b>TEXTBOOKS</b> Introduction to GPS: the Global Positioning System by Ahmed El-Rabbany, Art-tec 2002 Understanding GPS Principles and Applications, Elliott D. Kaplan, Christopher J. He Edition,2006 <b>REFERENCE BOOKS</b> Global Navigation Satellite Systems by Office For Outer Space Affairs United Natio at Vienna United Nations,2012 Fundamentals of Global Positioning System Receivers: A Software Approach, James Yen Tsui, John Wiley & Sons, Inc.,2000 <b>COURSE OUTCOMES:</b> After completing this course, the students will be able to Understand the basic concept of Global Positioning System(GPS) Understand the various modes and formats of GPS	45 ch Hou garty,2 ns offic

			MAPF	PING B	BETWI	EEN C	O ANI	<b>) PO, </b> ]	PSO W	VITH C	CORRE	LATI	ON LEV	VEL 1/2	/3	
COs				PI	ROGR	AMM	E OUT	COMI	ES				PROG	RAMN OUTC	IE SPE OMES	CIFIC
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	1	2	1	-	-	-	-	-	2	2	2	2	2
CO2	3	2	2	2	2	1	-	-	-	-	-	2	2	2	2	2
CO3	3	3	3	2	2	2	-	-	-	-	-	3	3	2	3	3
CO4	3	3	3	2	2	2	-	-	-	-	-	2	3	2	3	2
CO5	3	3	3	2	2	2	-	-	-	-	-	2	2	2	2	3

EC4514	SATELLITE COMMUNICATION	L	Т	Р	С
		3	0	0	3
<ul><li>Understa</li><li>Analyze</li><li>Understa</li></ul>	<b>VES:</b> nd the basics of satellite orbits nd the satellite subsystems the satellite link design nd the various methods of satellite access on the satellite applications				
UNIT I	COMMUNICATION SATELLITE: ORBIT AND DESCRIPTION				9
Terms for Sun-Synch	tory of satellite Communication, satellite Frequency Bands, Kepler's Law Earth-Orbiting Satellites – Orbital Elements - Orbital Perturbations - S ronous Orbit - Geo Stationary and Non Geo-Stationary Orbits – Look Ang f Visibility – Eclipse - Sub Satellite Point – Sun Transit Outage - M	tation gle Det	Keepi ermin	ing – ation	
UNIT II	SPACE SEGMENT AND EARTH SEGMENT				9
Control ar	Primary Power and Attitude and Orbit Control system of Spacecraft Tech d Propulsion, Communication Payload and supporting subsystems, T ers, Wideband Receiver, The input demultiplexer, The power Amplifier,	T&C	subsys	stem,	
UNITIII	SATELLITE UPLINK AND DOWNLINK ANALYSIS AND DESI	GN			9
Equation, Backoff- 7	on, Equivalent Isotropic Radiated Power, Transmission Losses, The Lir System Noise- Carrier-to-Noise Ratio – The uplink – Saturation Flux The earth Station HPA – Downlink – Output Back off – Satellite TWTA Combined uplink and downlink C/N Ratio – The downlink - Inter modula	dens Outpu	ity – i ıt – Ef	input	
UNIT IV	SATELLITE ACCESS & CODING TECHNIQUES				9
Division N	cess – Pre Assigned , Demand Assigned and Random Access Multiple Aultiple Access - Reference Burst, Preamble and Postamble, Carrier Re zation, Frame Efficiency and Channel Capacity, Preassigned TDMA, D	covery	, Net	work	

Division	Frequency division Multiple Access - Preassigned FDMA, Demand-Assigned FDMA - Code Multiple Access - Direct-sequence spread spectrum, Acquisition and tracking, CDMA at- Digital video Broadcast, compression – encryption - Symmetric Key Encryption and	
	ric Key Encryption, Coding Schemes.	
UNIT V	SATELLITE APPLICATIONS	9
The Glo	rture terminal, Mobile Satellite Services: The Global System for Mobile Communications, bal Positioning System, The International Mobile Satellite Organization, Satellite onal System. The Global Positioning System - Position Location Principles - Direct To Home	
	Total Hours:	45
	TEXTBOOKS	
1.	Dennis Roddy, "Satellite Communication", 4th Edition, Mc Graw Hill International, 2006.	
2.	Timothy, Pratt, Charles, W.Bostain, JeremyE.Allnutt, "SatelliteCommunication", 2ndEdition,	
	Wiley Publications,2002	
	REFERENCE BOOKS	
1.	Wilbur L.Pritchard, Hendri G. Suyderhoud, Robert A. Nelson, "Satellite Communi	cation
	Systems Engineering", Prentice Hall/Pearson, 2007.	
2.	N.Agarwal, "Design of Geosynchronous Space Craft", Prentice Hall, 1986.	
	COURSE OUTCOMES:	
	After completing this course, the students will be able to	
CO1	Analyze the satellite orbits.	
CO2	Analyze the satellite subsystems.	
CO3	Analyze the satellite Link design.	
CO4	Describe about Multiple Access Techniques used in Satellite.	
CO5	Design various satellite applications.	

		Ν	MAPPI	NG BE	ETWE	EN CO	AND	PO, PS	O WIT	TH CO	RREL	ATION	I LEVI	EL 1/2/	3				
COs		PROGRAMME OUTCOMES												PROGRAMME SPECIFIC OUTCOMES					
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4			
CO1	3	3	3	3	1	3	1	1	1	-	-	1	3	3	1	1			
CO2	3	3	3	3	1	3	1	1	-	-	-	1	3	3	2	1			
CO3	3	3	3	3	1	3	1	1	1	1	-	2	3	3	2	2			
CO4	3	3	3	3	2	3	1	1	-	1	-	3	3	3	2	1			
CO5	3	3	3	3	2	3	2	1	1	1	1	3	3	3	2	2			

EC4515 REMOTE SENSING TECHNIQUES	L	Т	Р	С
	3	0	0	3

## **OBJECTIVES:**

- To understand the application potentialities of remote sensing data separately and in combination with GIS techniques for Agriculture and Forestry.
- To know the concept of Geographical Information System (GIS), coordinate system GIS Data and its types.

9

9

9

9

45

T-4-1 II ------

- To understand the students managing the spatial Data Using GIS.
- To understand Implementation of GIS interface for practical usage.
- Elucidate integrated geospatial techniques and apply them in solving real world problems

#### **CROPS ACREAGE AND YIELD ESTIMATION** UNIT I

Introduction – Spectral properties of crops in optical & TIR region, Microwave back scattering behavior of crop canopy – crops identification and crop inventory – crop acreage estimation – CO1 vegetation indices – Yield modeling – crop production forecasting through digital analysis – crop condition assessment - command area monitoring - land use and land cover analysis - Microwave RS for crop inventory – Case studies. 9

## UNIT II ENVIRONMENTAL SCIENCE

Natural disasters - introduction and types-Disaster management cycle and role of remote sensing CO₂ and GIS in disasters management -Remote sensing and GIS application in hazard zonation mapping-Remote sensing and GIS application in post disasters

## UNIT III AERIAL ASSESSMENT

Mapping of snow covered area – snow melt runoff – flood forecasting, risk mapping and flood CO3 damage assessment soil moisture area – drought forecasting and damage assessment – GIS application in aerial assessment – case studies

## UNIT IV FORESTRY

Introduction - Forest taxonomy - inventory of forestlands - forest types and density mapping using CO₄ RS techniques – Forest stock mapping – factors for degradation of forest – Delineation of degraded forest- Forest change detection and monitoring – Forest fire mapping & damage assessment - LiDAR remote sensing for Forest studies.

## UNIT V INTEGRATED SURVEYS

Introduction – Integrated surveys for agriculture & forest development – RS & GIS for drawing out action plans – water shed approach – Rule of RS & GIS for watershed management – Land use CO5 planning for sustainable development – Precision forming - Case studies.

	Iotal Hours: 45
	TEXTBOOKS
1.	Jensen, J.R. 2000: Remote Sensing of the Environment: An Earth resource Perspective. Prentice Hall
2.	Dr. David Maidment, Dr. Dean Djokic, Hydrologic and Hydraulic Modeling Support with Geographic Information Systems, Esri Press 2000

### **REFERENCE BOOKS**

	1.	John G. Lyon, Jack MCcarthy, Wetland & Environmental application of GIS, 1995.
	2.	Margareb Kalacska, G. Arturosanchez, Hyper spectral RS of tropical and sub-tropical forest,
		2005.
		Shunlin liang, Advances in land RS: System, modeling invention and applications, 2001.
	4.	Joe Boris dexon, Soil mineralogy with environmental application, Library of congress catalog,
		2004
		COURSE OUTCOMES:
		After completing this course, the students will be able to
	CO1	Understand the concepts involved in mapping of crop acreage and yield estimation.
-		Understand the concepts involved in mapping of crop acreage and yield estimation. Understand the principles space-based input for crop damage assessment.
ſ	CO2	Understand the principles space-based input for crop damage assessment. Acquire skills in handling instruments, tools, techniques and modeling while using Remote
ſ	CO2	Understand the principles space-based input for crop damage assessment.
1	CO2	Understand the principles space-based input for crop damage assessment. Acquire skills in handling instruments, tools, techniques and modeling while using Remote Sensing Technology.
	CO2 CO3 CO4	Understand the principles space-based input for crop damage assessment. Acquire skills in handling instruments, tools, techniques and modeling while using Remote Sensing Technology.

			MAF	PPING	вети	/EEN (	CO AN	D PO,	PSO V	VITH O	CORR	ELATI	ON LI	EVEL	1/2/3	
COs				PROG	GRAM	ME OU	UTCO	MES							RAMMI OUTCO	
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2	PSO3	PSO4
CO1	2	2	1	1	2	2	2	-	-	-	-	2	3	2	-	2
CO2	2	2	2	2	1	2	2	-	-	-	-	2	3	2	-	2
CO3	2	1	2	2	2	3	2	-	-	-	-	2	3	2	-	2
CO4	2	2	2	2	1	2	2	-	-	-	-	2	3	2	-	2
CO5	2	2	3	2	2	3	2	-	-	-	-	2	3	2	-	2

EC4516	ROCKETRY AND SPACE MECHANICSLTP	С
		3
OBJECTIV	'ES:	
Upon comp	etion of the course, students will have	
• an ic	ea about solar system,	
	concepts of orbital mechanics with particular emphasis on interplanetary trajectories.	
UNIT I	ORBITAL MECHANICS	9
Kepler's La	ws – Newton's Law of gravitation-Solar system Description – Problems on Two	CO1
body and Th	ree-body Points on Liberation – Orbital and escape velocities- Orbit parameters	
calculations		
UNIT II	SATELLITE DYNAMICS AND LAWS	9
Geostationa	ry and Geosynchronous satellites- satellites life time- satellite perturbations and	CO2
calculations	- Hohmann orbits – Jacobi's Integral – orbital elements for rectangular satellite	
coordinates.		
UNIT III	ROCKET MOTION	9

and tw	et motor operation – free space and homogeneous gravitational fields in one dimensional vo dimensional rocket motions - thrust equation- turn trajectories in vertical, inclined and	CO3
gravit	y, Range and altitude determinations.	
UNIT	IV AERODYNAMICS IN ROCKET PROJECTION	9
Loads	experienced by a rocket passing through atmosphere – estimation of drag – wave drag, skin	CO4
frictio	n drag, form drag and base pressure drag – Boat-tailing in missiles – various altitudes	
	mance – Adapted nozzles - nozzles types bell and conical shaped – rocket dispersion –	
-	ning problems.	
UNIT	V CONTROL OF ROCKET VEHICLES AND STAGING	9
separa	staging of rocket vehicles needs– optimizing multistage vehicles – techniques for stage tion dynamics and separation stages - jet control methods of rocket vehicles and ynamics- PSLV Secondary Injection Thrust Vector Control system and RSC tanks.	CO5
	Total Hours:	45
	TEXTBOOKS	
1.	Cornelisse, J.W., "Rocket Propulsion and Space Dynamics", J.W. Freeman & Co.,Ltd,	
	London, 1982	
2.	Parker, E.R., "Materials for Missiles and Spacecraft", Mc.Graw Hill Book Co. Inc., 1982.	
	REFERENCE BOOKS	
1.	G.P. Sutton, "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 5th Edition 1986.	n,
2.	Van de Kamp, "Elements of astromechanics", Pitman Publishing Co., Ltd., London, 1980.	
3.	Heiser, W. H. and Pratt, D. T., "Hypersonic Air Breathing Propulsion", AIAA, 1994.	
4.	Hill P. G., and Peterson C. R., "Mechanics and Thermodynamics of Propulsion", Pearson	
	Education, 2nd Ed., 2009.	
5.	Oates G. C., "Aerothermodynamics of Aircraft Engine Components", AIAA Education Seri 1985.	es,
	COURSE OUTCOMES:	
	After completing this course, the students will be able to	
CO1	Understand the advanced concepts in Rocketry and Space Mechanics to the engineers and	
CO2	To provide the necessary mathematical knowledge that is needed in understanding the physi	cal
	processes.	
CO3	The students will have an exposure on various topics such as Orbital Mechanics, Rocket	
	Propulsion and Aerodynamics	
CO4	Understand the Rocket Staging and will be able to deploy these skills effectively	

		MAP	PING	BET	WEEN	N CO A	AND P	PO, PS	O WI	TH CO	ORRE	LATI	ON L	EVEL	1/2/3	
COs			P	ROGI	RAMN	1E OU	U <b>TCO</b> I	MES			]	PROG		ME S COMI	-	FIC
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PS O3	PSO 4
CO1	3	3	3	1	2	1	-	-	-	-	-	1	1	1	1	1
CO2	3	3	3	1	2	1	-	-	-	-	-	1	1	1	1	1
CO3	3	3	3	2	2	2	-	-	-	-	-	2	2	2	2	1
<b>CO4</b>	3	3	3	3	2	3	-	-	-	-	-	3	3	3	3	1

						VER'	TICA	LII						
EC4521	WID	E BAN	DGAP	DEV	/ICES	5					L	Τ	Р	С
											3	0	0	3

3

3

3

3

2 3 - - -

• To master design principles of power devices.

3

2

3

**CO5** 3

- To compete with specifications of commercial power devices.
- To expose the processing details of power devices.
- To become familiar with reliability issues and testing methods.

• To become raining with renability issues and testing methods.							
UNIT I INTRODUCTION	9						
Introduction: Basic power devices- its characteristics and applications - Material Properties of	CO1						
Silicon and other wide band gap semiconductors - Design for Breakdown Voltage various edge							
terminations- Ideal Specification on-Resistance for Silicon and Wide Band Gap devices - Forward							
conduction and reverse blocking of Schottky Diodes and Schottky Diodes commercial specifications							
– Design of PIN Diodes, its Forward conduction and reverse blocking and commercial specifications							
of PIN Diodes.							
UNIT II WBG -MOSFET AND HFET	9						
Planar power MOSFETs- Operation: Forward conduction and forward blocking - Channel mobility -	CO2						
Design of planar power MOSFETs using Si and SiC - Dynamic operation - Unclamped inductive							
switching and short circuit time - Latch up and Safe Operating Area (SOA) - Commercial							
specifications and applications of Si and SiC planar power MOSFETs - GaN and Ultra WBG Lateral							
Power HFETs - Si and SiC IGBTs - Its Structure and Operation - Asymmetric and Symmetric designs							

Crystal structure and properties of GaN – Polarozation Charges – Band structure and corresponding properties of GaN – Impact Ionization Coefficients – Defects in GaN – Design and

process, device structure - SiC IGBT: Fabrication process, device structure

UNIT III | MATERIAL PROPERTIES AND DESIGN OF SiC

- Forward conduction and Forward blocking of HFETs

UNIT IV PHYSICAL PROPERTIES OF GaN

device structure of GaN

- its performance, commercial examples – Monolithic Integration

### UNIT V APPLICATIONS OF SiC AND GaN DEVICES

Bidirectional buck/boost converter – High frequency PFC with PCB winding Couple inductor – CO5 400V/12V DCX server applications – EMI filter for high frequency GaN converters – SiC device Retrospective – applications with SiC devices

Crystal and Band structures – Electrical Properties of SiC – Physical Properties of SiC – Defects and CO3

Carrier lifetimes - SiC Diode - PiN Diode -Bipolar Degradation - SiC MOSFET: Fabrication

Total Hours: 45

9

9

9

CO₄

	TEXTBOOKS
1	Baliga, B. Jayant, Gallium nitride and silicon carbide power devices. world scientific
	publishing company, 2016.
2	Baliga, B. Jayant, ed, Wide Bandgap Semiconductor Power Devices: Materials, Physics,
	Design, and Applications. Woodhead Publishing, 2018.
	REFERENCE BOOKS
1	Baliga, B. Jayant, The IGBT device: physics, design and applications of the insulated gate
	bipolar transistor. William Andrew, 2015.
•	

2 Baliga, B. Jayant, Fundamentals of power semiconductor devices. Springer Science & Business

3	Katsuaki Suganuma. Wide Bandgap Power Semiconductor Packaging: Materials, Components
	and Reliability. Woodhead Publishing, 2018.
4	Kiyoshi Takahashi, Akihiko Yoshikawa, Adarsh Sandhu, Wide Bandgap Semiconductors,
	Fundamental Properties and Modern Photonic and Electronic Devices Springer, 2007.
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Learn basic operation of Si and wide band gap power devices.
CO2	Analyze and apply design principles of power devices.
CO3	Compete with specifications of commercial power devices.
<b>CO4</b>	Expose the processing details of power devices.
CO5	Recognize reliability issues and testing methods.

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3																
	PROGRAMME OUTCOMES												PROGRAMME SPECIFICOUTCOMES					
COs	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	PO11	PO12	PSO1	PSO2	PSO3	PSO4		
	3	2	3	3	1	2	-	-	-	-	2	3	3	3	3	2		
<b>CO1</b>																		
	3	2	3	3	1	2	-	-	-	-	2	3	3	3	3	2		
CO2																		
	3	3	3	3	2	2	-	-	-	-	2	3	3	3	3	2		
<b>CO3</b>																		
	3	3	3	3	3	2	-	-	-	-	2	3	3	3	3	2		
<b>CO4</b>																		
CO5	3	3	3	3	3	2	-	-	-	-	2	3	3	3	3	2		

EC4522	<b>RFID SYSTEM DESIGN &amp; TESTING</b>	L	Т	P
		3	0	0
OBJEC	TIVES:			
•	To understand the basics of radio frequency identification systems			
•	Be familiar with Radio frequency system design and standards.			

Ability to understand the details of matching network, amplifiers, oscillators, mixer and noise.

3

9

9

UNIT I **BASICS OF RADIO FREQUENCY IDENTIFICATION (RFID) SYSTEMS** 

RFID basics, Principle and Technology - Automatic Identification Systems - Automatic **CO1** Identification and Data Capture (AIDC), System Components of an RFID system: labels, Tag, Reader, Architecture: RF Subsystem- Enterprise Subsystem- Inter-Enterprise Subsystem, RFID issues. RFID Applications.

#### UNITII **RFID SYSTEM STANDARDS AND TESTING**

Operating Frequency Ranges, Limiting factors for RFID, Effects and advantages, Communication CO₂ protocols, collision problem and types of solution, Tag collision and various several protocol approaches, RFID Technology - Middleware architecture; EPC standards, RFID deployment challenges, RFID services value chain 9

### UNIT III IMPEDANCE MATCHING AND AMPLIFIERS

Review of S-parameters and Smith chart, Passive IC components, Impedance matching networks,	CO3						
Amplifiers: Common Gate, Common Source Amplifiers, OC Time constants in bandwidth							
estimation and enhancement, High frequency amplifier design, Low Noise Amplifiers: Power match							
and Noise match, Single ended and Differential schemes							
UNIT IV FEEDBACK SYSTEMS AND POWER AMPLIFIERS	9						

#### UNITIV FEEDBACK SYSTEMS AND POWER AMPLIFIERS

Time and F Class A, AE	ystems: Stability of feedback systems: Gain and phase margin, Root-locus techniques, Frequency domain considerations, Compensation Power Amplifiers: General model – B, B, C, D, E and F amplifiers, Linearization Techniques, Efficiency boosting techniques, ic, Design considerations	CO4							
UNIT V	RF FILTER , OSILLATOR, MIXER	9							
Overview-b	asic resonator and filter configuration, special filter realizations, filter implementation.	CO5							
Basic oscill	ator model, high frequency oscillator configuration, basic characteristics of mixers,								
phases lock	ed loops, RF directional couplers, hybrid couplers, detector and demodulator circuits.								
	Total Hours:	45							
	TEXTBOOKS								
1.	Thomas Lee," The Design of Radio Frequency CMOS Integrated Circuits", Cambridge								
	University Press, 2nd Edition, Cambridge, 2004.								
2.	Steven Shepard, "RFID: Radio frequency and Identification", Tata McGraw – Hill, 2010								
	REFERENCE BOOKS								
1.	Matthew M.Radmanesh," Radio frequency and Microwave Electronics illustrated", Per	arson							
	Education Inc, Delhi, 2006.								
2.	B.Razavi, "RF Microelectronics", Pearson Education, 1997.								
	COURSE OUTCOMES:								
	After completing this course, the students will be able to								
CO1	Demonstrate the concepts of RFID systems, and components of the RFID system								
CO2	Analyze the different RFID technology and standards								
CO3	Understand the concepts of impedance matching and amplifiers								
CO4	Ability to learn about the feedback systems and power amplifiers								
CO5	Understand the functions of mixers and oscillators								

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3												'2/3		
COs				PROC	GRAM	IME C	OUTC	OMES	5			SPI	PRO ECIFI	GRAN COU		IES
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	3	2	2	3	3	-	-	-	-	-	2	3	3	3	1
CO2	3	3	3	2	3	3	-	-	-	-	-	2	3	3	3	1
CO3	3	3	3	2	2	2	-	-	-	-	-	2	3	3	1	1
CO4	3	3	3	2	3	2	-	-	-	-	_	2	3	2	1	1
CO5	3	3	2	1	2	2	-	-	-	-	-	2	3	2	2	1

EC4523	ANTENNA DESIGN TECHNIQUES	L	Τ	Р	С
		3	0	0	3
OBJECTIV	YES:				
• To u	nderstand Antenna basics				
• To le	earn about Antenna arrays and their characteristics				
• To st	udy about Radiation Mechanism				
<ul> <li>To fa</li> </ul>	miliarize with Microstrip Antennas and design techniques				
• To le	earn about recent trends in Antenna design				

UNIT I	FUNDAMENTAL PARAMETERS OF ANTENNAS	9
and far-field r	Antenna - Physical Concept of Radiation, Antenna Pattern Characteristics, near- regions, Radiation Power Density, Radiation Intensity, Radiation Efficiency,	CO1
,	Directivity and Efficiency, Aperture Efficiency and Effective Area, Bandwidth	
	edance, Impedance matching, Radiation resistance, Antenna Noise Temperature	
and G/T, Friis	transmission equation, Link budget and link margin.	
UNIT II	ANTENNA TYPES AND DESIGN CONSIDERATIONS	9
	hanisms and Design Considerations of Wire antennas: Dipole, Loop, travelling	CO2
	-Aperture Antennas: Radiation from horn antennas, design concepts, Reflector	
	badband Antennas: Spiral, Helical and log periodic antenna, and its applications.	0
	ANTENNA ARRAYS AND SMART ANTENNAS	<u>9</u>
Array and Bi	Array, Array Factor, Pattern Multiplication, Broadside-End Fire Array, Phased inomial Array, Concept and Benefits of Smart Antennas, Fixed Weight Adaptive Beamforming – Beam Steering.	CO3
	MICROSTRIP PATCH ANTENNA	9
	tennas – Introduction, Features, Advantages and Limitations– Characteristics of	CO4
	nnas – Design and analysis of rectangular patch, Circular patch– Microstrip array	
and feed netwo	ork, Radiation mechanism of slot antennas, narrow, wide, tapered and circularly	
-	antennas, Annular slot antennas, Comparison of microstrip slot antennas with	
patch antennas		
	MODERN ANTENNA DESIGN	9
	Millimeter Wave Communication – MIMO Antenna, Diversity Techniques –	CO5
	• Metamaterials – Types and Design of Metamaterial Antennas – Biomedical asma Antennas, Case studies : Massive MIMO antennas	
Antennas – 1 la	Total Hours:	45
	TEXTBOOKS	15
1.	Balanis.A, "Antenna Theory Analysis and Design", John Wiley and Sons, Ne Fourth Edition, 2012.	w York,
	Kraus. J.D., "Antennas", John Wiley and sons, New York, Second edition, 1997.	
3.	Frank B. Gross, "Frontiers in Antennas", Mc Graw Hill, 2011.	
4.	S. Drabowitch, A. Papiernik, H.D.Griffiths, J.Encinas, B.L.Smith, "Modern Anten	nas",
	Springer Publications, 2nd Edition, 2007.	
	REFERENCE BOOKS	
	I.J. Bahl and P. Bhartia, "Microstrip Antennas", Artech House, Inc., 1980	Ŧ
	W.L.Stutzman and G.A.Thiele, "Antenna Theory and Design", John Wiley & Se	ons Inc.,
	second edition, 1998. S. Drohowitch, A. Baniarmik, H.D. Criffitha, J.Engings, B.J. Smith, "Modern Ar	tonnos"
	S.Drabowitch, A. Papiernik, H.D.Griffiths, J.Encinas, B.L.Smith, "Modern Ar Springer Publications, 2nd Edition, 2007.	nemias,
	COURSE OUTCOMES:	
	After completing this course, the students will be able to	
	Understand the fundamentals behind the different techniques in antenna technolog	V.
	Understand the different types of antennas and its design consideration.	<i>J</i> •
	Understand the challenges associated in designing antennas based on different tech	nologies
	Design and analyze micro strip antennas for a given specifications.	
CO5	Understand the need for optimizing in antenna design and the methodologies	

MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3
-------------------------------------------------------------

COs				I	PROG	RAMN	1E OU	TCON	AES						SPE	CI	MM FIC MES	
	Р	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	)	PSO	)	PSO	PSO
CO1	01 3	3	3	2	3	3	3	3	2	1	3	2	1 3				<u>3</u> 2	<u>4</u> 3
CO1 CO2	3	2	2	3	-	2	1	2	2	3	2	2	3		<u>2</u> 1	+	2	3
CO2	3	3	2	2	3	-	3	1	2	-	1	2	3		3		$\frac{2}{2}$	2
CO4	3	2	1	2	2	1	3	2	1	3	2	1	2		2		1	3
CO5	2	2	3	2	2	3	3	1	-	-	1	2	1		2		2	2
EC4524		I	VLSI 1	<b>FEST</b>	ING A	ND D	ESIG	N FO	R TES	STABI	LITY		L		Г	P		2
													3	(	0	0		3
OBJECT			<b>.</b>		1	d:	f f	diam										
<ul> <li>To provide or broad understanding of fault diagnosis.</li> <li>To illustrate the formasserie of test pattern generation</li> </ul>																		
<ul> <li>To illustrate the framework of test pattern generation.</li> <li>To understand design for testability in Digital Design</li> </ul>																		
I o understand design for testability in Digital Design     UNIT I FAULTS IN CIRCUITS AND PROBLEMS IN TESTING												)						
Testing -Need for testing a circuit, the problems in digital and Analog Design testing/ mixed											-	/						
design testing, design for test, PCB testing, software testing Fault in Digital Circuits:																		
Controllability and Observability, Fault Models, intermittent faults.																		
UNIT II TEST PATTERNS AND ALGORITHMS												9						
Test patt	ern									or con	ıbinati	onal lo	ogic (	cir	cuit	s -		
Manual																		
following	g Ro	oth's D	)-algoi	rithm,	Pseud	o rand	om tes	t patte	rn gen	eration	1.							
UNIT III VLSI IC TESTING											9	9						
Pseudo ra								dback	shift	registe	rs (LF	SRs) -	Tes	st j	patte	ern		
generator	1	0				, ,												
UNIT IV										RCUI					11	,	9	9
Design f			•		-								leed	M	ulle	r´s		
expansion			$\mathbf{N} \mathbf{AR}$				arome	lestat	ne des	igns ic	or testi	ng.						9
Sequentia							ion fr	ill scar		techni		ran ar	hite	•t11	rec			9
Sequentia		incuits	testing	g - iesi	aonny	msen	1011, 11	iii scai		teenin	que, s		Tota			rc•	Δ	5
		TEX	ГВОС	OKS									1014		IUU	1.5.		5
1.					l Fault	Testa	ble Ha	rdware	e Desi	gn-Par	ag K.	Lala, 1	984,	P	HI.			
2										-	-						a.	•.
2.								ogue/d	igital t	echnic	lues-S	tanley	L. H	urs	st, II	ΞE (	Circu	uts,
			es and	-			1998											
1.			EREN				Factor	la Daa	ion M	iron A	hrom	vici 1	Malv	in	٨	D.	110*	and
1.		-	ir D. F		-			le Des	ign-w	11011 P	oranic	JVICI, I	vierv	ш	A.	DI	uer	anu
2.					,			nnell a	nd Vie	shwani	D Aσ	arwal	Spri	no	ers			
3.							0			Core	0		-	-		ouc	h. 20	08.
		-	on Edu		-			0			- , 2001				210		-, _0	,
			RSE (			S:												
CO1							lamen	tal con	cepts	in faul	t and f	ault di	agno	sis	S			
CO2			ire kno						-									
CO3		-	oattern				0		A									
<b>CO4</b>										nbinat	ional c	rcuits	5					
CO5			lucing											_				

#### MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVELS 1/2/3

PROGRAMME OUTCOMES											PROGRAMME SPECIFICOUTCOMES					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	3	2	2	2	1	-	-	-	-	2	2	3	3	2	0
CO2	3	3	3	2	2	1	-	-	-	-	2	2	3	3	2	0
CO3	2	3	3	2	2	1	-	-	-	-	2	2	3	3	2	0
CO4	3	2	2	2	2	1	-	-	-	-	2	2	3	3	2	0
CO5	3	2	2	2	2	1	-	-	-	-	2	2	3	3	2	0
EC452	25	FPGA BASED EMBEDDED DESIGN									L	T	P (	Ċ		
								3	0	0 .	3					

## **OBJECTIVES:**

- Understand Digital system design using HDL.
- Know FPGA architecture, interconnect and technologies.
- Know different FPGA's and implementation methodologies.
- Understand configuring and implementing digital embedded system, microcontrollers, microprocessors, DSP algorithm on FPGA.

	incroprocessors, DSF algorithm on FFOA.	
UNIT I	HARDWARE DESCRIPTION LANGUAGE	9
Verilog	HDL Coding Style: Lexical Conventions - Ports and Modules – Operators - Gate	CO1
Level N	Adeling - System Tasks & Compiler Directives - Test Bench - Data Flow Modeling -	
	oral level Modeling -Tasks & Functions.	
UNIT I	II FPGA ARCHITECTURE	9
FPGA .	Architectural options, coarse vs fine grained, vendor specific issues (emphasis on Xilinx	CO2
FPGA)	, Antifuse, SRAM and EPROM based FPGAs, FPGA logic cells, interconnection	
networl	x and I/O Pad.	
UNIT	III MODELLING OF CIRCUITS	9
Verilog	Modelling of Combinational and Sequential Circuits: Behavioral, Data Flow and	CO3
Structu	ral Realization – Adders – Multipliers- Comparators - Flip Flops - Realization of Shift	
	r - Realization of a Counter- Synchronous and Asynchronous FIFO –Single port and	
-	ort RAM – Pseudo Random LFSR – Cyclic Redundancy Check.	
UNIT		9
Synchr	onous Sequential Circuit: State diagram-state table –state assignment-choice of flipflops	CO4
– Timir	ng diagram –One hot encoding Mealy and Moore state machines – Design of serial adder	
using N	Mealy and Moore state machines - State minimization - Sequence detection- Design	
exampl	es: Sequence detector, Serial adder, Vending machine using One Hot Controller.	
UNIT Y	V CASE STUDIES	9
System	Design Examples using Xilinx FPGAs – Traffic light Controller, Real Time Clock -	CO5
Interfac	ing using FPGA: VGA, Keyboard, LCD, Embedded Processor Hardware Design.	
	Total Hours:	45
	TEXTBOOKS	
1.	M.J.S. Smith, "Application Specific Integrated Circuits", Pearson, 2000.	
2.	Peter Ashenden, "Digital Design using VHDL", Elsevier, 2007.	
3.	Clive Maxfield, "The Design Warriors's Guide to FPGAs", Elsevier, 2004	
	REFERENCE BOOKS	
1.	Peter Ashenden, "Digital Design using Verilog", Elsevier, 2007. 4. W. Wolf, "FPGA ba	ised
	system design", Pearson, 2004.	
2.	S. Ramachandran, "Digital VLSI System Design: A Design Manual for implementation	of

	Р	rojects	s on F	PGAs	s and	ASIC	s Usi	ng Ve	erilog	" Spri	inger	Publi	ication	, 2007			
	3. W	/ayne	Wolf,	"FPO	GA Ba	ased S	Syster	n Des	sign",	Pren	tices ]	Hall I	Moder	n Semic	conduct	or Desig	gn
	4. S	tepher	Brov	vn &2	Zvonk	toVra	nesic	, "Dig	gital I	Logic	Desig	gn wi	th Veri	ilog HD	L" TA	ГA	
		McGraw Hill Ltd. 2nd Edition 2007															
					· ·	ala T	ripura	a Suno	dari, ʻ	'Desig	gn thr	ough	Verilo	og HDL	" Wiley	/	
		Interscience, 2004.															
	C	COURSE OUTCOMES:															
		After completing this course, the students will be able to															
CO		Understand the various HDL Programming styles															
CO		Understand the FPGA Architecture															
CO		-	and m	nodel	digita	l circ	uits v	vith V	<i>erilo</i>	g HDl	L at b	ehav	ioral, s	tructura	ıl, and F	RTL	
		Levels															
CO		Design and optimize complex combinational and sequential digital circuits															
CO	95 Ir	Implementation of digital circuits in FPGA															
		N	<b>IAPP</b>	PING	BET	WEE	CN CO	) AN	D PC	), PS(	) WI	TH (	CORR	ELATI	ON LE	EVEL 1	/2/3
					חחח		N // N //		TTCC	MEG	r			I	PROGE	RAMM	E
	COs	PROGRAMME OUTCOMES SPECIFIC OU															
	CUS		PO2			DO5	DOG	DO7	DUS		<b>PO1</b>	<b>PO1</b>	DO12	DSO1	DSO2	PSO3	
		101	102	105	104	105	100	107	100	109	0	1	1012	1501	1502	1505	1504
	CO1	3	2	3	2	1	2	-	-	-	-	2	2	3	2	1	1
	CO2	3	3	3	2	1	2	-	-	-	-	2	2	3	2	1	1
	CO3	3	3	3	2	1	2	-	-	-	-	2	2	3	2	2	1
	CO4	3	3	3	2	1	2	-	-	-	-	2	2	3	2	3	1
	CO5	3	3	3	2	1	2	-	-	-	-	2	2	3	2	3	1

EC4526	DESIGN OF ANALOG IC	L	Т	Р	С						
		3	0	0	3						
OBJECTIV	VES:										
• To study the fundamentals of analog circuits and MOS device models											
• To gain knowledge on various configurations of MOS transistors and feedback co											
• To study the characteristics of noise and frequency response of the amplifier											
• To learn the concepts of Op-Amp, Nonlinear analog circuits and PLLs											
UNIT I	INTRODUCTION TO ANALOG IC DESIGN AND CURRENT MIRRORS										
Concepts of Analog Design - General consideration of MOS devices – MOS I/V Characteristics											
- Second or	der effects - MOS device models. Basic current mirrors- Cascode curr	ent	mirro	ors -							
Active curre	ent mirrors- Large and Small signal analysis- Common mode propertie	s.									
UNITII AMPLIFIERS AND FEEDBACK											
Basic Conce	epts – Common source stage- Source follower- Common gate stage- C	asco	de st	age.	CO2						
Single ende	ed and differential operation- Basic Differential pair- Common mo	de r	espo	nse,							
Differential	pair with MOS loads. Feedback- General Considerations of feedb	ack	circu	iits-							
Feedback to	pologies- Effect of loading- Effect of feedback on Noise.										
UNIT III											

~		~~~
	al considerations- Miller Effect and Association of Poles with Nodes, Common source	CO3
	Source followers, Common gate stage, Cascode stage, Differential pair. Op Amp	
	al Considerations- One and Two Stage Op Amps- Gain Boosting- Comparison-	
	non mode feedback- Input range limitations- Slew rate.	
UNIT	IV NONLINEAR ANALOG CIRCUITS	9
Precis	ion rectification – Analog multipliers employing the Bipolar transistor-The emitter	CO4
couple	ed Pair as a simple multiplier- The dc analysis of the Gilbert Multiplier cell- The Gilbert	
cell as	an analog multiplier cell. Phase Locked Loop (PLL) concepts- Integrated circuits PLL.	
UNIT	V NOISE IN INTEGRATED CIRCUITS	9
Source	es of Noise- Shot, Thermal, Flicker, Burst & Avalanche. Noise Models of IC components-	CO5
Juncti	on Diode-Bipolar Transistor-MOS Transistor-Resistors-Capacitor & Inductors-Noise in	
Opera	tional Amplifiers.	
	Total Hours:	45
	TEXTBOOKS	
1.	Behzad Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2001	, 33rd
	re-print, 2016. (UNIT- I, II, III,V)	
2.	Gray, Hurst, Lewis, Meyer "Analysis and Design of Analog Integrated Circuits", John W	Viley &
	Sons,Inc, Fourth Edition. (UNIT- IV, V)	•
	REFERENCE BOOKS	
1.	Phillip Allen and Douglas Holmberg "CMOS Analog Circuit Design" Second Edition, O	xford
	University Press, 2004	
2.	Grebene, "Bipolar and MOS Analog Integrated circuit design", John Wiley & sons, Inc.,	2003
۷.	Grebene, Bipolai and WOS Analog integrated circuit design , John Whey & sons, inc.,	2005
	COURSE OUTCOMES:	
	After completing this course, the students will be able to	
<b>CO1</b>	Realize the concepts of Analog MOS devices and current mirror circuits.	
CO2	Design different configuration of Amplifiers and feedback circuits.	
CO3	Analyze the characteristics of frequency response of the amplifier and OpAmp Circuits.	
<b>CO4</b>	Analyze the performance of analog multipliers and PLLs.	
CO5	Acquire knowledge about sources of noises, noise models.	

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3															
COs	Os PROGRAMME OUTCOMES											PROGRAMME SPECIFIC OUTCOMES					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS 03	PS O4	
CO1	3	3	2	2	2	1	-	-	-	-	-	2	3	2	1	1	
CO2	3	3	2	2	2	1	-	-	-	-	-	2	3	2	1	1	
CO3	3	3	2	2	2	1	-	-	-	-	-	2	3	2	1	1	
<b>CO4</b>	3	3	2	2	2	1	-	-	-	-	-	2	3	2	1	1	
CO5	3	3	2	2	2	1	-	-	-	-	-	2	2	1	1	1	

# VERTICAL – III

EC4531	WEARABLE DEVICES	L	Т	Р	С	
--------	------------------	---	---	---	---	--

3 0 0	3
<ul> <li>OBJECTIVES:</li> <li>Describe and discuss constraints unique to wearable and ubiquitous computing platfor applications</li> <li>Design, develop and evaluate a wearable devices and its application,</li> <li>Apply state-of-the-art hardware and software development tools to computer system designed.</li> </ul>	
<ul> <li>Communicate both orally and in writing with other members of a team</li> <li>UNIT I INTRODUCTION</li> </ul>	9
Role of Wearables, Attributes of Wearables, The Meta Wearables – Textiles and clothing, Social Aspects: Interpretation of Aesthetics, Adoption of Innovation, On-Body Interaction; Case Study: Google Glass, health monitoring, Wearables: Challenges and Opportunities, Future and Research Roadmap.	CO1
UNIT II APPLICATIONS OF WEARABLE DEVICES	9
Smart connectivity and Big picture of IoT-smart devices, networks, Wireless technologies and need for data analysis. Evolution of wearable technology, Wearable IoT use cases- Smart watches , Android wear, Smart glasses, fitness trackers, health care devices, cameras, smart clothing. Case studies – Health care, fitness and sports, defence and security, fashion and apparel.	CO2
UNIT III WEARABLE SENSORS	9
Need for wearable systems, Sensors for wearable systems-Inertia movement sensors, Respiration activity sensor, Inductive plethysmography, Impedance plethysmography, pneumography, Wearable ground reaction force sensor, GSR, Radiant thermal sensor, Wearable motion sensors, CMOS –Based Biosensors, E-Textiles, Bio compatibility	CO3
UNIT IV SIGNAL PROCESSING	9
Wearability issues -physical shape and placement of sensor, Technical challenges - sensor design, signal acquisition, Constraint on sampling frequency for reduced energy consumption, light weight signal processing, Rejection of irrelevant information, Datamining.	CO4
UNIT V ENERGY HARVESTING FOR WEARABLE DEVICES	9
Solar cell, Vibration based, Thermal based, Human body as a heat source for power generation, Hybrid thermoelectric photovoltaic energy harvests, Thermopiles.	CO5
Total Hours:	45
TEXTBOOKS	
1. Annalisa Bonfiglio, Danilo De Rossi, "Wearable Monitoring Systems", Springer,2011.	
2. Andreas Lymberis, Danilo de Rossi ,'Wearable eHealth systems for Personalized Management - State of the art and future challenges ' IOS press, The Netherlands,2004.	Health
REFERENCE BOOKS           1         Have Xeen Time "We make the modified encoder of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st	
<ol> <li>Hang, Yuan-Ting, "Wearable medical sensors and systems", Springer-2013.</li> <li>Raj Kamal, "Internet of Things – Architecture and Design Principles", Mc Graw H ill Educational Systems (Springer-2013).</li> </ol>	

3.	Edward Sazonov, Michael R Neuman, "Wearable Sensors: Fundamentals, Implementation and Applications" Elsevier, 2014
4.	Mehmet R. Yuce, Jamil Y. Khan, "Wireless Body Area Networks Technology, Implementation
	and Applications", Pan Stanford Publishing Pvt. Ltd, Singapore,2012
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Design and perform experiments on the sensors and develop the projects based on the customer needs.
CO2	Understand the role of IoT in wearable devices
CO3	Understand the various wearable sensors and its applications
CO4	Explain the sensor and signal processing requirement of wearable systems
CO5	Elucidate the level of energy involvement in wearable systems

	]	MAPI	PING	BETV	VEEN	CO A	ND P	O, PS	O WI	TH C	ORRE	ELATI	ION L	EVEI	L 1/2/3	3	
COs		PROGRAMME OUTCOMES												PROGRAMME SPECIFIC OUTCOMES			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4	
<b>CO1</b>	3	3	3	2	2	2	-	-	-	-	-	2	2	2	2	2	
CO2	3	3	3	2	2	2	-	-	-	-	-	2	3	2	2	2	
CO3	3	3	2	2	2	2	-	-	-	-	-	3	3	2	2	2	
CO4	3	3	3	3	2	2	-	-	-	-	-	2	3	2	3	2	
CO5	3	3	3	3	2	1	-	-	-	-	-	2	3	2	3	2	

EC4532 HUMAN ASSIST DEVICES	L	Т	Р	С
	3	0	0	3
OBJECTIVES:				
• To gain knowledge of human anatomy				
• To acquire knowledge of various cardiac assist devices				
• To know the principle and design of Heart lung machine and artificial heart				
• To Gain knowledge in visual and hearing aids				
• To study implantation of artificial kidney				
UNIT I INTRODUCTION: HUMAN ANATOMY and PHYSIOLOGY				9
Anatomy and Physiological aspects - Human Heart - Respiration - Human Kidney	- Sta	ructu	re of	CO1
Nephron – Optics of Eye – Retina – Physiology of Internal Ear – Mechanism of He	arin	g		
UNIT II ASSIST DEVICES : HEART				9
By-pass pump - open chest and closed chest type - Principle and problems - Intra-A	Aorti	c bal	loon	CO2
pumping - Venal Arterial Pumping - Prosthetic Cardio Valves - Implantable E	Biom	ateri	als -	
Characteristics and testing				

UNITII	I HEART LUNG MACHINE AND RESPIRATORY AIDS	9
Oxygena	ators – Types - Pumps - Pulsatile and Continuous Types - Monitoring Process - Need for	CO3
Cardiac	Transplant - Artificial Heart: Types - Function - Breathing Apparatus - Operating	
Sequenc	e - Intermittent positive pressure - Breathing unit with all respiratory parameters	
UNIT I	V VISUAL AND HEARING AIDS	9
Ultra so	nic and laser canes - Intra ocular lens - Braille Reader - Tactile devices for visually	CO4
-	ged - Text to voice converter - Screen readers - Types of Deafness - Hearing Aids -	
	ction and Functional Characteristics	
	ARTIFICIAL KIDNEY	9
	e of Haemodialysis – Membrane – Dialysate - Different types of hemodialyzers - ing Systems - Wearable Artificial Kidney - Implanting Type	CO5
	Total Hours:	45
	TEXT BOOKS	
1.	Rory A Cooper, An Introduction to Rehabilitation Engineering, Taylor & Francics, CR	С
	Press,2006	-
2.	Joseph D.Bronzino, The Biomedical Engineering Handbook, Third Edition: Three Volu	ıme Set,
	CRC Press, 2006	
	<b>REFERENCE BOOKS</b>	
1.	Marion A Hersh, Michael A, Johnson, "Assistive Technology for Visually impaired and	d blind
	people", Springer Publications, First edition, 2008.	
2.	Kolff W.J., Artificial Organs, John Wiley and Sons, New York, 1979.	
3.	Assistive Technology- Principles & Practice- Cook & Hussey, Mosby; 3rd edition (1	
	November 2007); CBS Publishers & Distributors Pvt. Ltd.	
4.	Short Textbook of Prosthetics and Orthotics- R Chinnathurai- Jaypee Brothers Medical	
	Publishers (P) Ltd-2010	
5.	Gerr . M. Craddock "Assistive Technology-Shaping the future", IOS Press, 1st edition,	2003.
	COURSE OUTCOMES:	
	After completing this course, the students will be able to	
CO1	Knowledge about Human Anatomy	
CO2	Knowledge about the importance of cardiac assist devices	
CO3	Knowledge about the importance of Heart lung machine and artificial Heart	
<b>CO4</b>	Perceive the knowledge in different types of visual and hearing aids	
CO5	Understand about the implantation of artificial kidney	

		MAP	PING	BET	WEEN	CO A	AND P	O, PS	O WI	TH CO	ORRE	LATI	ON LI	EVEL	1/2/3				
COs				PR	OGRA	MME	E OUT	COM	ES				PROGRAMME SPECIFIC OUTCOMES						
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4			
<b>CO1</b>	3	1	3	3	3	3	-	-	-	-	2	2	3	2	2	2			
CO2	3	1	3	3	3	3	-	-	-	-	2	2	3	2	2	2			
CO3	3	1	3	3	3	3	-	-	I	-	2	2	3	2	2	2			
<b>CO4</b>	3	1	3	3	3	3	-	-	-	-	2	2	3	3	2	2			
CO5	3	1	3	3	3	3	-	-	-	-	2	2	3	3	2	2			

0.0	THERAPEUTIC EQUIPMENT   L   T	P	C
and trans	3 0	0	3
<ul><li>Illu</li><li>De</li><li>Ur</li></ul>	nderstand the devices for measurement of parameters related to cardiology. Austrate the recording and measurement of EEG Amonstrate EMG recording unit and its uses. Anderstand the Principles and applications of surgical diathermy		
• Ex	plain diagnostic and therapeutic devices related to respiratory parameters.		
UNIT I	CARDIAC PACEMAKERS & DEFIBRILLATORS		9
sensing, o analyzers. defibrillate	modes of operation. External, internal, and Programmable pacemakers. Pulse general utput and timing circuits. Power sources, electrodes and leads system, pacing syst Defibrillators- basic principle and comparison of output wave forms of different is or, energy requirements, synchronous operation, implantable defibrillators, defibrillators analyzers, Pacer- cardioverter defibrillator – block diagram, defibrillator analysers.	em DC	CO1
UNIT II	NEUROLOGICAL EQUIPMENT & VENTILATORS		9
	gnificance of EEG, Multi-channel EEG recording system, Epilepsy, Evoked Potent	tial	9
Visual, A Instrumen machine	uditory and Somatosensory, MEG (Magneto Encephalo Graph). EEG Bio Feedb tation. EEG system maintenance and troubleshooting. Types of ventilators, Heart 1 (HLM) – principle of operation-functional block diagram - types of oxygena	oack lung	CO2
	oreal membrane oxygenation (ECMO) machine		0
UNIT III Pocordina	MUSCULAR AND BIOMECHANICAL MEASUREMENTS and analysis of EMG waveforms, fatigue characteristics, Muscle stimulators, n	oruo	9
stimulator Measurem	s, Nerve conduction velocity measurement, EMG Bio Feedback Instrumentation. Stent – Load Cell, Pedobarograph. Dynamic Measurement – Velocity, Accelerat	tatic	CO3
$\frac{\text{GAIT, LII}}{\text{UNIT IV}}$	nb position. SURGICAL DIATHERMY & LASER		9
	and applications of surgical diathermy, Physics and engineering of ultrasonic lithotri	nter	,
basic prin	ciple of extracorporeal shock wave lithotripter, Electro-surgical analysers. Princ of LASER, various application of CO2, argon, He -Ne, Nd – YAG & pulsed ruby LAS on of LASER in surgery	iple	CO4
UNIT V	RESPIRATORY MEASUREMENT SYSTEM		9
Instrumen capacity, r	tation for measuring the mechanics of breathing – Spirometer -Lung Volume and measurements of residual volume, Pneumotachometer – Airway resistance measuremody Plethysmograph, Intra-Alveolar and Thoracic pressure measurements, Apr Types of Ventilators – Pressure, Volume, and Time controlled. Flow, Patient C	nent, 10ea	CO5
Monitor.	s, Humidifiers, Nebulizers, Inhalators.		
Monitor.	Total Ho	urs:	45
Monitor.			
Monitor. ' Ventilator	Total HoTotal HoTEXTBOOKSJohn G. Webster, "Medical Instrumentation Application and Design", 4th edition, PvtLtd,New Delhi, 2015 Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Techn Pearson education, 2012.	Wile	y India
Monitor. Ventilator	Total Ho         Total Ho         Total Ho         John G. Webster, "Medical Instrumentation Application and Design", 4th edition,         PvtLtd,New Delhi, 2015         Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Techn	Wile olog	y India y",

2.	L.A Geddes and L.E.Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition,
	2008
3.	Leslie Cromwell, "Biomedical Instrumentation and Measurement", Pearson Education, New
	Delhi, 2007
4.	Antony Y.K.Chan,"Biomedical Device Technology, Principles and design", Charles Thomas
	Publisher Ltd, Illinois, USA, 2008.
5.	B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, "Medical Physics and
	Biomedical Engineering", 2nd Edition, IOP Publishers. 2001.
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Describe the working and recording setup of all basic cardiac equipment.
CO2	Understand the working and recording of all basic neurological equipment's.
CO3	Discuss the recording of diagnostic and therapeutic equipment's related to EMG.
CO4	Justify the application of lasers and laser in surgery
CO5	Explain about measurements of parameters related to respiratory system

		MAF	PING	BET	WEEN	CO A	AND P	PO, PS	O WI	<b>ТН СС</b>	ORRE	LATI	ON LI	EVEL	1/2/3	
		PR	OGRA	AMMI	E OUI	ГСОМ	IES		PR	OGRA	MMH	E SPE	CIFI	C OU'	ГСОМ	IES
COs	PO1	PO2	DO3		DO5	DOG	D07	PO8			D()11	DO12	PSO	PSO	PSO	PSO
	rui	r02	r03	r04	103	r Oo	r0/	ruo	FU9	F010	run	FU12	1	2	3	4
CO1	3	2	2	3	1	2	2	-	-	-	2	2	2	2	2	2
<b>CO2</b>	3	2	2	3	1	2	1	-	-	-	2	2	2	2	2	2
CO3														2	2	
<b>CO4</b>	3	2	2	3	3	2	3	-	-	-	2	2	2	2	2	2
CO5	3	2	2	3	3	2	3	-	-	-	2	2	2	3	3	1
EC4	4534	ME	DICAI	L IMA	GING	SYST	<b>TEMS</b>						L	Т	P	С
													3	0	0	3
• To • To • To UN	o study o learn o unde IT I	the part about rstand X-R	rinciple micro the co <b>AY IN</b>	e of CI wave a ncepts IAGIN	Γimag ind inf of rad NG	ing and rared r ioisoto	d adva nedica pe and	by and nceme l imag l nucle	nt in f ing mo ar ima	MRI odalitie ging	es.					9
-			-	-	-			tion, y and			trumer	ntation	of F	Project	ion	CO1
UN	IT II	FLU	ORO	SCOP	Y											9
Mod	des of	•	ation -	- Imag	ge qua	lity –	Radia				0	ensifier c suite	-			CO2
UN III	IT		GNET AOGR	IC RAPHY		) )	CE	IMA	GING	(MRI)	) A	ND	CON	1PUT]	ED	9
Intro	oducti	on to f	unctio	nal MF	RI – Ba						rast an	d spati	al loca	lizatic	on -	CO3

Introduction to functional MRI – Basics of MRI Signal, Tissue contrast and spatial localization -<br/>Neuronal activity and Hemodynamics – BOLD fMRI – SNR in fMRI – Experimental design -<br/>Advanced MRI.Spiral/Helical and multi-slice CT Detectors Image reconstruction.CO3UNIT IVMICROWAVE AND INFRARED IMAGING9

Introduct	on, Electromagnetic scattering – Elecromagnetic inverse scattering problem -Imaging	CO4
configura	tion – Model approximations – Qualitative reconstruction methods - Microwave imaging	
apparatus	– Infrared imaging- Thermography – Clinical applications of thermography – liquid	
crystal th	ermography.	
UNIT V	ULTRASOUND IMAGING	9
Wave pro	ppagation, acoustic impedance, absorption and attenuation Single element ultrasound	CO5
transduce	rs and ultrasound field Transducer array Imaging modes , Doppler ultrasound	
Ultrasour	d contrast agents Applications.	
	Total Hours:	45
	TEXT BOOKS	
1.	Khandpur R S, "Hand-book of Biomedical Instrumentation", Tata McGraw Hill,	
	2nd Edition, 2003.	
2.	William hendee R, Russell Ritenour E, "Medical imaging physics", Fourth Edition, 20	02.
	<b>REFERENCE BOOKS</b>	
1.	Stephan Ulmer, Olav Jansen, "FMRI: Basics and Clinical Applications", springer, first	ţ
	Edition,2010.	
2.	Matteo Pastorin, "Microwave imaging", John Wiley and Sons first edition, 2010.	
	Joseph J. Carr and John M.Brown, "Introduction to Biomedical Equipment Technolog	y",
3.	Pearson Education,2004.	
	Chan and Anthony Y.K,"Biomedical Device Technology: Principles and Design",	
	Springfield, Illinois Charles C. Thomas publisher Limited, 2016.	
	COURSE OUTCOMES:	
	After completing this course, the students will be able to	
CO1	To study about fluoroscopic imaging techniques and components.	
CO2	To learn about the principle, reconstruction ,artifacts with CT imaging	
CO3	To understand the basics and advancement in fMRI	
CO4	To learn about microwave and infrared medical imaging modalities.	
CO5	To understand the concepts of radioisotope and nuclear imaging	

		Μ	IAPPI	NG BE	TWEF	EN CO	AND I	PO, PS	O WI	ГН СО	RREL	ATIO	N LEV	EL 1/2	/3	
COs				PROGRAMME SPECIFIC OUTCOMES												
	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	2	1	2	-	-	-	-	-	2	1	3	2	1
CO2	3	3	3	2	1	2	-	-	-	-	-	2	2	3	2	2
<b>CO3</b>	3	3	3	2	2	2	-	-	-	-	-	1	2	3	2	2
<b>CO4</b>	3	3	3	2	3	3	-	-	-	-	-	3	2	3	3	2
CO5	3	3	3	2	3	3	-	-	-	-	-	3	2	3	3	1

EC4535	BRAIN COMPUTER INTERFACE AND APPLICATIONS	L	Т	P	С
		3	0	0	3
OBJECTI	VES:				
• Un	derstand the basic concepts of brain computer interface				
• Stu	dy the various signal acquisition methods				
• Le	arn about the signal processing methods used in BCI				
• Un	derstand the various machine learning methods of BCI.				
• Lea	arn the various applications of BCI				

T / 1	INTRODUCTION TO BCI	9
Introduct	ion - Structure of BCI System, Brain Computer Interface Types - Synchronous and	CO1
Asynchro	onous -Invasive BCI -Partially Invasive BCI - Non Invasive BCI, , BCI Monitoring	
Hardwar	e, Brain signal acquisition -EEG, ECoG, MEG, fMRI, Signal Preprocessing, Artifacts	
removal		
UNITII	BRAIN ACTIVATION	9
Brain ac	tivation patterns - Spikes, ERD, Sensorimotor activity, Oscillatory potential, slow cortical	CO2
	s, Movement related potentials-Mu rhythms, Neuronal activity in motor cortex and related	
	imulus related potentials - Visual Evoked Potentials – P300 Event related potentials,	
	tasks related potentials.	
U	IFEATURE EXTRACTION ALGORITHMS	9
	cessing, Time and space methods, Wavelet analysis, AR, MA, ARMA models, Spatial	CO3
	• • • •	005
	Principal Component Analysis (PCA), Independent Component Analysis (ICA), Bandpass	
	Template matching, Kalman filter - Linear and Non-Linear Features.	
	FEATURE TRANSLATION METHODS FOR BCI	9
	ation techniques -Binary classification, Ensemble classification, Nearest Neighbour	CO4
	ation, Evaluation of classification performance, Regression - Linear, Polynomial, RBF's,	
Perceptro	on's, Multilayer neural networks, Support vector machine, Graph theoretical functional	
	vity analysis	
UNIT V	APPLICATIONS OF BCI	9
	dies - Invasive BCIs: Restoration of hand motor functions, controlling prosthetic devices	CO5
	orthotic hands, Brain actuated control of mobile Robot, Functional restoration using	000
	osthesis. Noninvasive BCIs: P300 Mind Speller, Visual cognitive BCI, Emotion detection,	
-	Brain Computer Interfacing	
Ethics of		15
	Total Hours:	45
1	TEXTBOOKS	
1.	Rajesh.P.N.Rao, "Brain-Computer Interfacing: An Introduction", Cambridge University P	ress,
r.	First edition, 2013.	
2.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, -Brain Computer Interfaces: Principles and	nd
2.		nd
2.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, -Brain Computer Interfaces: Principles and	nd
2.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicel, Oxford University Press, USA, Edition 1, January 2012.	nd
	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicel, Oxford University Press, USA, Edition 1, January 2012. REFERENCE BOOKS	
2.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicel, Oxford University Press, USA, Edition 1, January 2012. REFERENCE BOOKS Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren	
1.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicel, Oxford University Press, USA, Edition 1, January 2012. REFERENCE BOOKS Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015.	nds and
	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicel, Oxford University Press, USA, Edition 1, January 2012. <b>REFERENCE BOOKS</b> Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015. Brendan Z. Allison, Stephen Dunne, Robert Leeb, José del R. Millán, "Towards Practica	nds and
1.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicel, Oxford University Press, USA, Edition 1, January 2012. REFERENCE BOOKS Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015.	nds and
1.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicel, Oxford University Press, USA, Edition 1, January 2012. <b>REFERENCE BOOKS</b> Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015. Brendan Z. Allison, Stephen Dunne, Robert Leeb, José del R. Millán, "Towards Practica	nds and al Brair
1. 2.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicel, Oxford University Press, USA, Edition 1, January 2012. <b>REFERENCE BOOKS</b> Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015. <u>Brendan Z. Allison, Stephen Dunne, Robert Leeb, José del R. Millán</u> , "Towards Practica Computer Interface", Springer,2013	nds and al Brair
1. 2. 3.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicel, Oxford University Press, USA, Edition 1, January 2012. <b>REFERENCE BOOKS</b> Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015. <u>Brendan Z. Allison, Stephen Dunne, Robert Leeb, José del R. Millán</u> , "Towards Practice Computer Interface", Springer,2013 Bernhard Graimann, Brendan Allison, Gert Pfurtscheller, "Brain-Computer Interface" Interface	nds and al Brair terfaces
1. 2.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicel, Oxford University Press, USA, Edition 1, January 2012. <b>REFERENCE BOOKS</b> Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015. <u>Brendan Z. Allison, Stephen Dunne, Robert Leeb, José del R. Millán</u> , "Towards Practica Computer Interface", Springer,2013 Bernhard Graimann, Brendan Allison, Gert Pfurtscheller, "Brain-Computer Inte Revolutionizing Human-Computer Interaction", Springer, 2010 Ali Bashashati, Mehrdad Fatourechi, Rabab K Ward, Gary E Birch," A survey of signal Pro-	nds and al Brair terfaces
1. 2. 3.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicell, Oxford University Press, USA, Edition 1, January 2012. <b>REFERENCE BOOKS</b> Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015. <u>Brendan Z. Allison, Stephen Dunne, Robert Leeb, José del R. Millán</u> , "Towards Practice Computer Interface", Springer,2013 Bernhard Graimann, Brendan Allison, Gert Pfurtscheller, "Brain-Computer Inte Revolutionizing Human-Computer Interaction", Springer, 2010 Ali Bashashati, Mehrdad Fatourechi, Rabab K Ward, Gary E Birch," A survey of signal Pro algorithms in brain–computer interfaces based on electrical brain signals" Journal of	nds and al Brain terfaces
1. 2. 3. 4.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicell, Oxford University Press, USA, Edition 1, January 2012. <b>REFERENCE BOOKS</b> Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015. <u>Brendan Z. Allison, Stephen Dunne, Robert Leeb, José del R. Millán</u> , "Towards Practice Computer Interface", Springer,2013 Bernhard Graimann, Brendan Allison, Gert Pfurtscheller, "Brain-Computer Inte Revolutionizing Human-Computer Interaction", Springer, 2010 Ali Bashashati, Mehrdad Fatourechi, Rabab K Ward, Gary E Birch," A survey of signal Pro algorithms in brain–computer interfaces based on electrical brain signals" Journal of Engineering, Vol.4, 2007, PP.32-57.	nds and al Brair terfaces ocessing Neura
1. 2. 3.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicell, Oxford University Press, USA, Edition 1, January 2012. <b>REFERENCE BOOKS</b> Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015. <u>Brendan Z. Allison, Stephen Dunne, Robert Leeb, José del R. Millán</u> , "Towards Practice Computer Interface", Springer,2013 Bernhard Graimann, Brendan Allison, Gert Pfurtscheller, "Brain-Computer Inte Revolutionizing Human-Computer Interaction", Springer, 2010 Ali Bashashati, Mehrdad Fatourechi, Rabab K Ward, Gary E Birch," A survey of signal Pro algorithms in brain–computer interfaces based on electrical brain signals" Journal of	nds and al Brair terfaces ocessing Neura
1. 2. 3. 4.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicell, Oxford University Press, USA, Edition 1, January 2012. <b>REFERENCE BOOKS</b> Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015. <u>Brendan Z. Allison, Stephen Dunne, Robert Leeb, José del R. Millán</u> , "Towards Practice Computer Interface", Springer,2013 Bernhard Graimann, Brendan Allison, Gert Pfurtscheller, "Brain-Computer Inte Revolutionizing Human-Computer Interaction", Springer, 2010 Ali Bashashati, Mehrdad Fatourechi, Rabab K Ward, Gary E Birch," A survey of signal Pro algorithms in brain–computer interfaces based on electrical brain signals" Journal of Engineering, Vol.4, 2007, PP.32-57.	nds and al Brair terfaces ocessing Neura lorida.
1. 2. 3. 4. 5.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicel, Oxford University Press, USA, Edition 1, January 2012. <b>REFERENCE BOOKS</b> Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015. <u>Brendan Z. Allison, Stephen Dunne, Robert Leeb, José del R. Millán</u> , "Towards Practice Computer Interface", Springer,2013 Bernhard Graimann, Brendan Allison, Gert Pfurtscheller, "Brain-Computer Inte Revolutionizing Human-Computer Interaction", Springer, 2010 Ali Bashashati, Mehrdad Fatourechi, Rabab K Ward, Gary E Birch," A survey of signal Pro algorithms in brain–computer interfaces based on electrical brain signals" Journal of Engineering, Vol.4, 2007, PP.32-57. Arnon Kohen, "Biomedical Signal Processing", Vol I and II, CRC Press Inc, Boca Rato, F Andrew Webb, "Statistical Pattern Recognition", Wiley International, Second Edition, 200	nds and al Brair terfaces ocessing Neura lorida.
1. 2. 3. 4. 5.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicel, Oxford University Press, USA, Edition 1, January 2012. <b>REFERENCE BOOKS</b> Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015. Brendan Z. Allison, Stephen Dunne, Robert Leeb, José del R. Millán, "Towards Practice Computer Interface", Springer,2013 Bernhard Graimann, Brendan Allison, Gert Pfurtscheller, "Brain-Computer Inte Revolutionizing Human-Computer Interaction", Springer, 2010 Ali Bashashati, Mehrdad Fatourechi, Rabab K Ward, Gary E Birch," A survey of signal Pro algorithms in brain–computer interfaces based on electrical brain signals" Journal of Engineering, Vol.4, 2007, PP.32-57. Arnon Kohen, "Biomedical Signal Processing", Vol I and II, CRC Press Inc, Boca Rato, F Andrew Webb, "Statistical Pattern Recognition", Wiley International, Second Edition, 200 <b>COURSE OUTCOMES:</b>	nds and al Brain terfaces ocessing Neura lorida.
1. 2. 3. 4. 5. 6.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles ar practicel, Oxford University Press, USA, Edition 1, January 2012. <b>REFERENCE BOOKS</b> Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015. Brendan Z. Allison, Stephen Dunne, Robert Leeb, José del R. Millán, "Towards Practice Computer Interface", Springer,2013 Bernhard Graimann, Brendan Allison, Gert Pfurtscheller, "Brain-Computer Inte Revolutionizing Human-Computer Interaction", Springer, 2010 Ali Bashashati, Mehrdad Fatourechi, Rabab K Ward, Gary E Birch," A survey of signal Pro algorithms in brain–computer interfaces based on electrical brain signals" Journal of Engineering, Vol.4, 2007, PP.32-57. Arnon Kohen, "Biomedical Signal Processing", Vol I and II, CRC Press Inc, Boca Rato, F Andrew Webb, "Statistical Pattern Recognition", Wiley International, Second Edition, 200 <b>COURSE OUTCOMES:</b> After completing this course, the students will be able to	nds and al Brair terfaces ocessing Neura lorida.
1. 2. 3. 4. 5.	Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Brain Computer Interfaces: Principles an practicel, Oxford University Press, USA, Edition 1, January 2012. <b>REFERENCE BOOKS</b> Ella Hassianien, A &Azar.A.T (Editors), "Brain-Computer Interfaces Current Tren Applications", Springer, 2015. Brendan Z. Allison, Stephen Dunne, Robert Leeb, José del R. Millán, "Towards Practice Computer Interface", Springer,2013 Bernhard Graimann, Brendan Allison, Gert Pfurtscheller, "Brain-Computer Inte Revolutionizing Human-Computer Interaction", Springer, 2010 Ali Bashashati, Mehrdad Fatourechi, Rabab K Ward, Gary E Birch," A survey of signal Pro algorithms in brain–computer interfaces based on electrical brain signals" Journal of Engineering, Vol.4, 2007, PP.32-57. Arnon Kohen, "Biomedical Signal Processing", Vol I and II, CRC Press Inc, Boca Rato, F Andrew Webb, "Statistical Pattern Recognition", Wiley International, Second Edition, 200 <b>COURSE OUTCOMES:</b>	nds and al Brair terfaces ocessing Neura lorida.

10.03	Allocate functions appropriately to the human and to the machine. Study appropriate for feature extraction methods
CO4	Design a system using machine learning algorithms for translation.
CO5	Understand and analyze the different application of BCI

		MAP	PING	BET	WEEN	CO A	AND P	O, PS	O WI	TH CO	ORRE	LATI	ON LI	EVEL	1/2/3	
			Р	ROGF		PROGRAMME SPECIFIC OUTCOMES										
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	3	3	2	1	-	-	-	-	-	-	1	2	2	2	3
CO2	3	3	3	2	3	-	-	-	-	-	-	1	2	2	2	3
CO3	3	3	2	2	3	-	-	-	-	-	-	2	2	2	2	3
<b>CO4</b>	3	3	2	2	2	-	-	-	1	-	-	3	2	2	2	3
CO5	3	3	3	2	3	_	-	_	-	-	-	3	2	2	2	3

# VERTICAL – IV

EC4641		С
		3
<ul> <li>To</li> <li>To</li> <li>To</li> </ul>	<b>TIVES:</b> understand the mathematical description and modelling of discrete time random signal familiar with important theorems and random signal processing algorithms. learns relevant figures of merit such as power, energy, bias and consistency. conversant with estimation, prediction, filtering concepts and techniques.	s.
UNIT I	DISCRETE RANDOM SIGNAL PROCESSING	9
Autocon filtering uniform	nse stationary process – Ergodic process – Mean – Variance - Auto-correlation and relation matrix - Properties - Weiner Khitchine relation - Power spectral density – random process, Spectral Factorization Theorem–Finite Data records, Simulation of ly distributed/Gaussian distributed white noise – Simulation of Sine wave mixed with e White Gaussian Noise.	COI
UNITI	SPECTRUM ESTIMATION	9
variance	d Consistency of estimators - non-parametric methods - Correlation method - Co- e estimator - Performance analysis of estimators – Unbiased consistent estimators - gram estimator - Barlett spectrum estimation - Welch estimation.	CO2
UNIT I	II SIGNAL MODELING	9
Walker	ased approach - AR, MA, ARMA Signal modeling - Parameter estimation using Yule- method - Maximum likelihood criterion - Efficiency of estimator - Least mean squared terion – Wiener filter - Discrete Wiener Hoff equations – Mean square error.	CO3
UNIT I	V LINEAR ESTIMATION AND PREDICTION	9
predicti	ve estimators - Kalman filter - Linear prediction – Forward prediction and Backward on, Prediction error - Whitening filter, Inverse filter - Levinson recursion, Lattice on, Levinson recursion algorithm for solving Toeplitz system of equations.	CO4
UNIT V		9
descent Adaptiv	aptive filters - Newton's steepest descent method - Adaptive filters based on steepest method - Widrow Hoff LMS Adaptive algorithm - Adaptive channel equalization - e echo canceller - Adaptive noise cancellation - RLS Adaptive filters - Exponentially d RLS – Sliding window RLS - Simplified IIR LMS Adaptive filter.	COS
Total H	ours:	45
	TEXTBOOKS	
1	Monson H. Hayes, Statistical Digital Signal Processing and Modeling, John Wiley and Inc, Singapore, 2002	
2	John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Prentice Hall of New Delhi, 2005	India
	REFERENCE BOOKS	
1	Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley Sons Inc., New York, 2006.	y and
2 3	<ul><li>P. P. Vaidyanathan, "Multirate Systems and Filter Banks", Prentice Hall, 1992</li><li>S. Kay," Modern spectrum Estimation theory and application", Prentice Hall, Engle Cliffs, NJ1988.</li></ul>	ehood
4	Simon Haykin, "Adaptive Filter Theory", Prentice Hall, Englehood Cliffs, NJ1986. Sophoncles J. Orfanidis, "Optimum Signal Processing ", McGraw-Hill, 2000.	

	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Formulate time domain and frequency domain description of Wide Sense Stationary process
	in terms of matrix algebra and relate to linear algebra concepts.
CO2	Analyze non- parametric methods and parametric methods for spectral estimation
CO3	Analyze signal modeling techniques to discrete random signals
CO4	Apply linear estimation and prediction techniques to discrete random signals for signal
	separation, detection and estimation
CO5	Apply optimum filtering techniques for discrete random signals, the concepts of compressed
	sensing for signal processing application

		MA	PPINO	G BET	WEEN	N CO A	AND F	PO, PS	O WI	тн со	ORRE	LATIO	ON LE	VEL 2	1/2/3				
COs	S PROGRAMME OUTCOMES													PROGRAMME SPECIFIC OUTCOMES					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4			
CO1	3	3	3	3	2	2	-	-	-	-	2	2	3	2	1	1			
CO2	3	3	3	3	2	2	-	-	-	-	2	2	3	2	1	1			
CO3	3	3	3	3	2	2	-	-	-	-	2	2	3	2	1	1			
<b>CO4</b>	3	3	3	3	2	2	-	-	-	-	2	2	3	2	1	1			
CO5	3	2	2	2	3	2	-	-	-	-	1	2	1	3	1	1			

EC4642	IMAGE PROCESSING	L	Т	Р	C									
		3	0	0	3									
OBJECTI	VES:													
	amiliarize the fundamental of digital images.													
	To get exposed to simple image enhancement techniques in Spatial and Frequency domain.													
	• To learn concepts of degradation function and restoration techniques.													
	• To study the image segmentation and representation techniques.													
• To	pecome familiar with image compression, representation, and object of	letec	tion	nethod	ls									
UNIT1	FUNDAMENTALS OF DIGITAL IMAGE PROCESSING													
Introductio	n to Digital Image Processing – Components – Elements of Visual Per	cept	ion -	Image	e Sensing									
and Acquis	ition - Image Sampling and Quantization - Image Sensors - Relation	onsh	ips b	etween	pixels -									
Color imag	e fundamentals - RGB, HSI models, Lab Model, Two-dimensional ma	then	natica	al preli	minaries,									
2D transfor	ms - DFT, DCT, Wavelet													
UNIT II	IMAGE ENHANCEMENT				9									
Spatial Do	main: Gray level transformations – Bit Plane Slicing – Histogram	pro	cessi	ng - H	istogram									
	n – Basics of Spatial Filtering – Smoothing and Sharpening Spat													
Domain: In	troduction to Fourier Transform- Smoothing and Sharpening frequen	cy d	omai	n filter	s – Ideal,									
Butterwort	n and Gaussian filters, Homomorphic filtering, Color image enhancen	nent.												
UNIT III	IMAGE RESTORATION				9									
Image Res	oration - degradation model, Properties, Noise models – Mean Filt	ers -	– Me	dian F	iltering -									
Bilateral Fi	ltering – Laplacian Filtering, Order Statistics – Adaptive filters – Ba	and 1	reject	Filter	s – Band									
pass Filters	- Notch Filters - Optimum Notch Filtering - Inverse Filtering - Wie	ner f	ilteri	ng										
UNIT IV	IMAGE SEGMENTATION AND PROCESSING				9									

Point, Line and Edge segmentation, Edge detection - Sobel - Canny, Edge linking via Hough transform -Thresholding - Region based segmentation – Region growing – Region splitting and merging – Morphological processing- erosion and dilation, Segmentation by morphological watersheds – basic concepts - Dam construction - Watershed segmentation algorithm - Multi-Resolution and Multi-scale Analysis, Color Image Processing

#### UNIT V IMAGE COMPRESSION, REPRESENTATION AND OBJECT DETECTION 9

Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, JPEG standard, JPEG 2000, MPEG. Boundary representation, Boundary description, Fourier Descriptor, Regional Descriptors - Principal components - Topological feature, Texture - Patterns and Pattern classes - Recognition based on matching – Structural Methods - Introduction to Object Recognition using CNN Algorithms

	<b>Total Hours:</b> 45
	TEXTBOOKS
1.	Rafael C. Gonzalez, Richard E. Woods, 'Digital Image Processing', Pearson, Third Edition, 2010.
2.	Anil K. Jain, 'Fundamentals of Digital Image Processing', Pearson, 2002.
	REFERENCE BOOKS
1 2 3	Kenneth R. Castleman, 'Digital Image Processing', Pearson, 2006. Rafael C. Gonzalez, Richard E. Woods, Steven Eddins, 'Digital Image Processing using MATLAB', Pearson Education, Inc., 2011. D,E. Dudgeon and RM. Mersereau, 'Multidimensional Digital Signal Processing', Prentice Hall
4 5	ProfessionalTechnicalReference,1990.William K. Pratt, 'Digital Image Processing', John Wiley, New York, 2002Milan Sonka et al 'Image processing, analysis and machine vision', Brookes/Cole, VikasPublishing House, 2nd edition, 1999.
	<b>COURSE OUTCOMES:</b> After completing this course, the students will be able to
CO1	Understand the basics and fundamentals of digital image processing, such as digitization, sampling, quantization, and 2D-transforms
CO2	Operate on images using the techniques of smoothing, sharpening and enhancement
CO3	Understand the restoration concepts and filtering techniques.
CO4	Understand the concepts of segmentation and processing
CO5	Learn the basics of features extraction, compression, representation, and object detection methods on images

		MA	PPINO	G BET	WEEN	N CO A	AND P	PO, PS	O WI	TH CO	)RRE	LATIO	ON LE	VEL 1	1/2/3					
COs	PROGRAMME OUTCOMES														PROGRAMME SPECIFIC OUTCOMES					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4				
CO1	3	3	2	2	3	2	-	-	-	-	1	2	2	3	3	2				
CO2	3	3	2	2	3	2	-	-	-	-	1	2	2	3	3	2				
CO3	3	3	2	2	3	2	-	-	-	-	1	2	2	3	3	2				
<b>CO4</b>	<b>J</b> 3 3 2 2 3 2 1 2										2	2	3	3	2					
<b>CO5</b>	3	3	2	2	3	2	-	-	-	-	1	2	2	3	3	2				

EC4643 SPEECH PROCESSING L T P	С
	3
OBJECTIVES:	
The student should be made:	
• To understand the speech production mechanism and the various speech analysis technique	les and
speech models	
• To understand the speech compression techniques	
• To understand the speech recognition techniques	
• To know the speaker recognition and text to speech synthesis techniques	
UNIT I INTRODUCTION TO SPEECH SIGNAL CHARACTERISTICS & ANALYSIS	11
Speech Fundamentals: Articulatory Phonetics – Production and Classification of Speech Sound	;;
Acoustic Phonetics - acoustics of speech production; Review of Digital Signal Processir	g CO1
concepts; Short-Time Fourier Transform, Filter-Bank and LPC Methods. Feature Extraction ar	d
Pattern Comparison Techniques: Speech distortion measures - mathematical and perceptual - Lo	g
Spectral Distance, Cepstral Distances, Weighted Cepstral Distances and Filtering, Likelihoo	d
Distortions, Spectral Distortion using a Warped Frequency Scale, LPC, PLP and MFC	
Coefficients, Time Alignment and Normalization - Dynamic Time Warping, Multiple Time	_
Alignment Paths.	
UNIT II DATA COMPRESSION	11
Sampling and Quantization of Speech (PCM) - Adaptive differential PCM - Delta Modulation	- CO2
Vector Quantization-Linear predictive coding(LPC)-Code excited Linear predictive	e
Coding(CELP)	
UNIT III SPEECH RECOGNITION	11
LPC for speech recognition- Hidden Markov Model (HMM)-training procedure for HMM-su	
word unit model based on HMM-language models for large vocabulary speech recognition	
Overall recognition system based on subword units - Context dependent subword units- Viter	
Search, Baum-Welch Parameter Re-estimation, Implementation issues - Semantic post process	r
for speech recognition	
UNIT IV SPEAKER RECOGNITION	6
Acoustic parameters for speaker verification-Feature space for speaker recognition-similari	y CO4
measures-Text dependent speaker verification-Text independent speaker verification techniques	
UNIT V SPEAKER RECOGNITION AND TEXT TO SPEECH SYNTHESIS	6
Textto speech synthesis(TTS)-Concatenative and waveform synthesis methods, sub-word units for	or CO5
TTS, intelligibility and naturalness-role of prosody- Applications and present status.	
PRACTICAL EXERCISES:	15
1. Write a MATLAB Program to classify voiced and unvoiced segment of speech using various	
time- domain measures	
2. Write a MATLAB Program to calculate the MFCC for a speech signal	
3. Implement ITU-T G.722 Speech encoder in MATLAB	
4. Write a MATLAB Program to implement Wiener Filters for Noise Reduction	
5. Design a speech emotion recognition system using DCT and WPT in MATLAB	
HARDWARE & SOFTWARE SUPPORT TOOLS:	
Personal Computer with MATLAB	
Microphone and Speakers	
Total Hour	s: 60
TEXTBOOKS	

1.	L.R.Rabiner and R.W.Schafer, Introduction to Digital Signal Processing, Foundations and
	Trends in Signal Processing Vol.1,Nos.1–2(2007)1–194.
2.	BenGold and Nelson Morgan—Speech and Audio signal processing-processing and perception
	of speech and music, JohnWiley and sons 2006.
3.	Daniel Jurafsky and James H Martin, "Speech and Language Processing – An Introduction to
	Natural Language Processing, Computational Linguistics, and Speech Recognition", Pearson
	Education.
	REFERENCE BOOKS
1	Lawrence Rabiner, Bijing and-Hwang Juang and B.Yegnanarayana — Fundamentals of Speech
1.	Recognition, Pearson Education, 2009.
2.	Claudio Becchetti and Lucio Prina Ricotti,—Speech Recognition, JohnWiley and Sons,1999.
3.	Donglos Oshanhnessy—Speech Communication: Human and Machine —, 2ndEd. University
	press2001.
4.	Frederick Jelinek, "Statistical Methods of Speech Recognition", MIT Press.
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Understand characteristics of speech signals.
CO2	Develop techniques for speech compression.
CO3	Configure speech recognition techniques.
CO4	Create systems for recognizing speakers.
CO5	Design text to speech synthesis systems.

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3														
COs					PROGRAMME SPECIFIC OUTCOMES											
	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	PO6	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	1	1	2	-	-	-	-	-	2	3	2	2	1
CO2	3	3	3	2	2	2	-	-	-	-	-	2	3	2	2	1
<b>CO3</b>	3	3	3	2	2	2	-	-	-	-	-	2	3	2	2	1
<b>CO4</b>	3	3	3	2	2	2	-	-	-	-	-	2	3	2	2	1
<b>CO5</b>	3	3	3	2	2	2	-	-	-	-	-	2	3	2	2	1

EC4644	SOFTWARE DEFINED RADIO L T P	С						
		3						
OBJECTI	VES:							
• To	gain knowledge on the basics of Software Defined Radio.							
• To :	attain knowledge in the hardware and software details of SDR.							
• To	understand the standardization needed for SDR.							
• To	give an insight about the application of SDR.							
UNIT I INTRODUCTION TO SOFTWARE DEFINED RADIO								
Conceptual	SDR with its architecture, Networking with SDR, SDR processors architecture, SDR	CO1						
Software re	lated environs for SDR, Basic regulations for RF, Demerits of SDR							
UNIT II	HARDWARE CENTRIC SDR	9						
Componen	ts of SDR - AD9363 , Zynq , Linux Industrial Input/Output , Strategies for for	CO2						
developme	nt in Matlab.							
UNIT III	SOFTWARE CENTRIC SDR	9						
GNU Radi	o - Signal Processing Blocks, Scheduler, GR development Frame, open source SCA	CO3						
implementa	ation, Front end for Software Radio							

UNIT IV	SDR STANDARDIZATION	9
Software C	ommunication and Architecture and JTRS, STRS, Physical Layer description -	CO4
Developmen	nt Approach, configuration and XML, Data Formats – VITA radio Transport, Digital	
RF, SDDS,	Common public Radio Interface.	
UNIT V	APPLICATIONS OF SOFTWARE DEFINED RADIO	9
Cognitive R	adio – Bumblebee Behavioral Model, Reinforcement Learning, Vehicular Networking.	CO5
PRACTICA	AL EXERCISES:	15
1.	Study of SDR hardware kit	
2.	Design and Implementation of digital modulation schemes using SDR	
3.	Implementation of synchronization techniques using SDR	
4.	Channel Coding Techniques using SDR	
	Study of channel estimation techniques using SDR	
6.	Study of MIMO concepts using SDR	
	Total Hours:	60
	TEXTBOOKS	
1.	Travis F Collins, Robin Getz, Di Pu and Alexander M. Wyglinski, "Software Defined	Radio
	for Engineers", British Library Cataloguing in Publication Data, Copyright 2018. (Un	
	I,II,V)	
2.	Eugene Grayver, "Implementing Software Defined Radio", Springer Nature, 2013. (U	Jnit
	III,IV)	
	REFERENCE BOOKS	
1.	Simon Haykin ,"Cognitive Dynamic Systems: Perception-action Cycle, Radar and I	Radio",
	Cambridge University Press, 22-Mar-2012.	
2.	Joseph MitolaIII, "Software Radio Architecture: Object-Oriented Approaches to V	Vireless
_	System Engineering", John Wiley & Sons Ltd. 2000.	
3.	Ian F. Akyildiz, Won - Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty, "Next gen	
	dynamic spectrum access / cognitive radio wireless networks: A Survey" Elsevier Co	omputer
	Networks, May 2006.	
	COURSE OUTCOMES:	
	After completing this course, the students will be able to	
CO1	Understand the basics of Software Defined Radio.	
CO2	Describe the hardware requirements for the SDR implementation.	
CO3	Describe the software requirements for SDR implementation.	
CO4	Characterize the standardization of SDR.	
CO5	Understand the various application of SDR.	

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3																		
COs		PROGRAMME OUTCOMES													PROGRAMME SPECIFIC OUTCOMES					
	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	PO11	PO12	PSO1	PSO2	PSO3	PSO4				
CO1	3	2	2	1	1	1	-	-	-	-	-	2	3	2	2	2				
CO2	3	3	3	2	2	2	-	-	-	-	-	2	2	2	2	1				
CO3	3	3	3	2	3	2	-	-	-	-	-	2	2	2	2	1				
CO4	3	3	3	2	2	2	-	-	-	-	-	2	2	3	2	1				
CO5	3	3	3	2	2	2	-	-	-	-	-	3	3	3	2	2				

EC4645	DSP PROCESSOR ARCHITECTURE AND PROGRAMMING	L	T	Р	С
		2	0	2	3
<b>OBJECTIVE</b>					
	stand the Digital Signal Processor basics				
	ar with Third generation DSP Architecture and programming skills.				
	stand the Advanced DSP architectures and some applications.				1
UNIT I	FUNDAMENTALS OF PROGRAMMABLE DSPs				9
-	Multiplier accumulator – Modified Bus Structures and Memory access				CO1
	ess memory - Multi-port memory - VLIW architecture- Pipelining	- 5	Spec	ial	
Addressing mo	des in P-DSPs – On chip Peripherals.				
					0
	TMS320C5X PROCESSOR	1			9
	- Assembly language syntax - Addressing modes – Assembly				CO2
	Pipeline structure, Operation – Block Diagram of DSP starter kit – A	ppi	Icati	on	
Programs for p	rocessing real time signals.				
UNIT III	TMS320C6X PROCESSOR				9
	The C6x Processor - Instruction Set - DSP Development System: Intr	odu	ctio	n–	CO3,
	t Support Tools- Code Composer Studio - Support Files - Programming				,
	K Tools – Application Programs for processing real time signals.		····r		
UNIT IV					9
	ADSP PROCESSORS ADSP-21XX and ADSP-210XX series of DSP processors- Address	ina	mod	lac	9 CO4
	anguage instructions – Application programs –Filter design, FFT calcu			ies	CO4
and assembly I	anguage instructions – Application programs –Pitter design, PPT care	IIau	011.		
UNIT V	ADVANCED PROCESSORS				9
Architecture of	TMS320C54X: Pipe line operation, Code Composer studio – Arch	itec	ture	of	CO5,
	- Architecture of Motorola DSP563XX – Comparison of the feature				
family process	Drs.				
PRACTICAL	EXERCISES:				15
1. Real-Time S	Sine Wave Generation				
2. Programmin	ng examples using C, Assembly and linear assembly				
1	tion of moving average filter				
	entation with a Pseudorandom noise sequence as input to a filter				
-	implementation of IIR filter				
	l-Time input signal				
	& SOFTWARE SUPPORT TOOLS:				
	54xx/TMS320C67xx DSP Development board				
	nposer Studio (CCS)				
	Generator and Digital Storage Oscilloscope ne and speaker				
• Microphoi		ol I	Iou	rc.	60
Т	EXT BOOKS	ai 1	100	19.	00
	. Venkataramani and M. Bhaskar, "Digital Signal Processors		Δ	rch	itectur
	rogramming and Application" Tata McGraw – Hill Publishing Comp				
	elhi, 2003.	<i>,</i>		mu	a, 1101
	ohn G Proakis and Manolakis, "Digital Signal Processing Principle	s /	100	rith	ms an
		<i>5</i> , <i>г</i>	ngo		all
	pplications", Pearson, Fourth Edition, 2007	s, 7	aigo	rith	ins an

	REFERENCE BOOKS
1.	Avtar Singh and S. Srinivasan, Digital Signal Processing – Implementations using DSP
	Microprocessors with Examples from TMS320C54xx, Cengage Learning India Private
	Limited, Delhi 2012.
2.	RulphChassaing and Donald Reay, Digital Signal Processing and Applications with the
	C6713 and C6416 DSK, John Wiley & Sons, Inc., Publication, 2012 (Reprint).
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Conceptualize and evaluate the Digital signal processor.
CO2	Describe the basic principle of Programmable architecture.
CO3	Demonstrate their proficiency with Programming the DSP Processor for signal processing
	applications, On-chip Peripherals, and Instruction set.
CO4	Discuss, compare, and determine the most appropriate sophisticated DSP processor for real-
	time processing applications.
CO5	Apply and assess the Advanced Programmable DSP processor paradigm.

		MAF	PPING	BET	WEEN	CO A	AND P	PO, PS	O WI	ТН СС	)RRE	LATI	ON LI	EVEL	1/2/3			
COs	PROGRAMME OUTCOMES										PROGRAMME OUTCOMES PROGRAM SPECIF OUTCOM						IFIC	
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12		PS	PS	PS O4		
													01	02	03	04		
CO1	3	2	3	1	2	2	-	-	-	-	-	2	2	2	2	1		
CO2	3	3	3	2	2	2	-	-	-	-	-	2	2	2	3	1		
CO3	3	3	3	2	2	2	-	-	-	-	-	2	2	2	3	1		
CO4	3	3	2	2	2	2	-	-	-	-	-	2	2	2	3	1		
CO5	3	3	3	2	3	2	-	-	-	-	-	2	2	2	3	1		

EC4646	COMPUTER VISION FOR ROBOTICS	L	Т	Р	С		
		2	0	2	3		
OBJECTI	VES:						
• To :	learn fundamental image processing techniques required for computer vi	sion					
• To	be familiar with Linear Filters.						
• To learn about the geometry of multiple views.							
• To learn about segmentation.							
• To 2	Develop applications using computer vision techniques.						
UNIT I	CAMERAS				9		
<b>Cameras:</b>	Pinhole Cameras- Radiometry – Measuring Light: Light in Space, Li	ight	Surfa	aces,			
Important Special Cases -Sources, Shadows, And Shading: Qualitative Radiometry, Sources and							
Their Effects, Local Shading Models, Application: Photometric Stereo, Inter reflections: Global							
Shading Models-Color: The Physics of Color, Human Color Perception, Representing Color, A							
Model for	mage Color, Surface Color from Image Color.						

UNIT II LINEAR FILTERS	9
Linear Filters: Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and ourier Transforms, Sampling and Aliasing, Filters as Templates- Edge Detection: Noise, Estimating Derivatives, Detecting Edges-Texture: Representing Texture, Analysis (and Synthesis) Using Oriented Pyramids, Application: Synthesis by Sampling Local Models, Shape from Texture.	
UNIT III THE GEOMETRY OF MULTIPLE VIEWS	9
<b>The Geometry of Multiple Views:</b> Two Views- <b>Stereopsis:</b> Reconstruction, Human Stereposis, Binocular Fusion, Using More Cameras- <b>Segmentation by Clustering:</b> Segmentation, Human Vision: Grouping and Getstalt, Applications: Shot Boundary Detection and Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering.	
UNIT IV SEGMENTATION BY FITTING A MODEL	9
<b>Segmentation by Fitting a Model:</b> The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness- <b>Segmentation and Fitting Using Probabilistic</b> <b>Methods:</b> Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice- <b>Tracking With Linear Dynamic Models:</b> Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples.	
UNIT V GEOMETRIC APPLICATIONS	9
Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations, Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, An Application: Mobile Robot Localization Model- Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Application: Registration In Medical Imaging Systems, Curved Surfaces and Alignment. PRACTICAL EXERCISES	15
Software needed:	
OpenCV computer vision Library for OpenCV in Python / PyCharm or C++ / Visual Studio or or equivalent	
LABORATORY EXPERIMENTS:	
<ul> <li>OpenCV Installation and working with Python</li> <li>Basic Image Processing - loading images, Cropping, Resizing, Thresholding,</li> <li>Contour analysis, Bolb detection</li> <li>Image Annotation – Drawing lines, text circle, rectangle, ellipse on images</li> <li>Image Enhancement - Understanding Color spaces, color space conversion, Histogram</li> <li>equalization, Convolution, Image smoothing, Gradients, Edge Detection</li> <li>Image Features and Image Alignment – Image transforms – Fourier, Hough, Extract ORB</li> <li>Image features, Feature matching, cloning, Feature matching based image alignment</li> <li>Image segmentation using Graph cut / Grabcut</li> <li>Camera Calibration with circular grid</li> <li>Pose Estimation</li> <li>3D Reconstruction – Creating Depth map from stereo images</li> </ul>	

•	Object Detection and Tracking using Kalman Filter, Camshift							
Refere	ence:							
1. doc	es.opencv.org							
2. <u>http</u>	os://opencv.org/opencv-free-course/							
	Total Hours:	45						
	TEXTBOOKS							
1.	David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning	(Indian						
	Edition), 2009.							
2.	Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London							
	Limited 2011.							
	REFERENCE BOOKS							
1.	E. R. Davies: Computer and Machine Vision - Theory, Algorithms and Practicalities, Elsev	vier						
2.	(Academic Press)							
3.	Peter Corke, Robotics, Vision and Control: Fundamental Algorithms, Springer Tracts in Ad	dvanced						
4.	Robotics, Volume 118, Second Edition, 2016							
	David Forsyth and Jean Ponce, Computer Vision: A modern Approach, Prentice Hall India	2004						
	Klafter, Chmielewski and Negin, Robotic Engineering - An Integrated approach,, PHI, 1st	edition,						
	2009.							
	COURSE OUTCOMES:							
	After completing this course, the students will be able to							
CO1	Implement fundamental image processing techniques required for computer vision							
CO2	Perform shape analysis and Implement boundary tracking techniques							
CO3	Apply chain codes and other region descriptors and Hough Transform for line, circle, and elli							
	detections							
CO4	Implement motion related techniques							
CO5	Develop applications using computer vision techniques							
	MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/	/2/3						

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3																		
COs		PROGRAMME OUTCOMES													PROGRAMME SPECIFIC OUTCOMES					
	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	PO11	<b>PO12</b>	PSO1	PSO2	PSO3	PSO4				
<b>CO1</b>	3	3	3	3	2	3	-	-	-	-	-	2	3	3	2	2				
CO2	3	3	3	3	2	3	-	-	-	-	-	2	3	3	2	2				
CO3	3	3	3	3	2	3	-	-	-	-	-	2	3	3	2	2				
<b>CO4</b>	3	3	3	3	2	3	-	-	-	-	-	2	3	3	2	2				
CO5	3	3	3	3	2	3	-	-	-	-	-	3	3	3	3	2				

### VERTICAL – V

EC4651 RF TRANSCEIVERS	L	Т	P	С
	3	0	0	3
<b>OBJECTIVES:</b>				
• To understand the basic principles of a radio frequency system				

- To understand the importance of different performance measures in RF design and the pros and cons of the different RF transceiver architectures
- To understand the principles and trade-offs involved in the design of RF systems involving amplifiers, oscillators, mixers and synthesizers.

# UNIT IFUNDAMENTALS OF RADIO FREQUENCY SYSTEM9Introduction to Linear systems and Non-linear system, Essential variables: Signal to Noise Ratio,<br/>Characteristic impedance, S-parameters, Gain, Noise figure, Impedance matching and Decibels.CO1

	al Considerations of base band digital signaling: Pass band signals, Sampling, Average and	
RMS	value, Peak value, Short term variations, modulation schemes, filters, Intersymbol	
Interfe	erence, ACLR and ACPR, EVM, BER, dynamic range.	
UNIT	III         RADIO ARCHITECTURES AND DESIGN CONSIDERATIONS	9
Archi	tecture of Super heterodyne, Zero Intermediate Frequency, Low Intermediate Frequency	CO2
	ures and harmonic sampling techniques.	
	mitter and Receiver System Analysis and Design, Cognitive Radio Applications for front end	
	g systems: Interference, Near, In-band & wide-band considerations.	
UNIT		9
	: Types of Noise and amplifier noise model in Radio frequency device, performance of noisy	CO3
	l systems in cascade mode, Sensitivity and selectivity of RF receiver.	05
	Linearity: Amplifier power transfer curve, Effects of Non-linearity-Harmonic distortions, gain	
	ression-expansive and compressive, Cross modulation, AM-AM, AM-PM, polynomial	
	ximations, Saleh model, Wiener model and Hammerstein model, inter modulation, Figure of	
	, cascaded nonlinear stages.	
	IV         MIXER AND OSCILLATOR MODELING AND ANALYSIS	9
	s: Fundamentals and principles of Mixer and mechanism of frequency translation and its	CO4
	ation, frequency inversion, image frequencies, spurious calculations.	
	ators: Effects of oscillator error in typical applications - oscillator phase error, phase noise,	
jitter,	frequency accuracy, and oscillator realizations: Frequency synthesizers, Direct digital	
freque	ency synthesizer and digital signal generator.	
UNIT	<b>TV</b> APPLICATIONS OF RADIO FREQUENCY SYSTEMS DESIGN	9
Multi	mode and multiband Super heterodyne transceiver – software defined front-ends-system level	CO5
consid	derations, wideband LO generation, building blocks and isolating techniques, Direct	
	rsion transceiver: receiver system and transmitter system design.	
	Total Hours:	45
	TEXTBOOKS	
1.	Qizheng Gu, "RF System Design of Transceivers for Wireless Communications", Springer, 2	2005.
2.	Kevin McClaning, "Wireless Receiver Design for Digital Communications", Yes Dee Publication	
	2012	,
	REFERENCE BOOKS	
1.	M C Jeruchim, P Balapan and K S Shanmugam, "Simulation of Communication syst	tems
1.	Modeling, Methodology and Techniques", Kluwer Academic/Plenum Publishers, 2 nd Ed	
	2000.	mon,
2		hara
2.	Jan Crols, Michiel Steyaert, "CMOS Wireless Transceiver Design", Kluwer Academic Publis	shers,
	1997.	
	COURSE OUTCOMES:	
C C C	After completing this course, the students will be able to	
CO1	Understand the specifications of transceiver modules	
CO2	Ability to understand pros and cons of transceiver architectures and their associated design	
	considerations	
CO3	Analyze the impact of noise and amplifier non-linearity of amplification modules	
CO4	To get exposure and learn about spurs and generation principles during signal generation and	l
	frequency translations	
CO5	The case study will reinforce the understanding of transceiver systems and aid to select	
	specification parameters selections	
<u> </u>	- specification parameters server and	

MAPPING BETWEEN CO AND PO, PSO WITH CORRELATIO	N LEVEL 1/2/3
PROGRAMME OUTCOMES	PROGRAMME SPECIFIC OUTCOMES

	<b>PO1</b>	PO2	<b>PO3</b>	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	<b>PO11</b>	PO12	PSO1	PSO2	PSO3	PSO4
<b>CO1</b>	3	2	3	3	2	-	-	-	-	-	-	-	2	2	2	2
CO2	3	3	2	3	2	-	-	-	-	-	-	-	2	2	2	2
<b>CO3</b>	3	3	3	3	2	-	-	-	-	-	-	-	2	2	2	2
<b>CO4</b>	3	3	3	3	2	-	-	-	-	-	-	1	2	2	2	2
CO5	3	3	3	2	2	-	-	-	-	-	-	1	3	2	2	2

	L	Т	Р	С
	3	0	0	3
OBJECTIVES:				
• To learn the Network Models and Datalink layer functions.				
• To understand routing and protocols in the Network Layer.				
• To explore methods of communication and congestion control by the T	ransport I	Layer		
• To study the Network Security Mechanisms.	-	•		
• To learn various hardware security attacks and their countermeasures				
UNIT I OVERVIEW OF NETWROKS AND LINK LAYER FUNCT	IONS			9
Introduction to Communication Networks and its Attributes – Different models	of Netwo	rks –	OSI,	TCP/IP,
Four types of addressing methods – Function of Link layer– Error D	<b>D</b> etection	and	Corre	ection -
Ethernet(802.3)- Wireless LAN – IEEE 802.11, Bluetooth – Different types of	control p	rotoc	ols – I	HDLC -
PPP-P2MP				
UNIT II PROTOCOLS IN NETWORK LAYERS				9
Network Layer – 32 Bit addressing – Types of Protocols (IP, ICMP and Mobil	e IP) Rou	ting 1	netho	ds –
Intradomain and Interdomain Routing Protocols - 128 bit addressing - IPv6 -	Datagram	For	nat –	
Conversion of IPv4 to IPv6.				
				9
				-
Transport Layer Protocols – UDP and TCP Connection and State Transition D	0	0		
Transport Layer Protocols – UDP and TCP Connection and State Transition D and Techniques of Congestion Avoidance (DEC bit, RED)- QoS - App.	lication L	ayer	Para	digms –
Transport Layer Protocols – UDP and TCP Connection and State Transition D and Techniques of Congestion Avoidance (DEC bit, RED)- QoS - App Programming based on Client Server model – Application of Upper Layer - Do	lication L	ayer	Para	digms –
Transport Layer Protocols – UDP and TCP Connection and State Transition D and Techniques of Congestion Avoidance (DEC bit, RED)- QoS - App Programming based on Client Server model – Application of Upper Layer - Do Wide Web, HTTP, Electronic Mail, Telnet.	lication L	ayer	Para	digms – – World
Transport Layer Protocols – UDP and TCP Connection and State Transition Dand Techniques of Congestion Avoidance (DEC bit, RED)- QoS - AppProgramming based on Client Server model – Application of Upper Layer - DoWide Web, HTTP, Electronic Mail, Telnet.UNIT IVNETWORK SECURITY	lication L main Nar	ayer ne Sy	Parae stem	digms – – World <b>9</b>
Transport Layer Protocols – UDP and TCP Connection and State Transition Dand Techniques of Congestion Avoidance (DEC bit, RED)- QoS - AppProgramming based on Client Server model – Application of Upper Layer - DoWide Web, HTTP, Electronic Mail, Telnet.UNIT IVNETWORK SECURITYSecurity in OSI Architecture – Types of Attacks – Security Services and M	lication L bmain Nar	ayer ne Sy	Parae vstem	digms – – World 9 action to
Transport Layer Protocols – UDP and TCP Connection and State Transition Dand Techniques of Congestion Avoidance (DEC bit, RED)- QoS - AppProgramming based on Client Server model – Application of Upper Layer - DoWide Web, HTTP, Electronic Mail, Telnet.UNIT IVNETWORK SECURITYSecurity in OSI Architecture – Types of Attacks – Security Services and MCryptography -Encryption –Decryption – Data Encryption Standard - Adva	echanisms	ayer ne Sy s – Ii cyptic	Parae ystem ntrodu	digms – – World <b>9</b> action to andard –
Transport Layer Protocols – UDP and TCP Connection and State Transition Dand Techniques of Congestion Avoidance (DEC bit, RED)- QoS - AppProgramming based on Client Server model – Application of Upper Layer - DoWide Web, HTTP, Electronic Mail, Telnet.UNIT IVNETWORK SECURITYSecurity in OSI Architecture – Types of Attacks – Security Services and MCryptography -Encryption –Decryption – Data Encryption Standard - AdvaRC4-Public Key Cryptosystems – RSA Algorithm – Hash Functions – Security	echanisms	ayer ne Sy s – Ii cyptic	Parae ystem ntrodu	digms – – World <b>9</b> action to andard –
Transport Layer Protocols – UDP and TCP Connection and State Transition Dand Techniques of Congestion Avoidance (DEC bit, RED)- QoS - AppProgramming based on Client Server model – Application of Upper Layer - DoWide Web, HTTP, Electronic Mail, Telnet.UNIT IVNETWORK SECURITYSecurity in OSI Architecture – Types of Attacks – Security Services and MCryptography -Encryption –Decryption – Data Encryption Standard - AdvaRC4-Public Key Cryptosystems – RSA Algorithm – Hash Functions – SecuritiesSignature Algorithm. IPsec	echanisms	ayer ne Sy s – Ii cyptic	Parae ystem ntrodu	digms – – World Inction to Indard – – Digital
Transport Layer Protocols – UDP and TCP Connection and State Transition D and Techniques of Congestion Avoidance (DEC bit, RED)- QoS - AppProgramming based on Client Server model – Application of Upper Layer - Do Wide Web, HTTP, Electronic Mail, Telnet.UNIT IVNETWORK SECURITYSecurity in OSI Architecture – Types of Attacks – Security Services and M Cryptography -Encryption –Decryption – Data Encryption Standard - Adva RC4-Public Key Cryptosystems – RSA Algorithm – Hash Functions – Security Signature Algorithm. IPsecUNIT VHARDWARE SECURITY	echanisms nced Enci re Hash A	ayer ne Sy s – In cyptic lgori	Paradystem ntrodu on Sta thm -	digms – – World 9 action to andard – - Digital 9
Transport Layer Protocols – UDP and TCP Connection and State Transition D and Techniques of Congestion Avoidance (DEC bit, RED)- QoS - App Programming based on Client Server model – Application of Upper Layer - Do Wide Web, HTTP, Electronic Mail, Telnet.UNIT IVNETWORK SECURITYSecurity in OSI Architecture – Types of Attacks – Security Services and M Cryptography -Encryption –Decryption – Data Encryption Standard - Adva RC4-Public Key Cryptosystems – RSA Algorithm – Hash Functions – Security Signature Algorithm. IPsecUNIT VHARDWARE SECURITYIntroduction to hardware security, Hardware Trojans, Side – Channel Atta	echanisms nced Enci re Hash A cks – Phy	ayer ne Sy s – Ii cyptic llgori	Parad vstem ntrodu on Sta thm -	digms – – World Inction to Indard – – Digital 9 Incks and
Transport Layer Protocols – UDP and TCP Connection and State Transition D and Techniques of Congestion Avoidance (DEC bit, RED)- QoS - AppProgramming based on Client Server model – Application of Upper Layer - Do Wide Web, HTTP, Electronic Mail, Telnet.UNIT IVNETWORK SECURITYSecurity in OSI Architecture – Types of Attacks – Security Services and M Cryptography -Encryption –Decryption – Data Encryption Standard - Adva RC4-Public Key Cryptosystems – RSA Algorithm – Hash Functions – Secur Signature Algorithm. IPsecUNIT VHARDWARE SECURITYIntroduction to hardware security, Hardware Trojans, Side – Channel Atta Countermeasures – Design for Security. Introduction to Blockchain Technolog	echanisms nced Enci re Hash A cks – Phy	ayer ne Sy s – Ii cyptic llgori	Parad vstem ntrodu on Sta thm -	digms – – World Inction to Indard – - Digital 9 Incks and
Transport Layer Protocols – UDP and TCP Connection and State Transition Dand Techniques of Congestion Avoidance (DEC bit, RED)- QoS - AppProgramming based on Client Server model – Application of Upper Layer - DoWide Web, HTTP, Electronic Mail, Telnet.UNIT IVNETWORK SECURITYSecurity in OSI Architecture – Types of Attacks – Security Services and MCryptography -Encryption –Decryption – Data Encryption Standard - AdvaRC4-Public Key Cryptosystems – RSA Algorithm – Hash Functions – SecuritiesSignature Algorithm. IPsec	echanisms nced Encr re Hash A cks – Phy gy. Challer	ayer ne Sy s – In cyptic lgori ysica nges	Parad vstem ntrodu on Sta thm -	digms – – World nction to andard – - Digital 9 ncks and ockchain

#### TEXT BOOKS

- 1. Behrouz.A.Forouzan, Data Communication and Networking, Fifth Edition, TMH, 2017.(Unit I,II,III)
- 2. William Stallings, Cryptography and Network Security, Seventh Edition, Pearson Education, 2017(Unit- IV)
- 3. BhuniaSwarup, Hardware Security A Hands On Approach, Morgan Kaufmann, First edition, 2018. (Unit V).

#### **REFERENCE BOOKS**

1 James.F.Kurose and Keith.W.Ross, Computer Networking – A Top – Down Approach, Sixth Edition, Pearson, 2017.

2 Dou	ghlas .E.Comer, Computer Networks and Internets with Internet Applications, Fourth Edition,
Pear	rson Education, 2008.
CO	COURSE OUTCOMES:
CO1	Explain the Network Models, layers and functions.
CO2	Categorize and classify the routing protocols.
CO3	List the functions of the transport and application layer.
CO4	Evaluate and choose the network security mechanisms.
CO5	Discuss the hardware security attacks and countermeasures.

		Μ	IAPPI	NG BE	TWEE	EN CO	AND I	PO, PS	O WI	TH CO	RREL	ATIO	N LEV	EL 1/2	/3	
COs					PROGRAMME SPECIFIC OUTCOMES											
	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	PO11	<b>PO12</b>	PSO1	PSO2	PSO3	PSO4
CO1	2	2	2	2	2	2	2	-	-	-	2	2	3	3	3	1
CO2	2	2	2	2	2	2	2	-	-	-	2	2	3	3	3	1
CO3	2	2	2	2	2	3	2	-	-	-	2	2	3	3	3	1
<b>CO4</b>	2	2	2	2	2	3	2	-	-	-	2	2	3	3	3	1
CO5	2	2	2	2	2	3	2	-	-	-	2	2	3	3	3	1

EC4653 LOW POWER INTEGRATED CIRCUIT DESIGN	L	Τ	Р	С
	3	0	0	3
OBJECTIVES:				
The students should be made to:				
Known the low power low voltage VLSI design				
• Understand the low power CMOS architectures.				
• Design low power circuit.				
• Learn about Low power ROMs and RAMs.				
• Apply low power design in specific applications				
UNIT I OVERVIEW OF LOW POWER DESIGN				9
Introduction to Low Power Circuit Design, Power Dissipation -Sources-Short	Ci	rcuit	and	CO1
Switching Power Dissipation, Power Dissipation of Leakage and Glitching, Short Ch	nann	el Ef	fects	
-Drain Induced Barrier Lowering and Punch Through, Surface Scattering, Velocity S	Satu	ratio	1	
UNIT II LOW-POWER VOLTAGE SCALING AND CMOS ARCHITECTUR	RES			9
Introduction to Low-Power Design through Voltage Scaling, Architectural Level	l Ap	proa	ch –	CO2
Parallel and Pipelining Processing Approaches. Low power design of Variable-Three	eshol	ld Cl	MOS	
(VTCMOS) and Multiple- Threshold CMOS (MTCMOS), Design and approaches	of P	ipeli	ning,	
Parallel Processing and Power Gating				
UNIT III LOW-POWER CIRCUIT DESIGN				9
Static CMOS - Logic Power Estimation and Minimization, Power Minimization in Dy	nam	ic CI	MOS	CO3
Multiple-Threshold CMOS, Variable Supply and Threshold Voltages , Leakage	M	anagi	ing,	
Subthreshold Circuit Design, Silicon-on-Insulator (SOI) Technologies, Energ	gy F	Reco	very,	
Interconnect Power Estimation and Management				
UNIT IV LOW POWER ROMs AND RAMs				9
Future Trend and Development of ROMs- Low-Power ROM and SRAM Technolog				CO4
SRAM and DRAM, Future Trend and Development of DRAM., Memory Cell-F	Prech	narge	and	
Equalization Circuit, Self-Refresh Circuit,				
UNIT V APPLICATIONS:LOW POWER DESIGN				9
Applications of Low power IC in multimedia, computing, and communications,	Lo	w p	ower	CO5
Applications in Sensors and Sensor Networks, Low power synthesis				

	Total Hours: 45
	TEXTBOOKS
1.	CMOS Digital Integrated Circuits – Analysis and Design – Sung-Mo Kang, Yusuf Leblebici, TMH, 2011.
2.	Roy, K. and Prasad, S., Low Power CMOS VLSI: Circuit Design
	REFERENCE BOOKS
1.	Introduction to VLSI Systems: A Logic, Circuit and System Perspective – Ming-BO Lin, CRC Press, 2011.
2.	Low-Voltage, Low-Power VLSI Subsystems – Kiat-Seng Yeo, Kaushik Roy, TMH Professional Engineering.
3.	Practical Low Power Digital VLSI Design – Gary K. Yeap, Kluwer Academic Press, 2002.
4.	Kassakian, J., Schlecht, M., and Verghese, G., Principles of Power Electronics.
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Known the fundamentals of Low power Circuit design
CO2	Understand the need of CMOS architectures.
CO3	Attain the knowledge of low power circuit design.
CO4	Known the design of Low-Voltage Low-Power Memories.
CO5	Attain the knowledge of low power applications

		Μ	IAPPI	NG BE	TWEF	EN CO	AND I	PO, PS	O WI	ГН СО	RREL	ATIO	N LEV	EL 1/2	/3	
COs					PROGRAMME SPECIFIC OUTCOMES											
	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	2	3	-	-	-	-	-	1	2	1	1	1
CO2	3	3	2	2	2	3	-	-	-	-	-	1	2	3	1	1
<b>CO3</b>	2	3	2	3	2	3	-	-	-	-	-	1	2	2	1	1
<b>CO4</b>	2	3	2	2	3	3	-	-	-	-	-	2	2	3	1	2
CO5	3	3	2	2	2	3	-	-	-	-	-	2	2	1	2	1

EC4654	MICs and RF System Design	L	Τ	P	С
		3	0	0	3
OBJECT	IVES:				
* T	o understand the fundamentals of RF design and Microwave Integrated Circu	its.			
* T	o understand the various components of RF system for Wireless Communicat	ions	•		
* T	o know the basic techniques needed for analysis of RF systems				
UNIT I	CMOS PHYSICS, TRANSCEIVER SPECIFICATIONS AND ARCHIT	ЕСТ	UR	ES	9
Specificat Transceiv	ntroduction to MOSFET Physics, Noise: Thermal, shot, flicker, popcorn noise ions: Two port Noise theory, Noise Figure, THD, IP2, IP3, Sensitivity, SFDR, er Architectures: Receiver: Homodyne, Heterodyne, Image reject, Low IF A er: Direct up conversion, Two step up conversion schemes.	Pha	se no	oise.	CO1
UNIT II	IMPEDANCE MATCHING AND AMPLIFIERS				9

Review of S-parameters and Smith chart, Passive IC components, Impedance matching networks, Amplifiers: Common Gate, Common Source Amplifiers, OC Time constants in bandwidth estimation and enhancement, High frequency amplifier design, Low Noise Amplifiers: Power match and Noise match, Single ended and Differential schemes.	CO2
UNIT III FEEDBACK SYSTEMS AND POWER AMPLIFIERS	9
Feedback Systems: Stability of feedback systems: Gain and phase margin, Root-locus techniques, Time and Frequency domain considerations, Compensation Power Amplifiers: General model – Class A, AB, B, C, D, E and F amplifiers, Linearization Techniques, Efficiency boosting techniques, ACPR metric, Design considerations	
UNIT IV RF FILTERS, OSCILLATORS, MIXERS	9
Overview-basic resonator and filter configuration, special filter realizations, filter implementation. Basic oscillator model, high frequency oscillator configuration, basic characteristics of mixers, phases locked loops, RF directional couplers, hybrid couplers, detector and demodulator circuits.	
UNIT V MIC COMPONENTS	9
Introduction to MICs, Fabrication Technology, Advantages and applications, MIC components- Micro strip components, Coplanar circuits: Transistors, switches, active filters. Coplanar microwave amplifiers: LNA design and Medium power amplifiers.	
TOTAL : 45 H	OURS
<ul> <li>TEXT BOOKS:</li> <li>1. B.Razavi, "RF Microelectronics", Pearson Education, 1997.</li> <li>2. T. Lee, "Design of CMOS RF Integrated Circuits", Cambridge, 2004.</li> </ul>	
REFERENCES:	
1. Igor Minin, "Microwave and millimeter wave technologies modern UWB antennas and equipment", In-Tech publication, 2010.	
OUTCOMES:	
Upon completion of the course, the student should be able to	
CO1 Discuss the basic concepts of RF and MIC.	
CO2 Understand the various components of RF systems.	
CO3 Discuss the operation of RF circuits.	
CO4 Understand the operation of Microwave components.	
CO5 Discuss various MIC components.	

	MA	PPIN	G BE	TWE	CEN C	CO Al	ND P	O, PS	O W	ІТН С	ORRE	ELATI	ION LE	EVEL 1	/2/3					
	PROGRAM OUTCOMES (POs)														PROGRAM SPECIFIC					
COs					<b>OUTCOMES</b> (PSOs)															
	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4				
CO1	3	3	3	3	3	2	2	1	3	-	-	-	3	1	2	2				
CO2	3	3	3	2	3	2	2	1	2	-	-	-	2	1	3	3				
CO3	3	3	2	2	2	1	2	1	2	-	-	-	2	2	2	2				
CO4	3	3	2	2	2	1	1	1	1	-	-	-	3	1	3	3				
CO5	3	3	3	3	2	1	2	1	3	-	-	-	3	1	3	3				

EC4655	EMI/EMC PRE COMPLIANCE TESTING	L	Τ	Р	С
		3	0	0	3

• To familiarize with the basics that are essential for electronics industry in the field of EMI	
• To familiarize with the basics that are essential for electronics industry in the field of EMI	
•	/ EMC
To understand EMI sources and its measurements	
<ul> <li>To understand the various techniques for electromagnetic compatibility.</li> </ul>	
<ul> <li>Acquire broad knowledge of various EM radiation measurement techniques.</li> </ul>	
• Model a given electromagnetic environment/system so as to comply with the standards.	
UNIT I EMC FUNDAMENTALS	9
Definition of EMI and EMC, Sources and Simulators, Propagation Methods- Basic Aspects of	CO1
EMI in System Environment, Electrical Noise Sources, Common-Mode and Differential-Mode	
Currents, Power and/or Return Bounce, Identification of EMI Hot Spot, RF Current Return and	
Flux Cancellation, Loop Area between Circuit and components, Primary Grounding, Filtering,	
Shielding	
UNIT II EMC STANDARD AND EMC MEASUREMENTS	9
Overview of EMC Standards, Radiated and Conducted Emission (RE/CE) Standards, Radiated	CO2
and Conducted Immunity (RI/CI) Standards, Electrostatic Discharge (ESD) Standards, Overview	
of EMC Measurements, Testing Equipment, Radiated Emission Test Setup, Measurement of	
Signals and Noise, Interpretation of Measurement Results	
UNIT III PCB TRACE ROUTING AND TERMINATION	9
Typical PCB Trace Topologies, Trace Routing Design Guidelines, Routing Differential Pair	-
Signals, Layer Jumping – Use of Vias, Routing over a Split Plane, Fundamental Concepts of Trace	005
Termination, Termination Methodologies and Implementation- Types of Grounds, Function of a	
Ground, Grounds Separation and Isolation, Single-Point, Multi-Point and Hybrid Grounds,	
Internal Cables and Connectors Grounding, Common-Mode and Differential-Mode Filtering,	
Basic Filter Component Characteristics, Filtering Guidelines	9
UNIT IV SHIELDING AND ELECTRICAL GASKETS	<b>9</b> CO4
Transmission Line Theory of Shielding, Absorption Loss, Reflection Loss, Shielding	CO4
Effectiveness, Shielding Materials, Apertures in Shielded Walls, Waveguide below Cut-off, The	
Need for Coskets, Common Coskets Motorial Use, Properties and Characteristics of DE Coskets	
Need for Gaskets, Common Gaskets Material Use, Properties and Characteristics of RF Gaskets-	
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing	
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations	
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations Design	
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations DesignUNIT VPROJECTS USING CST STUDIO SUITE	9
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing         Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations         Design         UNIT V       PROJECTS USING CST STUDIO SUITE         Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via	<b>9</b> CO5
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing         Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations         Design         UNIT V       PROJECTS USING CST STUDIO SUITE         Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via         Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted	
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing         Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations         Design         UNIT V       PROJECTS USING CST STUDIO SUITE         Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via         Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted         Emissions from a Motor Control, Simulating Conducted Emissions from a DC/DC Converter	
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing         Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations         Design         UNIT V       PROJECTS USING CST STUDIO SUITE         Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via         Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted         Emissions from a Motor Control, Simulating Conducted Emissions from a DC/DC Converter         Total Hours:	
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing         Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations         Design         UNIT V         PROJECTS USING CST STUDIO SUITE         Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via         Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted         Emissions from a Motor Control, Simulating Conducted Emissions from a DC/DC Converter         Total Hours:         TEXTBOOKS	
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing         Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations         Design         UNIT V       PROJECTS USING CST STUDIO SUITE         Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via         Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted         Emissions from a Motor Control, Simulating Conducted Emissions from a DC/DC Converter         Total Hours:         TEXTBOOKS         1.       Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley & Sons, 2009	CO5
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing         Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations         Design         UNIT V         PROJECTS USING CST STUDIO SUITE         Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via         Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted         Emissions from a Motor Control, Simulating Conducted Emissions from a DC/DC Converter         Total Hours:         TEXTBOOKS	CO5
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations Design           UNIT V         PROJECTS USING CST STUDIO SUITE           Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted Emissions from a Motor Control, Simulating Conducted Emissions from a DC/DC Converter Total Hours:            TEXTBOOKS           1.         Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley & Sons, 2009         2.           2.         Ralph Morrison, "Grounding and Shielding: Circuits and Interference", John Wiley & Sons	CO5
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations Design           UNIT V         PROJECTS USING CST STUDIO SUITE           Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted Emissions from a Motor Control, Simulating Conducted Emissions from a DC/DC Converter           Total Hours:           1.         Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley & Sons, 2009           2.         Ralph Morrison, "Grounding and Shielding: Circuits and Interference", John Wiley & Sons	CO5
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations Design           UNIT V         PROJECTS USING CST STUDIO SUITE           Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted Emissions from a Motor Control, Simulating Conducted Emissions from a DC/DC Converter Total Hours:            TEXTBOOKS           1.         Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley & Sons, 2009         2.           2.         Ralph Morrison, "Grounding and Shielding: Circuits and Interference", John Wiley & Sons	CO5
EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations Design           UNIT V         PROJECTS USING CST STUDIO SUITE           Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted Emissions from a Motor Control, Simulating Conducted Emissions from a DC/DC Converter           Total Hours:           TexTBOOKS           1.           Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley & Sons, 2009           2.           REFERENCE BOOKS           1.           Dragan Poljak, "Advanced Modeling in Computational Electromagnetic Compatibility"	CO5 s ", John
<ul> <li>EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations Design</li> <li>UNIT V PROJECTS USING CST STUDIO SUITE</li> <li>Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted Emissions from a Motor Control, Simulating Conducted Emissions from a Motor Control, Simulating Conducted Emissions from a DC/DC Converter</li> <li>TEXTBOOKS</li> <li>1. Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley &amp; Sons, 2009</li> <li>2. Ralph Morrison, "Grounding and Shielding: Circuits and Interference", John Wiley &amp; Sons</li> <li>REFERENCE BOOKS</li> <li>1. Dragan Poljak, "Advanced Modeling in Computational Electromagnetic Compatibility' Wiley &amp; Sons.</li> <li>2. Dipak L. Sengupta and Valdis V. Liepa, "Applied Electromagnetics and Electrom</li> </ul>	CO5 s ", John
<ul> <li>EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations Design</li> <li>UNIT V PROJECTS USING CST STUDIO SUITE</li> <li>Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted Emissions from a Motor Control, Simulating Conducted Emissions from a DC/DC Converter Total Hours:</li> <li>TEXTBOOKS</li> <li>1. Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley &amp; Sons, 2009</li> <li>2. Ralph Morrison, "Grounding and Shielding: Circuits and Interference", John Wiley &amp; Sons</li> <li>REFERENCE BOOKS</li> <li>1. Dragan Poljak, "Advanced Modeling in Computational Electromagnetic Compatibility" Wiley &amp; Sons.</li> <li>2. Dipak L. Sengupta and Valdis V. Liepa, "Applied Electromagnetics and Electrom Compatibility", John Wiley &amp; Sons</li> </ul>	CO5 s ", John agnetic
<ul> <li>EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations Design</li> <li>UNIT V PROJECTS USING CST STUDIO SUITE</li> <li>Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted Emissions from a Motor Control, Simulating Conducted Emissions from a DC/DC Converter Total Hours:</li> <li>TEXTBOOKS</li> <li>1. Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley &amp; Sons, 2009</li> <li>2. Ralph Morrison, "Grounding and Shielding: Circuits and Interference", John Wiley &amp; Sons</li> <li>REFERENCE BOOKS</li> <li>1. Dragan Poljak, "Advanced Modeling in Computational Electromagnetic Compatibility", Wiley &amp; Sons.</li> <li>2. Dipak L. Sengupta and Valdis V. Liepa, "Applied Electromagnetics and Electrom Compatibility", John Wiley &amp; Sons</li> <li>3. "Electromagnetic Interference and Compatibility", IMPACT series, IIT-Delhi, Modules1-9</li> </ul>	CO5 s ", John agnetic
<ul> <li>EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations Design</li> <li>UNIT V PROJECTS USING CST STUDIO SUITE</li> <li>Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted Emissions from a Motor Control, Simulating Conducted Emissions from a DC/DC Converter Total Hours:</li> <li>TEXTBOOKS</li> <li>1. Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley &amp; Sons, 2009</li> <li>2. Ralph Morrison, "Grounding and Shielding: Circuits and Interference", John Wiley &amp; Sons</li> <li>REFERENCE BOOKS</li> <li>1. Dragan Poljak, "Advanced Modeling in Computational Electromagnetic Compatibility" Wiley &amp; Sons.</li> <li>2. Dipak L. Sengupta and Valdis V. Liepa, "Applied Electromagnetics and Electrom Compatibility", John Wiley &amp; Sons</li> <li>3. "Electromagnetic Interference and Compatibility", IMPACT series, IIT-Delhi, Modules1-9</li> <li>4. EMI/EMC Testing, Society of Applied Microwave Electronics Engineering and Research S</li> </ul>	CO5 s ", John agnetic
<ul> <li>EMC/EMI Modelling Techniques and Applications, Virtual EMC Lab, New Radiation Testing Technology – from Near-field Scanning to Far-field Prediction, Novel Radiation Mitigations Design</li> <li>UNIT V PROJECTS USING CST STUDIO SUITE</li> <li>Common Impedance Coupling Simulation, Lightning Strike Analysis, Emissions Simulation via Cascading, Electrostatic Discharge, Simulating Shielding Effectiveness, Simulating Conducted Emissions from a Motor Control, Simulating Conducted Emissions from a DC/DC Converter Total Hours:</li> <li>TEXTBOOKS</li> <li>1. Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley &amp; Sons, 2009</li> <li>2. Ralph Morrison, "Grounding and Shielding: Circuits and Interference", John Wiley &amp; Sons</li> <li>REFERENCE BOOKS</li> <li>1. Dragan Poljak, "Advanced Modeling in Computational Electromagnetic Compatibility", Wiley &amp; Sons.</li> <li>2. Dipak L. Sengupta and Valdis V. Liepa, "Applied Electromagnetics and Electrom Compatibility", John Wiley &amp; Sons</li> <li>3. "Electromagnetic Interference and Compatibility", IMPACT series, IIT-Delhi, Modules1-9</li> </ul>	CO5 s ", John agnetic

CO1	Designing electronic systems that function without errors or problems related to electromagnetic
	compatibility
CO2	Real-world EMC design constraints and make appropriate tradeoffs to achieve the most cost-
	effective design that meets all requirements.
CO3	Concepts of PCB tracing, termination and implementation
CO4	Understanding the various aspects of shielding.
CO5	Acquire broad knowledge of various EM radiation measurement techniques.

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3														
COs		PROGRAMME OUTCOMES PROGRAMME SPECIFIC OUTCOM														
	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO10</b>	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	1	1	3	-	-	-	-	-	2	3	1	2	1
CO2	3	2	1	2	2	2	-	-	-	-	-	2	3	3	2	1
<b>CO3</b>	3	3	2	2	2	2	-	-	-	-	-	3	3	2	2	1
<b>CO4</b>	3	3	3	2	2	2	-	-	-	-	-	2	2	3	2	2
CO5	3	3	3	2	2	2	-	-	-	-	-	2	2	1	2	1

EC4656	CAD FOR VLSI CIRCUITS	L	Τ	P	С
		3	0	0	3
OBJECTIVE					
• To famili	arize with the basics that are essential for learning CAD tools for VLSI.				
• To under	stand VLSI design methodologies and design rules for digital circuits.				
<ul> <li>Discuss a</li> </ul>	bout design flow organization for VLSI, the standard cell based synthesis	met	hod	ologi	es
for digita	VLSI, floor planning and placement principles				
<ul> <li>To acquir</li> </ul>	e knowledge of switch level and Gate level modelling and Simulation				
UNIT I	VLSI DESIGN TECHNIQUES				9
	ethodologies introduction - Data structures and algorithms review - Review				
0	on tools - Algorithmic Graph Theory and Computational Complexity – Trac	tab	le ar	id C	01
Intractable probl	ems - general methods for combinatorial optimization.				
UNIT II	LAYOUT DESIGN RULES				9
	gn rules - problem formulation - algorithms for constraint graph comp	pac	tion		
	artitioning - Circuit representation - Placement algorithms – partitioning			C	02
UNIT III	FLOOR PLANNING				9
1	r planning - shape functions and floor plan sizing - Types of local routing p	prot	olem		
· · · · ·	hannel routing - global routing - algorithms for global routing.			C	03
UNIT IV	SIMULATION			_	9
	ate-level modeling and simulation - Switch-level modeling and simu	ulat	ion		
	ogic Synthesis - Binary Decision Diagrams - Two Level Logic Synthesis.			<u> </u>	04
UNIT V	MODELLING AND SYNTHESIS				9
<u> </u>	esis - Hardware models - Internal representation - Allocation assignment a			C	05
scheduling - Sim	ple scheduling algorithm - Assignment problem - High level transformatio				
		AL	·:4	5 Ho	urs
TEXT BOOKS					
	zz, "Algorithms for VLSI Design Automation", John Wiley & Sons,2002.				
REFERENCE					
	uni, "Algorithms for VLSI Physical Design Automation", Kluwer Academi	ic			
Publishers,2	002.				

COUR	COURSE OUTCOMES								
Upon c	Upon completion of the course, students will be able to								
CO1	CO1 Ability to understand the basics for learning CAD tool for VLSI								
CO2	Apply VLSI design methodologies and design rules for digital circuits.								
CO3	Use floor planning and rooting concepts for digital circuits.								
CO4	CO4 Apply switch level and Gate level modelling and Simulation.								
CO5	CO5 Implement high level logic synthesis and scheduling.								

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3														
COs		PROGRAMME OUTCOMES     PROGRAMME SPECIF       OUTCOMES													CIFIC	
	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
<b>CO1</b>	3	2	2	2	1	-	-	-	-	-	1	1	1	1	1	1
CO2	3	3	2	2	-	-	-	-	-	-	1	1	2	1	1	1
CO3	3	3	3	3	3	-	-	-	-	-	3	3	2	1	1	1
CO4	3	3	3	3	3	-	-	-	-	-	1	1	2	1	1	1
CO5	3	3	3	3	-	-	-	-	-	-	3	3	2	2	1	1

## **PROFESSIONAL ELECTIVE VI**

EC4861	ADVANCED COMMUNICATION TECHNOLOGIES	L	Т	Р	С					
		3	0	0	3					
OBJECTIVES:										
The students should be made to:										
• To	understand the basics of MIMO Channels.									
• Uno	derstand Concepts of MIMO diversity and spatial multiplexing.									
• Lea	rn Massive MIMO system									
• Kno	ow millimeter wave communication									
• Ap	blications of MIMO to machine learning									
UNIT I	<b>REVIEW OF MIMO CHANNEL CAPACITY</b>				9					
Introductio	n to MIMO channel models, extended and classical i.i.d. channels, Ch	annel	Mode	els of	CO1					
Correlated	and Frequency Selective channels, SISO Fading Communication C	hanne	els, M	IMO						
channel ca	pacity, Ergodic and outage capacity- constraints on the capacity and chan	nnel p	ropert	ties						
UNIT II	MIMO DIVERSITY AND SPATIAL MULTIPLEXING				9					
Diversity a	nd channel knowledge, sources and forms of diversity, Analysis of Raylei	gh fao	ling. S	Space	CO2					
time code o	of Alamouti. Receivers of space-time, Trade-offs between diversity multi	plexii	ng and	I ML,						
ZF, MMSE	E, and Sphere decoding, BLAST receivers, and spatial multiplexing of M	IMO.								
<b>UNIT III</b>	INTRODUCTION TO MASSIVE MIMO SYSTEM				9					
Massive M	IMO includes point-to-point, virtual, and multiuse MIMO. Massive M	IMO,	a trac	le-off	CO3					
between en	ergy and spectral efficiency, a propagation channel model, channel estim	ation,	and u	plink						
and downli	nk data transmission capacity limitations.									
UNIT IV MILLIMETER WAVE (MMW) COMMUNICATION SYSTEMS										
Regulation of the use of the radio spectrum, channel propagation, MMW hardware technology,										
MMW architecture and mobility, Physical layer approaches - beam shaping, beam locating, duplex										
scheme, and transmission scheme.										
UNIT V	6G AND APPLICATIONS				9					

Key Enablers of 6G: Massive MIMO- Extremely Large Aperture, Intelligent Reflecting Surface **CO5** (IRS), Energy Harvesting-Throughput and probability, Visible Light Communication, etc. Applications of machine learning: Modeling and estimate of channels shared spectrum sensing, Resource distribution (NOMA, mmWave massive MIMO).

	Total Hours: 4	5
	TEXTBOOKS	
1.	R. Vannithamby and S. Talwar, Towards 5G: Applications, Requirements and Candida	ite
	Technologies., John Willey & Sons, West Sussex, 2017.	
2.	MischaDohler, Jose F. Monserrat Afif Osseiran" 5G Mobile and Wireless Communication	
	Technology", Cambridge University Press 2016.	
	REFERENCE BOOKS	
1.	Hamid Jafarkhani, "Space - Time Coding: Theory and Practices", Cambridge University Pres 2005.	SS
2.	Theodore S.Rappaport, 'Wireless Communications", 2nd edition, Pearson Education, 2002.	
3.	John G. Proakis, "Digital Communication", Fifth Edition, McGraw Hill Publication, 2008.	
4.	M.K.Simon, S.M.Hinedi and W.C.Lindsey, "Digital communication techniques; Signal Design and Detection", Prentice Hall of India, New Delhi, 1995	
5.	Manish, M., Devendra, G., Pattanayak, P., Ha, N., 5G and Beyond Wireless Systems PHY Layer Perspective, Springer Series in Wireless Technology	
	COURSE OUTCOMES:	
	After completing this course, the students will be able to	
CO1	Conceptually appreciate Information theoretic aspects of MIMO	
CO2	MMO diversity and spatial multiplexing	
CO3	Analyze Massive MIMO system.	
<b>CO4</b>	Discuss millimeter wave communication	
CO5	Applications of Machine Learning in 5G Wireless Communications.	

		Μ	APPIN	NG BE'	TWEE	N CO	AND I	PO, PS	O WI	гн со	RREL	ATIO	N LEV	<b>EL 1/2</b>	2/3				
COs	PROGRAMME OUTCOMES													PROGRAMME SPECIFIC OUTCOMES					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4			
CO1	3	3	2	2	2	2	-	-	-	-	2	2	3	2	2	2			
CO2	3	3	3	2	2	2	-	-	-	-	2	2	3	3	2	2			
CO3	2	3	3	3	2	2	-	-	-	-	2	2	3	2	2	2			
CO4	2	3	3	2	2	2	-	-	-	-	3	3	2	3	2	2			
CO5	3	3	3	2	2	2	-	-	-	-	2	2	3	3	2	2			

EC4862	WIRELESS BROADBAND NETWORKS	L	Τ	P	С					
		3	0	0	3					
OBJECTIV	/ES:									
• To learn th	ne technical, economic and service advantages of next generation network	rke								
	he basic architecture of a next generation network (NGN) with reference									
	tand NGN services	, ,								
	he role of Multimedia Sub-System (IMS), network attachment and admin	agion	aan	trol fu	notions					
	and compare the various methods of providing connection-oriented servi									
UNIT I	INTRODUCTION TO WIRELESS NETWORKS			non.	9					
Overview of wireless Networks, Review of cellular standards, 1 G to 5 G Technology, migration										
	ement of GSM architecture and CDMA architecture, WLAN – IEEE 802		0		CO1					
	AN, Bluetooth system architecture and protocol architecture, Wi-Fi	2.11a	nu i	ypes						
UNIT II	WIRELESS PROTOCOLS				9					
	vork layer- Mobile IP- Fundamentals, procedures of data forwarding in r	nobi	le IP	_	CO2					
	rsion of IP, IP mobility management, IP addressing - DHCP, Mobile tra									
	TCP, congestion control Techniques, classical TCP improvements Indire			,						
	CP, Mobile TCP									
UNIT III	3G STANDARDS				9					
IMT-2000 -	W-CDMA, CDMA 2000 - radio & network components, network struct	ture,	pac	ket-	CO3					
-	rt process flow, Channel Allocation, core network, Techniques in interfe									
-	UMTS-services, types of interface in UMTS, about 3GPP, UTRAN – are	chite	cture	e,						
<u> </u>	Packet Data-HSDPA,HSUPA.									
UNIT IV	4G AND LTE				9					
	troduction, Requirements and Challenges, network architectures – EPC,				CO4					
	- mobility management, resource management, services, channel – Type			nnel						
	Data transfer in downlink/uplink, MAC control element, PDU packet for	mats	,							
UNIT V	services, random access procedure.				9					
	annels Characteristics - downlink/uplink physical layer, MAC scheme -	from	0		9 CO5					
	source structure, mapping, synchronization, reference signals and chann			tion	005					
	interference cancellation –CoMP, Carrier aggregation, Services - multir			uon,						
	ulticast, location-based services.									
	, ,	Tot	al H	ours	45					
	TEXTBOOKS				1					
1	Vijay K.Garg, "Wireless Network Evolution- 2G & 3G" Pearson.									
	RÉFERENCE BOOKS									
1	Kaveh Pahlavan, "Principles of wireless networks", Prentice-Hall of Ir	ndia,	2008	3.						
2	Jochen H.Schiller, "Mobile Communications", 2/e, Pearson, 2014.									
	COURSE OUTCOMES :									
	After completing this course, the students will be able to									
CO1 Explain the advantages of next generation networks										
CO2	Architecture of a next generation network (NGN) with reference									
CO3	Understand NGN services									
<b>CO4</b>	Evaluation of 4G network and its function									
CO5	Discuss the different layer level functions.									

# MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3

COa		-	-	PR	ROGRA	AMME	OUT	COME	ES		-			ROGR IFIC C		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS 01	PS 02	PS 03	PS O4
CO1	3	3	2	2	2	2	-	-	-	-	2	3	3	2	1	2
CO2	3	3	3	2	2	2	-	-	-	-	2	3	3	2	1	2
CO3	2	3	3	3	2	2	-	-	-	-	2	3	3	2	1	2
CO4 CO5	3	23	3	3	2	2	-	-	-	-	2	3	3	2	1	2 2
005	2	5	5	5	1	1	-	-	-	-	2	5	5	2	1	2
EC4	EC4863SIGNAL INTEGRITYLTP200												С			
												3				
OBJ	ECTI	VES:														
<ul> <li>To gain knowledge of the fundamentals and significance of signal integrity.</li> <li>To Illustrate and minimize cross talk in unbounded conductive media.</li> <li>To investigate the different types of Di-Electric materials.</li> <li>To study differential cross talk and the CMOS transmission line model</li> </ul>																
UNI	ΤI	Intr	oduct	ion to	Signal	l Integ	rity									9
	signifi															CO1
	gn- Ele															001
	ators: V															
	-Wave		-			-									verse	
	tromag	-					elds-Pr	opaga	tion of	time l	narmor	ic plai	ne Wa	ves		
UNI				electro			1		<u> </u>		<b>T</b> ¹ 1 1	<b>F</b>		1 1 1		9
Field Indu Valu	trostati 1-Capa ctance 1es- Re e Incid	citanco - Ener flectio	e-Ener gy in ons of o	gy sto a Mag electro	ored in gnetic magne	a Ca Field- tic wa	apacito Power	or-Mag flow	neto s and th	statics: he poy	Magı /nting	netic V vector	Vector time	Poter Aver	ntial- aged	CO2
	T III			egrity			nd an	alysis								9
Muta Couj Impe Impe Line	ual ine pledwa edance edance s- Cros	ductan ive equ and and ss talk	ce an ation: d Vel Veloci minin	d cap Wave locity-( ty-Rec nization	acitano Equati Couple constru n	ce: M ion Re iod No	utual visited bise-M	Induct I-Coup Iodal	led Wa analys	ave Eq sis: N	uation Iodal	s-Coup Deco	oled lir mposit	ne anal tion-M	ysis: Iodal	CO3
	TIV			opagat												9
Skin Depe	ounded Depth endent ductor	- Tran	ismissi	ion lin	es- Cla	assic co	onduct	tor mo	del: D	C Loss	ses in o	conduc	ctors- l	Freque	ency-	CO4
		Di-I	Electri	ic Mat	erials	and P	hysica	l Trar	nsmiss	ion Li	ne Mo	del				9
UNIT VDi-Electric Materials and Physical Transmission Line ModelDi-electric materials- Removal of common mode noise-Differential Cross talk-Virtual referenceplane-Propagation of model voltages common terminology- Differential signaling- Drawbacks:Physical Transmission Line Model - non ideal return paths-Vias-IO design consideration-Push-pull transmitter-CMOS receivers-ESSD protection circuits-On chip Termination.											acks:	CO5				
-										4				otal H	ours	45
	Total Hours           1.         TEXTBOOKS           1.         Stephen Hall, Howard L. Heck, "Advanced Signal Integrity for High-Speed Digital Designs", Wiley Publishers, Wiley-IEEE Press; 1 edition (21 September 2011).											0	-	0		

2.	James Edgar Buchanan, "Signal and power integrity in digital systems: TTL, CMOS, andBiCMOS",McGraw-Hill,1996
	REFERENCE BOOKS
1.	Hall S.H., Heck H.L.: Advanced Signal Integrity for High-Speed Digital Designs. Wiley- IEEE Press, 2009.
2.	Caniggia S., Maradei F.: Signal Integrity and Radiated Emission of High-Speed Digital Systems. John Wiley & Sons, 2009.
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Comprehend signal integrity principles in the design of high-speed circuits.
CO2	Demonstrate instances of electrostatics
CO3	Understand about signal integrity models.
CO4	Understand unbounded conductive media and signal propagation
CO5	Investigate various types of Dielectric materials and design high speed devices.

			MA	PPINO	G BET	WEE	N CO	AND	PO, PS	SO WIT	гн со	RRELA	ATION	LEVEL	1/2/3	
COs					PROGRAMME SPECIFIC OUTCOMES											
	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO4
CO1	3	3	2	2	1	2	-	-	-	-	-	2	3	2	2	1
CO2	3	3	2	2	1	2	-	-	-	-	-	2	3	2	2	1
CO3	3	3	3	2	2	2	-	-	-	-	-	2	2	2	2	1
<b>CO4</b>	3	3	2	2	2	2	-	-	-	-	-	2	2	2	2	1
CO5	3	3	3	2	2	2	-	-	-	-	-	2	2	2	3	1

EC4864	SOFTWARE DEFINED NETWORKS L T P	С								
	3 0 0	3								
OBJECTI	VES:									
<ul><li>To</li><li>To</li></ul>	learn the basics of software defined networks. understand the controllers and network virtualizations study about the SDN Data planes and Programming. study about the various applications of SDN.									
UNIT I OVERVIEW OF SOFTWARE DEFINED NETWORKS										
	befined Networking (SDN) –History - Switching architecture and Modern Data Center working of SDN – Concepts of Centralized and Distributed Control and Data Planes.	CO1								
UNIT II OPEN FLOW & CONTROLLERS WITH VIRTUALIZATION OF SDN										
North and South bound architecture – open flow with its drawbacks, SDN via APIs, SDN via Hypervisor- 111 Based Overlays, Open day light controllers and Floodlight controllers, Virtualization of network framework.										
Hypervisor	- 111 Based Overlays, Open day light controllers and Floodlight controllers,	CO2								

	ions for the Data Center Network – VLANs – EVPN – VxLAN – NVGRE, Software re based approaches-Programmable network hardware.	CO3
UNIT IV	SDN PROGRAMMING	9
	ramming using Northbound Application Programming Interface, Current Languages Different types of SDNs	CO4
UNIT V	APPLICATIONS OF SDN	9
	Networks of Home automation Systems applications, Industrial automation Systems grids., Software-Defined Network in Hadoop, Software-Defined Optical Network (SD-	CO5
	Total Hours	45
	TEXTBOOKS	
1.	Paul Goransson and Chuck Black, -Software Defined Networks: A Comprehensive	
2.	Approach, First Edition, Morgan Kaufmann, 2014. Thomas D. Nadeau, Ken Gray, —SDN: Software Defined Networks, O'Reilly Media,	2013.
	REFERENCE BOOKS	
1.	Siamak Azodolmolky, —Software Defined Networking with Open Flow, Packet Publi 2013.	ishing,
2.	Vivek Tiwari, —SDN and Open Flow for Beginners, Amazon Digital Services, Inc., 2	2013.
3.	Fei Hu, Editor, —Network Innovation through Open Flow and SDN: Principles and E CRC Press, 2014.Networks, May 2006.	Design,
	COURSE OUTCOMES:	
<u>CO1</u>	After completing this course, the students will be able to	
CO1 CO2	Analyze the evolution of software defined networks.Express the various components of SDN and their uses.	
<u>CO2</u> CO3	Explain the use of SDN in the current networking scenario.	
	Understand about SDN Programming	
<b>CO4</b>		

		MAP	PING	BETV	VEEN	CO A	ND P	O, PS	O WI	TH CO	ORRE	LATI	ON L	EVEI	1/2/3	
					PROGRAMME SPECIFIC OUTCOMES											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4
CO1	3	3	3	2	1	2	-	-	-	-	-	2	2	2	2	1
CO2	3	3	3	2	1	2	-	-	-	-	-	2	2	2	2	1
CO3	3	3	3	2	2	2	-	-	I	-	-	2	2	2	2	1
CO4	3	3	3	2	2	2	-	-	-	-	-	2	2	2	2	1
CO5	3	3	3	2	2	2	-	-	-	-	-	3	2	3	2	2

EC4865	MILLIMETER WAVE COMMUNICATION	L	T	Р	С
		3	0	0	3
<b>OBJEC</b>	TIVES:				
• T	o understand the channel behavior with millimeter wave communication systems				
• T	o learn the working of millimeter wave devices and circuits				
• T	o familiarize the enabling systems of millimeter wave communication system				
	o analyze the antenna design techniques for millimeter wave communication				
UNIT I	INTRODUCTION TO MILLIMETER WAVES				9
	ter wave characteristics- millimeter wave wireless implementation challenges, Rac				
	tion for mm wave: Large scale propagation channel effects, small scale channel				
	and Indoor channel models, Emerging applications of millimeter wave communic	atic	ons	•	
UNIT I	I MILLIMETER WAVE DEVICES AND CIRCUITS				9
	er wave generation and amplification: Peniotrons, Ubitrons, Gyrotrons and Free				
	EMT, models for mm wave Transistors, transistor configurations, Analog m				
-	nts: Amplifiers, Mixers, VCO, PLL, Metrics for analog mm wave devices, Cons	sum	pti	on	
	bory, Trends and architectures for MM wave wireless, ADC's and DAC's				•
UNIT I					9
	ons for millimeter wave communications: OOK, PSK, FSK, QAM, OFDM, M				
	t budget, Transceiver architecture, Transceiver without mixer, Receiver without O				
	er wave calibration, production and manufacture, Millimeter wave design consideration	atio	ns.		
UNIT I					9
	MIMO Communications, Spatial diversity of Antenna Arrays, Multiple An				
	e Transceivers, Noise coupling in MIMO system, Potential benefits for mm wave s				
_	Temporal and Frequency diversity, Dynamic spatial, frequency and modulation all	oca	t10	n.	
UNIT					9
	beamwidth, polarization, advanced beam steering and beam forming, mm wav				
	tion, On-chip and In package mm wave antennas, Techniques to improve gain of				
	Implementation for mm wave in adaptive antenna arrays, Device to	D	evi	ce	
commun	cations over 5G systems, Design techniques of 5G mobile.	AT	• /	15 1	Hours
		AL	: 4	151	10015
	BOOKS				
	C. Huang, Z. Wang, "Millimeter Wave Communication Systems", Wiley IEEE Press				
	rt W. Heath, Robert C. Daniel, James N. Theodore S. Rappaport, Murdock, "Mi	llin	net	er V	Nave
	s Communication", Prentice Hall, 2014.				
	<b>ENCE BOOKS</b> Kiang, W; Zheng, K; Shen, X.S, "5G Mobile Communications: Springer", 2016.				
	SE OUTCOMES ompletion of the course, students will be able to				
CO1					
-	Develop Channel model for millimeter wave communication system.				
CO2	Understand the working of millimeter wave devices and circuits.				
CO3	Understand the working of single and multicarrier modulation systems.				
CO4	Apply MIMO Techniques in designing mmWave systems		- 1		
CO5	Understand diversity and beamforming techniques and its uses in millimeter wave	e sy	ste	ms	

		Μ	APPIN	G BE	TWEE	N CO	AND I	<b>PO, PS</b>	O WI	гн со	RREL	ATIO	N LEV	<b>EL 1/2</b>	2/3	
COs		PROGRAMME OUTCOMES PROGRAMME SPECIFI OUTCOMES PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS														
	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	PO11	PO12	PSO1	PSO2	PSO3	PSO4
<b>CO1</b>	3	3	-	3	-	-	-	-	-	-	1	-	2	2	1	1
CO2	3	3	3	3	2	3	2	-	-	1	-	-	2	2	1	1
CO3	3	3	3	3	2	-	-	-	-	-	-	-	2	2	1	1
<b>CO4</b>	3	3	3	3	2	-	2	-	-	-	-	-	2	2	1	1
CO5	3	3	3	3	2	-	2	-	-	-	-	-	2	2	1	1

EC4866 PHOTONIC	C NETWORKS L T	P	С
	3 0	0	3
<b>OBJECTIVES:</b>			
• To understand the	importance of the backbone infrastructure.		
	architectures and the protocol stack in use.		
	inderstanding about high frequency line, power and impedance m	easure	ements.
	differences in the design of data plane and the control plane and t		
	resource allocation methods.		•
• To know about the	advancements in networking and switching domains and the futu	re tre	nds.
UNIT I COMPONE	NTS OF OPTICAL SYSTEMS		9
Light Transmission using	Optical Fibers – Loss in Optical Transmission, Optical bandwidth	,	C01
limitations of Optical Syst	ems, Nonlinear effects; Solitons; Components of optical networks	5 —	001
Circulators, Couplers, Isol	ators, Filters, Multiplexers, Wavelength Converters. Optical		
Amplifiers, Switches.			
	NETWORK FRAMEWORKS		9
Telecommunications Netv	work Architecture; SONET / SDH, Multiplexing-Second-Gener	ation	CO2
	d Architecture; Network Broadcasting - Topologies for Broa		
	s, Beyond Transmission Links to protocols.		
UNIT III WAVELEN	GTH ROUTING NETWORKS		9
Optical layer, Nodes in O	ptical Network, Lightpath Topology Design, Routing and wavele	ength	CO3
	orks Traffic Grooming, Variations in Architecture-, Logically Ro		0.05
Networks, Linear Light wa	ave networks.		
UNIT IV PACKET SV	WITCHING AND ACCESS NETWORKS		9
Photonic Packet Switchin	ng – Optical Time Division Multiplexing, Bit Interleaving, Pa	acket	CO4
Interleaving, Optical ANI	D Gates ,Synchronization, Tunable Delays, Optical Phase Lock I	loop.	
Optical Access Network .	Architectures and OTDM networks, Network Architecture over	view	
Switch-based networks, Bi	roadcast OTDM networks, Contention Resolution Access Networ	ks.	
UNIT V DESIGN AN	ND MANAGEMENT OF NETWORKS		9
Transmission System Engi	ineering – transmitter, receiver, System model, Power penalty, Op	otical	CO5
amplifiers, Gain Saturatic	on in EDFAs, Gain Equalization in EDFAs, Intrachannel Cross	stalk,	0.05
Interchannel Crosstalk, d	ispersion, Fiber Nonlinearities Wavelength stabilization, Desig	n of	
Soliton Systems – Overall	Design Considerations		
	Total H	ours	45
TEXTBOOI	KS		
1. Photonics Op	ptoelectronics (pb2017) Kakani S.L. Cbs publications		
2. Photonics : C	Optical Electronics in Modern Communications – by Variv Second	l Edit	ion
DEFEDENC	CE BOOKS		

1.	Rajiv Ramaswami and Kumar N. Sivarajan, —Optical Networks: A Practical Perspectivel,
	Harcourt Asia Pte Ltd., Second Edition 2004.
	C. Siva Ram Moorthy and Mohan Gurusamy, -WDM Optical Networks: Concept, Design
2.	and Algorithms ^{II} , Prentice Hall of India, Ist Edition, 2002.
3.	Biswanath Mukherjee, —Optical WDM Networksl, Springer Series, 2006.
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Use the backbone infrastructure for our present and future communication needs.
CO2	Analyze the architectures and the protocol stack.
CO3	Compare the differences in the design of data plane, control plane, routing .
CO4	Acquiring knowledge in switching and accessing of Optical Networks.
CO5	Able to design transmission system.

		Μ	APPIN	NG BE	TWEE	N CO	AND I	PO, PS	O WI	гн со	RREL	ATIO	N LEV	EL 1/2	2/3	
COs					PROGRAMME SPECIFIC OUTCOMES											
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4
CO1	3	2	3	3	1	2	-	-	-	-	2	2	3	2	1	1
CO2	3	2	3	3	2	2	-	-	-	-	2	3	3	2	1	2
CO3	3	3	3	3	2	2	-	-	-	-	2	3	3	2	1	2
<b>CO4</b>	3	3	3	3	2	2	-	-	-	-	2	3	3	2	1	2
CO5	3	3	3	3	2	2	-	-	-	-	2	3	3	2	1	2

# VERTICAL VII

EC4871	ADHOC NETWORKS	L	Τ	P	С
		3	0	0	3
OBJECTI	/ES:				
• To p	rovide introduction to Adhoc Networks				
• To u	inderstand MAC protocols and classification.				
• To u	inderstand routing protocols				
• To i	llustrate security in Adhoc Networks				
• To u	inderstand energy management				
UNIT I	INTRODUCTION TO ADHOC NETWORK				9
Ad-hoc net	works - definition, characteristics features, applications. Characteristic	cs of	wir	eless	CO1
channel, ad-	hoc mobility models: indoor and outdoormodels.				
UNIT II	MAC PROTOCOLS				9
MAC Proto	ocols - Design issues, goals and classification. Contention based pro	toco	ls –	with	CO2
reservation,	scheduling algorithms, protocols using directional antennas.				
UNIT III	<b>ROUTING PROTOCOLS</b>				9
Issues in De	signing a Routing Protocol for Ad Hoc Wireless Networks, Classification	ons o	f Roi	uting	CO3
Protocols, T	able Driven Routing Protocols – Destination Sequenced Distance Vector	(DS)	DV),	On-	
Demand Ro	uting protocols -Ad hoc On-Demand Distance Vector Routing (AODV	') -Q	oS a	ware	
routing.					
UNIT IV	SECURITY				9
	curity in adhoc networks, Security issues in adhoc networks- issues and ch	alle	nges,	Key	CO4
Distribution	and management, network security attacks, secure routing protocols.				
UNIT V	ENERGY MANAGEMENT				9

Management of Energy- battery management transmission power - system power schemes. QOS cO5 solutions

	TOTAL HOURS 45
	TEXT BOOKS
1.	C. Siva Ram Murthy and B. S. Manoj, Ad hoc Wireless Networks Architecture and
	Protocols, 2 nd edition, Pearson Edition, 2007.
2.	Charles E. Perkins, Ad hoc Networking, Addison – Wesley, 2000.
	REFERENCE BOOKS
1.	Stefano Basagni, Marco Conti, Silvia Giordano and Ivan stojmenovic, Mobile ad-hoc networking, Wiley-IEEE press, 2004.
2	Mohammad Ilyas, The handbook of ad-hoc wireless networks, CRC press, 2002.
2. 3.	T. Camp, J. Boleng, and V. Davies "A Survey of Mobility Models for Ad-hoc Network"
4.	Research, "Wireless Commun, and Mobile Comp Special Issue on Mobile Ad-hoc
	Networking Research, Trends and Applications, Vol. 2, no. 5, 2002, pp. 483 – 502.
5.	Fekri M.bduljalil and Shrikant K. Bodhe, "A survey of integrating IP mobility protocols
	and Mobile Ad-hoc networks", IEEE communication Survey and tutorials, no: 12007.
CO	COURSE OUTCOMES:
CO1	Acquire knowledge about Adhoc Networks
CO2	Acquire knowledge about MAC protocols and classification.
CO3	Understand routing protocols
CO4	Know about security in Adhoc Networks
CO5	Understand Energy Management in Adhoc Networks

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3														
					PROGRAMME SPECIFIC OUTCOMES											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4
CO1	3	2	2	2	1	2	-	-	-	-	2	2	3	2	1	2
CO2	3	2	2	2	1	2	-	-	-	-	2	2	3	2	1	2
CO3	2	2	2	2	1	2	-	-	-	-	2	2	3	2	1	2
CO4	3	2	2	2	2	2	-	-	-	-	2	2	3	2	2	2
CO5	2	2	2	2	2	2	-	-	-	-	2	2	3	2	1	2

EC4872	IoT BASED SYSTEMS DESIGN	L	Т	Р	С	
		3	0	0	3	
OBJECTIVES:						
• To study the characteristic of IoT Based system design						
• To understand the design of a IoT system						
• To study the various digital signaling techniques and multipath mitigation techniques.						
UNIT1	INTRODUCTION TO INTERNET OF THINGS				9	

Definition of IOT - Characteristics of IoT - History of IoT – Evolution of IoT – Web 3.0 view of IoT– Study of IoT Enabling Technologies – Architecture of IOT based Systems – Fog, Applications of Cloud and Edge in IoT – Functional blocks of an IoT ecosystem – Sensors, Actuators, Smart Objects and Connecting Smart Objects - IoT levels and deployment templates.					
UNIT II	ARCHITECTURES OF IOT	9			
Introduction to Middleware technologies used in IoT system – Architectures of IoT systems - Horizontal Architecture Approach – SOA based IoT Middleware - Middleware architecture and Interoperability challenges of IoT-Protocols of RFID,WSN,SCADA,M2M - Challenges Introduced by 5G in IoT Middleware(Technological Requirements of 5G Systems - Perspectives and a Middleware Approach Toward 5G (COMPaaS Middleware) – Resource management in IoT.					
UNIT III	IOT NETWORKING PROTOCOLS	9			
IoT Access Technologies: Physical Layer of IoT and MAC layer concepts of IoT, Architecture, topology and Security of IEEE 802.15.4 – Advanced protocols like 802.15.4g, 802.15.4e, LoRaWAN – Network Layer: IP versions, Constrained Nodes and Constrained Networks – Optimizing IP for IoT: From 6LoWPAN to 6Lo, Routing Techniques in Low Power and Lossy Networks – Supervisory Control and Data Acquisition techniques of Application Transport Methods – Study of Application Layer Protocols like MQTT, CoAP – Dissemination and data Agression.					
UNIT IV	TOOLS FOR IOT IMPLEMENTATION	9			
Introduction to Python, Basic programming concepts of Python, Python development tools like jupyter, co-lab - Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementation of IoT techniques using Python.					
UNIT V	IoT BASED CASE STUDIES	9			
Various applications of IOT based based in Home automations – Design of IOT in Smart cities – Implementing in Environment – Case study of IOT based system in Logistics – Agriculture – Industry - Health and life style .					
	Total Hours:     45				
	TEXTBOOKS				
1.	Honbo Zhou, "Internet of Things in the cloud: A middleware perspective", CRC press, 2012.				
2.	Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-onApproach)", VPT, 1 st Edition,				
1	REFERENCE BOOKS	ologias			
1.	Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press.				
2. 3.	Constandinos X. Mavromoustakis, George Mastorakis, Jordi MongayBatalla, "Internet of Things (IoT) in 5G Mobile Technologies" Springer International Publishing Switzerland 2016. Dieter Uckelmann, Mark Harrison, Florian Michahelles, "Architecting the Internet of Things" Springer-Verlag Berlin Heidelberg, 2011.				
	COURSE OUTCOMES: After completing this course, the students will be able to				
CO1	Articulate the main concepts, key technologies, strength and limitations of IoT				
CO1	Identify the architecture, infrastructure models of IoT.				
CO2	Analyze the networking and how the sensors are communicated in IoT.				

CO4	Analyze and develop tools for IoT implementation.
CO5	Identify and design the new models for market strategic interaction.

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3														
COa				PF	ROG	PROGRAMME SPECIFIC OUTCOMES										
COs	PO 1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2	PSO 3	PSO4
CO1	2	2	2	3	1	2	-	-	-	-	2	2	3	3	2	2
CO2	3	3	3	2	1	2	-	-	-	-	2	2	3	3	3	2
CO3	3	3	2	2	1	2	I	-	-	-	2	2	2	3	3	2
<b>CO4</b>	2	2	2	2	1	2	-	-	-	-	2	2	3	3	2	2
CO5	3	3	2	2	2	2	-	-	-	-	1	2	3	3	3	2

EC4873	WIRELESS SENSOR NETWORKS	L	Т	P	С	
		3	0	0	3	
OBJECTIV	'ES:					
• To u	nderstand the basics of Wireless Sensor Networks.					
• To le	earn various fundamental and emerging protocols of all layers					
• To st	tudy about the issues pertaining to major obstacles in establishment and	l effi	cient			
mana	agement of Wireless sensor networks.					
• To u	nderstand the nature and applications of Wireless sensor networks.					
• To u	nderstand various securities practices and protocols Wireless Sensor N	etwo	rks.			
UNIT I	CHARACTERISTICS AND LAYERS OF WSN				9	
WSN Chara	acteristics - WSNs Challenges- compare WSN vs Adhoc Netw	orks	- W	SN		
	- sensor nodes Commercially available - EYES nodes, BT nodes, IRIS			,		
TelosB - WS	SNs Physical layer and transceiver design considerations, profile of En	lergy	usage	e in		
WSN.						
UNIT II	MEDIUM ACCESS CONTROL PROTOCOLS AND STANDAR				9	
1	cols Fundamentals- WSN wakeup concepts and Low duty cycle	-				
	based protocols - Schedule-based protocols - Traffic-adaptive medium a	ccess	s proto	col		
- Low-Rate	WPAN(LR-WPANs) IEEE 802.15.4 MAC protocol.					
UNIT III	<b>ROUTING AND DATA GATHERING PROTOCOLS ROUTING</b>				9	
0	n routing and Issues in design WSN – Data centric Routing, Flooding	•	- 1	0		
	otocol for Information via Negotiation – Directed Diffusion – Energy av					
	sed routing - Rumor Routing - Hierarchical Routing - LEACH, Lo					
Routing – G	F, Real Time routing Protocols – TEEN, Data aggregation operations	- Ag	gregat	ion		
Techniques	– TAG, Tiny DB.					
UNIT IV	WSN OPERATING SYSTEMS				9	
	rating Systems - Design Issues Operating System - Classifications					
Systems – 7	FinyOS - Mate - OSPM - EYES OS -PicOS - Tiny OS - NesC -	Mod	lules	and		
Interfaces -	Configurations - Generic Components - configuring Tiny OS using No	esC,	Emula	ator		
TOSSIM.						
UNIT V	WSN APPLICATIONS AND CASE STUDIES				9	
WSN Applie	cations - Medical Applications - Industrial Automation -Building Autor	natic	on -Ho	me		
Control - Nanoscopic Sensor Applications - Habitat Monitoring- Highway Monitoring - Military						
Applications	s - Civil and Environmental Engineering Applications - Wildfire Ins	trum	entatio	on–		
Case Study:	IEEE 802.15.4 LR-WPANs Standard - Target detection and tracking .					

	<b>Total Hours:</b> 45
	TEXTBOOKS
1.	Kazem Sohraby, Daniel Minoli and Taieb Znati, "Wireless Sensor Networks Technology,
	Protocols, and Applications", John Wiley & Sons, 2007.
2.	Holger Karl and Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks",
	John Wiley & Sons, Ltd, 2005.
	<b>REFERENCE BOOKS</b>
1.	K. Akkaya and M. Younis, "A survey of routing protocols in wireless sensor networks",
	Elsevier Ad Hoc Network Journal, Vol. 3, no. 3, pp. 325349
2.	Philip Levis, "TinyOS Programming"
3.	Anna Ha'c, "Wireless Sensor Network Designs", John Wiley & Sons Ltd,
4.	Ian F. Akyildiz, Mehmet Can Vuran, Wireless Sensor Networks, Wiley India, 1, 2018.
	C. S. Raghavendra, K.M.Shivalingam and T.Znati, "Wireless Sensor Networks", Springer, New
	York, 2004
	COURSE OUTCOMES:
	After completing this course, the students will be able to
CO1	Understand the basis of Sensors node and their characteristic.
CO2	Understand the design issues of various MAC protocols
CO3	Develop the concepts of design issues of different routing protocols of WSN
<b>CO4</b>	Understand different embedded operating system used in WSN
CO5	Explore and implement solutions to real world problems using sensor devices, enumerating its
	principles of working.

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3														
GO					PROGRAMME SPECIFIC OUTCOMES											
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4
CO1	3	3	3	3	1	1	-	-	-	-	1	3	2	2	1	1
CO2	3	3	2	2	1	1	-	-	-	-	1	3	3	2	1	1
CO3	3	3	3	3	2	2	-	-	-	-	1	3	3	2	1	1
CO4	3	3	2	3	3	2	-	-	-		2	3	2	2	2	1
CO5	3	3	3	3	3	3	-	-	-	-	3	3	3	3	2	2

EC4874	INDUSTRIAL IOT AND INDUSTRY 4.0	Т	Р	C					
	3	0	0	3					
OBJECTIV	/ES:								
• Lear	• Learn and understand the Importance of IoT								
• Kno	w how IoT has become a game changer in the new economy.								
• App	ly the IoT concepts in building solutions to Industrial problems.								
• Lear	n and understand the tools and techniques that enable IoT solution and Securit	y asp	ects.						
• IoT	in industrial applications								
UNIT I	INTRODUCTION TO INDUSTRIAL IOT (IIOT) SYSTEM			9					
The Various Industrial Revolutions, Role of Internet of Things (IoT) & Industrial Internet of Things (IIoT) in Industry, Industry 4.0 revolutions, Support System for Industry 4.0, Smart Factories									

UNIT	II	IMPLEMENTATION SYSTEMS FOR HOT	9				
Acquis	sitions	Actuators for Industrial Processes, Sensor networks, Process automation and Data s on IoT Platform, Microcontrollers and Embedded PC roles in IIoT, Wireless Sensor Bluetooth, WiFi, and LoRa Protocols and IoT Hub systems.	CO2				
UNIT	III	IIOT DATA MONITORING & CONTROL	9				
		ay, IoT Edge Systems and It's Programming, Cloud computing, Real Time Dashboard nitoring, Data Analytics and Predictive Maintenance with IIoT technology.	CO3				
UNIT	IV	INDUSTRIAL IOT- APPLICATIONS	9				
		Power Plants, Inventory Management & Quality Control, Plant Safety and Security R and VR safety applications), Facility Management.	CO4				
UNIT	V	<b>INTRODUCTION OF INDUSTRY 4.0</b>	9				
manufa	acturi	to Smart Manufacturing, IoT applications in Manufacturing, Cloud applications in ng. Introduction to Computer Aided Process Planning (CAPP), Algorithms for CAPP, development, Industry 4.0 applications in Product Development	CO5				
		Total Hours:	45				
		TEXTBOOKS					
1	1 SudipMisra, Chandran Roy, Anandarup Mukherjee: Introduction to Industry IOT and Industry 4.0, CRC press, Taylor & Francis First Edition 2021.						
		REFERENCE BOOKS					
1. 2.		HakimaChaouchi, "The Internet of Things Connecting Objects to the Web" ISBN : 97 84821- 140-7, Willy Publications Olivier Hersent, David Boswarthick, Omar Elloumi The Internet of Things: Key Applications and Protocols, ISBN: 978-1-119-99435-0, 2n Edition, Willy Publications					
3.		Industry 4.0: The Industrial Internet of Things Alasdair GilchristPublications: Apress					
4.		Dr. OvidiuVermesan, Dr. Peter Friess, "Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems", River Publishers	or				
		COURSE OUTCOMES:					
		After completing this course, the students will be able to					
CO1 CO2 CO3		Understand the elements of IoT to build a total control plane in an Industrial application Apply M2M protocols for development of IoT Applications. Learn and understand the concept of digitalization and data acquisition.	n				
CO4		Build smart factory based on the concepts					
CO5		Learn about Industry 4.0 Needs and Updates					
		MAPPING BETWEEN CO AND PO. PSO WITH CORRELATION LEVEL 1/2/3					
COs	MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3         PROGRAMME OUTCOMES         PROGRAMME OUTCOMES						

	MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION	ON LEVEL 1/2/3
COs	PROGRAMME OUTCOMES	PROGRAMME SPECIFIC OUTCOMES

	PO1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO 12	PS O1	PS O2	PS O3	PSO 4
CO1	2	2	2	2	2	3	2	-	-	-	-	2	3	3	3	2
CO2	2	2	2	2	2	3	1	-	-	-	-	2	2	3	2	2
CO3	2	2	2	2	2	3	1	-	-	-	-	2	3	3	3	2
CO4	2	1	3	2	2	3	2	-	-	-	-	2	3	3	2	2
CO5	2	2	3	2	2	2	2	-	-	-	-	1	3	3	3	2

#### EC4875 MEMS DESIGN

Т Р L С 3 0 0 3

# **OBJECTIVES:**

- To introduce the basic concepts of micro systems and advantages of miniaturization. •
- To study the various materials and their properties used for micromachining techniques. •
- To analyze the fundamentals of micromachining and micro fabrication techniques. •
- To impart knowledge of the basic concept of electromechanical effects, thermal effects Micro ٠ fluidics and Integrated fluidic systems.
- To study the fundamentals of pressure sensors and accelerometer sensors through design and • modeling.

UNIT I ENGINEERING FOR MICROSYSTEMS DESIGN AND FABRICATION	9
Working Principles of Microsystems-Materials for MEMS-Single crystal silicon-Polysilicon-	CO1
Silicon Dioxide-Silicon Nitride-Germanium based materials-Metals-Silicon Carbide-Diamond-	
Wet-Bulk Micromachining-Silicon Crystallography-Silicon as substrate-Silicon as a mechanical	
element in MEMS-Silicon as a Sensor-Wet isotropic and Anisotropic Etching-Etching with bias-	
Surface Micromachining-Mechanical properties Thin films-Comparison of Bulk	
Micromachining and Surface Micromachining	
UNIT II MEMS TRANSDUCERS	9
Mechanical Transducers-Mechanical Sensors-Mechanical Actuators-Radiation Transducers-	CO2
Radiation Sensors-Radiation (Optical) Actuators-Thermal Transducers-Thermal Sensors-	
ThermalActuators- Magnetic Transducers-Magnetic Sensors-Magnetic Actuators-Chemical and	
Biological Transducers- Chemical and Biological Sensors-Chemical Actuators-Microfluidic	
Devices.	
UNIT III SYSTEM-LEVEL MEMS DESIGN	9
Introduction- Fundamentals of System-Level Modeling and Memsic Co-Simulation-	CO3
Methodology I: Lumped-Element Modeling with Equivalent Circuits- Methodology II:	
Hierarchical Abstraction Of Mems And Analytical Behavioral Modeling- Methodology III:	
Mems Behavioral Modeling Based on FEA/BEA- CAD for Integrated MEMS Design.	
UNIT IV FABRICATION OF MEMS	9
Micro-Opto-Electromechanical systems: Introduction, fundamental principle of	CO4
MOEMs Technology, Review on properties of light, Light Modulators, beam Splitters,	
Microlense, Micro mirrors, digital micromirror device, light detectors, grating light valve, optical	
switch, waveguideand tuning, shear Stress measurement, Magnetic Sensors and actuators.	
UNIT V APPLICATIONS OF MEMS-SWITCHING	9
Introduction, Switch parameters, Basics of switching, Mechanical switches, Electronic switches	CO5
for RF and microwave applications, Mechanical RF switches, PIN diode RF switches.	

	<b>Total Hours:</b> 45
	TEXTBOOKS
1.	MEMS and Micro Systems design and Manufacture, Tai-ran HSU, TMH, 2006.
2.	MEMS, Nitaigour Premchand Mahalik, TMH
	REFERENCE BOOKS
1.	Mohammedhad-el-hak, MEMS Introduction & Fundamentals, CRC Press, 2005
2.	Marc J. Madou, Fundamentals of Microfabrication and Nanotechnology, 3rd Edition, 2011,
	CRC Press. ISBN 9780849331800

	<b>COURSE OUTCOMES:</b> After completing this course, the students will be able to
CO1	Understand the basic overview of MEMS and Microsystems with broad category of MEMS & Micro system applications.
CO2	Understanding the working principles of Microsystems
CO3	Understand the Scaling Laws in Miniaturization and Materials for MEMS and Microsystems
CO4	Understand the Micro system Fabrication Process and Analyze the different Micro manufacturing process and Applications.
CO5	Study and Analyze the different types of RF switches, Various Switching Mechanism and their applications.

	I	MAI	PPINO	G BEI	ſWE	EN C	O AN	ND P	O, PS	O WI	TH C	CORRE	ELATIO	ON LEV	VEL 1/2	/3
COs	PRO	<b>GR</b>	AMM	E OU	TCO	PROGRAMME SPECIFIC OUTCOMES										
CUS	PO1	PO	PO3	PO4	PO	PO6	PO7	0	PO9	PO1	PO1	PO12	PSO1	PSO2	PSO3	PSO4
		4			3			0		U	L					
CO1	3	2	1	1	3	2	2	-	2	-	-	1	2	2	2	2
CO2	3	2	1	1	2	2	2	-	2	-	-	1	3	2	2	2
<b>CO3</b>	3	3	2	2	3	2	2	-	2	-	-	1	3	2	2	2
<b>CO4</b>	3	3	2	3	3	2	2	-	2	-	-	1	3	2	2	2
CO5	3	3	3	3	3	1	2	-	2	-	-	1	3	2	3	2

EC4876	FUNDAMENTALS OF NANO ELECTRONICS	L	Т	Р	С
		3	0	0	3
• To su	<b>TVES</b> o understand the concepts of nano electronics and quantum electronics. o understand the concepts of nano electronic devices, transistors, tunneling d perconducting devices. o understand the basics of nanotube devices.	evi	ces a	nd	
UNIT I	ELECTRONICS TO NANO ELECTRONICS				9

-	o nano - Light as a wave and particle- Electrons as waves and particles- origin of quantum	
	s - General postulates of quantum mechanics - Time independent Schrodinger wave	
-	Electron confinement - Quantum dots, wires and well-Spin and angular momentum-	
Wave pac	ckets and uncertainty.	
UNIT II	QUANTUM ELECTRONIC DEVICES	9
Quantum	electronic devices - Short channel MOS transistor - Split gate transistor - Electron wave	
transistor	- Electron wave transistor - Electron spin transistor - Quantum cellular automata - dot array, Quantum memory.	
	I NANO ELECTRONIC TRANSISTORS	9
	blockade - Coulomb blockade in Nano capacitors - Coulomb blockade in tunnel junctions	/
- Single	electron transistors, Semiconductor nanowire FETs and SETs, Molecular SETs and	
	r electronics - Memory cell.	9
	NANOELECTRONIC TUNNELING AND SUPER CONDUCTING DEVICES           Fect -Tunneling element -Tunneling diode - Resonant tunneling diode - Three terminal	9
	tunneling devices- Superconducting switching devices- Cryotron- Josephson tunneling	
device.	tunnening devices- Superconducting switching devices- Cryotron- Josephson tunnening	
uevice.		
UNIT V	NANOTUBES AND NANOSTRUCTURE DEVICES	9
	anotube - Fullerenes - Types of nanotubes – Formation of nanotubes – Assemblies –	-
	on of carbon nanotubes – Electronic properties – Synthesis of carbon nanotubes –	
	anotube interconnects – Carbon nanotube FETs and SETs –Nanotube for memory	
	ons- Nano structures and nano structured devices.	
	Total Hours:	45
	TEXTBOOKS	
1.	Hanson, Fundamentals of Nanoelectronics, Pearson education, 2009.	
2.	Jan Dienstuhl, Karl Goser, and Peter Glösekötter, Nanoelectronics and Nanosystems:	From
	Transistors to Molecular and Quantum Devices, Springer-Verlag, 2004.	
	REFERENCE BOOKS	
1 2	Mircea Dragoman and Daniela Dragoman, Nanoelectronics: Principles and Devices, A House, 2009.	rtech
2	Robert Puers, Livio Baldi, Marcel Van de Voorde and Sebastiaan E. Van No	noton
3	Nanoelectronics: Materials, Devices, Applications, Wiley, 2017.	Joten,
4	Brajesh Kumar Kaushik, Nanoelectronics: Devices, Circuits and Systems, Elsevier sci	ence
т 	2018.	ence,
	Murty B S, Shankar P, Baldev Raj, Rath B B and James Murday, Textbook of Nanoscie	nce
	and Nanotechnology, Springer, Universities press, 2012.	nee
L	·	
	COURSE OUTCOMES:	
	After completing this course, the students will be able to	
CO1	Understand the basics of nano electronics including quantum wires, dots, and wells.	
CO2	Use the mechanism behind quantum electronic devices.	
CO3	Analyze the nano electronic transistors	
CO4	Analyze the key performance aspects of tunneling and superconducting nano electronic devices.	
1		

**CO5** Apply the knowledge in the development of nanotubes and nanostructure devices.

		M	APPIN	G BE	<b>FWEE</b>	N CO	AND I	PO, PS	O WI	гн со	RREL	ATIO	N LEV	/EL 1/2	2/3					
COs	PROGRAMME OUTCOMES													PROGRAMME SPECIFIC OUTCOMES						
	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4				
CO1	3	3	3	3	3	2	-	-	-	-	-	1	2	1	1	1				
CO2	3	3	3	2	3	2	-	-	-	-	-	1	2	1	1	1				
CO3	3	3	2	2	2	1	-	-	-	-	-	1	2	2	1	1				
CO4	3	3	2	2	2	1	-	-	-	-	-	1	2	1	2	1				
CO5	3	3	3	3	2	1	-	-	-	-	-	1	2	1	2	1				

## **OPEN ELECTIVE I**

<b>OMA411</b>	GRAPH THEORY AND ITS APPLICATIONS	L	Τ	Р	С
	(Common to CSE, ECE, CSE, MECH, IT & ADS)	3	0	0	3
OBJECT	IVES:				
• To	introduce the basic notions of graphs and trees which will then be used	to so	olve	relate	d
pro	oblems.				
• To	introduce and apply the concepts of trees, connectivity and planarity.				
• To	understand the basic concepts of colouring in graph theory.				
• To	understand the basic concepts of permutations and combinations.				
	acquaint the knowledge of recurrence relations and generating function.	•			
UNIT I	INTRODUCTION OF GRAPHS				9
Graphs – I	Introduction – Isomorphism – Sub graphs – Walks, Paths, Circuits – Conr	necte	ednes	SS –	CO1
Compone	nts – Euler graphs – Hamiltonian paths and circuits – Trees – Propertie	es of	tree	s –	
Distance a	nd centers in tree – Rooted and binary trees.				
UNIT II	TREES, CONNECTIVITY AND PLANARITY				9
	trees - Fundamental circuits - Spanning trees in a weighted graph				CO2
	of cut set - All cut sets - Fundamental circuits and cut sets - Conn				
	y – Network flows – 1-Isomorphism – 2-Isomorphism – Combinational a	nd g	eome	etric	
* *	Planer graphs – Different representation of a planer graph.				
UNIT III					9
	e number – Chromatic partitioning – Chromatic polynomial – Matching			0	CO3
	problem – Directed graphs – Types of directed graphs – Digraphs and bir	nary	relat	ions	
	paths and connectedness – Euler graphs.				
UNIT IV					9
	tal principles of counting - Permutations and combinations - Binomi				CO4
	ons with repetition - Combinatorial numbers - Principle of inclusion and	d ex	clusi	on -	
	ents - Arrangements with forbidden positions.				
UNIT V	GENERATING FUNCTIONS	~			9
	g functions - Partitions of integers - Exponential generating function -				CO5
	Recurrence relations - First order and second order – Non-homogeneou	is re	curre	ence	
relations -	Method of generating functions.				47
		ota	l Ho	urs:	45
1	TEXTBOOKS	C			
1.	Narsingh Deo, "Graph Theory: With Application to Engineering and	Cor	nput	er Sci	ence,
2.	Prentice Hall of India, 2003. Grimaldi R.P. "Discrete and Combinatorial Mathematics: An Applied	d Int	rodu	ation?	,
۷.	Addison Wesley, 1994.	u IIII	Todu	CUOII	,
	REFERENCE BOOKS				
1.	Clark J. and Holton D.A, "A First Look at Graph Theory", Allied Pul	blick	erc	1005	
1.	Clark J. and Honon D.A. A Flist Look at Oraph Theory, Alled Ful	01151	1013,	1795.	
2.	Mott J.L., Kandel A. and Baker T.P. "Discrete Mathematics for Com	pute	r Sci	entist	s and
	Mathematicians", Prentice Hall of India, 1996.				
3.	Liu C.L., "Elements of Discrete Mathematics", Mc Graw Hill, 1985.				
4.	Rosen K.H., "Discrete Mathematics and Its Applications", Mc Graw	Hill	. 200	)7.	
	COURSE OUTCOMES:		, 200	, <b>.</b>	
	Upon completion of the course, students will be able to				
CO1	Write precise and accurate mathematical definitions of objects in gra	nh +1	100***	7	
	while precise and accurate manematical definitions of objects in gra	րոս	ieor y	/ <b>·</b>	

CO2	Use mathematical definitions to identify and construct examples and to distinguish examples from non-examples.
CO3	Validate and critically assess a mathematical proof.
CO4	Use a combination of theoretical knowledge and independent mathematical thinking in
	creative investigation of questions in graph theory.
CO5	Reason from definitions to construct mathematical proofs.

	Μ	APPI	NG B	ETW	<b>EEN</b>	CO A	ND P	<b>PO</b> , <b>P</b> S	SO W	ITH (	CORF	RELA	TION	LEV	EL 1/	/2/3
COs			Р	ROG		PROGRAMME SPECIFIC OUTCOMES										
COS	DO1	DOJ	DO3		DO5	DOG	<b>PO7</b>	DUS		<b>PO1</b>	<b>PO1</b>	<b>PO1</b>	PS	PS	PS	PSO
	101	102	105	104	105	100	10/	100	109	0	1	2	01	02	03	4
CO1	3	3	2	2	1	1	1	2	1	1	1	-	-	-	1	0
CO2	3	3	2	1	1	1	-	2	1	1	-	1	-	-	1	1
CO3	2	3	2	1	2	1	-	1	2	2	-	-	-	-	1	1
CO4	3	2	2	2	1	1	-	2	1	1	1	1	-	-	1	1
CO5	3	3	2	1	1	1	1	1	2	1	1	-	-	-	1	1

<b>OEE411</b>	RENEWABLE ENERGY SYSTEMSLTP	С
	Common to CSE, ECE, CSE, MECH, IT & ADS)300	3
OBJECTI	VES:	
• To a	create awareness about renewable and non-renewable Energy Sources, technologies a	and its
imp	act on the environment	
• To l	earn wind energy conversion system and its issues with grid integration.	
• To l	earn the concepts of solar PV and solar thermal systems.	
	earn other alternate energy sources such as Biomass, geothermal energy and hydro e	nergy
	ety of issues in harnessing	
	understand the concept of tidal energy, hydrogen energy, ocean thermal energy and its	S
sign	ificance.	
UNIT I	RENEWABLE ENERGY SOURCES	9
	al energy sources- Fossil Fuels, Types of fossil fuel, Environmental consequences	CO
	el use, Non-Conventional energy sources- Renewable energy(RE) and its types,	00
	es of renewable energy sources, Sustainable Design and development, Effects and	
-	of RE sources.	
UNIT II	WIND ENERGY	9
Wind form	ation, Power in the Wind – WPP (wind power plant)- Components of WPPs -Types	CO
	ower Plants (WPPs)– Working of WPPs- Siting of WPPs-Grid integration issues of	
WPPs.		
UNIT III	SOLAR - THERMAL SYSTEMS AND PV SYSTEMS	9
Solar Radi	ation, Radiation Measurement, Solar Thermal system and its types, Solar	CO
	c systems (SPV) : Basic Principle of SPV conversion – Types of PV Systems- Types	
	lls, Photovoltaic cell concepts: Cell, module, array, I-V Characteristics, Efficiency	
	of the Cell, series and parallel connections - Applications.	
	BIOMASS, GEOTHERMAL AND HYDRO ENERGY SOURCES	9
UNIT IV		
UNIT IV Introduction	n-Bio mass resources –Energy from Bio mass: conversion processes-Biomass	CO

Flectricity	Mini/micro hydro power: Classification of hydropower schemes, Essential	
•	s of hydroelectric system.	
UNIT V	OTHER ENERGY SOURCES	9
	y: Energy from the tides, Barrage and Non Barrage Tidal power systems. Wave	CO5
	ergy from waves, wave power devices. Hydrogen Production and Storage- Fuel cell	005
	of working- various types - construction and applications.	
· I Interpre (	Total Hours:	45
	TEXTBOOKS	-10
1.	Joshua Earnest, Tore Wizeliu, 'Wind Power Plants and Project Development', PHI Learning Pvt.Ltd, New Delhi, 2015.	
2.	D.P.Kothari, K.C Singal, Rakesh Ranjan "Renewable Energy Sources and Emergin Technologies", PHI Learning Pvt.Ltd, New Delhi, 2013.	g
3.	Scott Grinnell, "Renewable Energy & Sustainable Design", CENGAGE Learning, 2016.	USA,
	REFERENCE BOOKS	
1.	A.K.Mukerjee and Nivedita Thakur," Photovoltaic Systems: Analysis and Design", Learning Private Limited, New Delhi, 2011	PHI
2.	Richard A. Dunlap," Sustainable Energy" Cengage Learning India Private Limited, 2015	Delhi,
3.	Chetan Singh Solanki, "Solar Photovoltaics : Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2011	
4.	Bradley A. Striebig, AdebayoA.Ogundipe and Maria Papadakis," Engineering Applications in Sustainable Design and Development", Cengage Learning India Pri Limited, Delhi, 2016.	ivate
5.	Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.	
6.	Shobh Nath Singh, 'Non-conventional Energy resources' Pearson Education ,2015.	
7.	NPTEL Video Lecture Notes on "Renewable Energy Engineering: Solar, Wind and Biomass Energy Systems" by Prof. Vaibhav Vasant Goud, Prof. R. Anandalakshmi Guwahati.	
	COURSE OUTCOMES:	
	Upon completion of the course, students will be able to	
CO1	Ability to create awareness about non- renewable and renewable Energy Sources ar technologies	nd
CO2	Acquire knowledge on the concepts of wind energy conversion system, siting and g related issues.	grid
CO3	Ability to understand the solar PV and solar thermal systems	
CO4	Ability to analyse other types of renewable energy resources like biomass, geothern Hydro energy.	nal and
CO5	Ability to Acquire knowledge on tidal energy, hydrogen energy, ocean thermal energy fuel cell.	rgy and

	Μ	APP	ING	BET	WEE	N CC	) AN	D PO	, PSC	) WI	TH C	CORR	ELAT	ION LI	EVEL 1	/2/3
COs				PRO	PROGRAMME SPECIFIC OUTCOMES											
COS	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO	PSO
	- 01	- 0-	- 00	- • •	- 00	- 00	- 07	- 00	- 0/	0	1	2	1	2	3	4
CO1	3	1	1	1	1	3	3	3	1	1	1	3	-	-	2	1
CO2	3	3	3	3	3	3	3	3	3	1	3	3	-	-	2	1
<b>CO3</b>	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3											3	-	-	2	1
CO4	3	3	3	3	3	3	2	3	3	1	2	3	-	-	2	1
CO5	3	3	3	3	3	3	2	3	3	1	2	3	-	-	2	1

OEC412 FOUNDATIONS OF ROBOTICS	L	Τ	Р	С
	3	0	0	3
OBJECTIVES:				
• To comprehend how a robot's fundamental parts work.				
• To examine how different Ends of Effectors and sensors are used.				
• To disseminate information on programming and robot kinematics.				
• To learn about the economics, safety, and future of robots.				
UNIT I FUNDAMENTALS OF ROBOT				9
Robot - Definition - Robot Anatomy - Coordinate Systems, Work Envelope	Typ	es, a	and	CO1
Classification - Specifications - Pitch, Yaw, Roll, Joint Notations, Speed of Moti				
- Robot Parts and their Functions - Need for Robots - Different Applications.	<i>,</i>	2		
UNIT II SYSTEMS FOR ROBOT DRIVE AND END EFFECTORS				9
Pneumatic Drives - Hydraulic Drives - Mechanical Drives - Electrical Drives	- D.	C. Se	ervo	CO2
Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and C				
all these Drives - End effectors - Classification, Types of Mechanical actuation, G	-			
Robot drive system Types, Position, and velocity feedback devices - Robot join				
Types, Motion interpolation.				
UNIT III SENSORS AND MACHINE VISION				9
Sensors in robots: Touch Sensors, Tactile Sensors, Proximity, and range sensors,	Forc	e sen	sor,	CO3
Light sensors, Pressure sensors - Triangulations Principles Structured - Lighti				
Time of Flight, Camera, Frame Grabber, Sensing and Digitizing Image I				
Conversion, Image Storage, Lighting Techniques, Image Processing, and An				
Reduction, Segmentation, Feature Extraction, Object Recognition, Other				
Applications Inspection, Identification, Visual Serving, and Navigation.	-			
UNIT IV KINEMATICS AND PROGRAMMING FOR ROBOTS				9
Robot kinematics – Basics of direct and inverse kinematics, Robot trajectories	s, 2D	and	3D	CO4
Transformation-Scaling, Rotation, Translation Homogeneous transformation. Co				
manipulators - Point-to-point, Continuous Path Control, Robot programming - I				
Artificial Intelligence.				
UNIT V ROBOT APPLICATIONS AND ECONOMIC IMPLEMENTA	ΓΙΟΝ	N		9
RGV, AGV, Industrial applications of robots, Medical, Household, Entertain	men	t, Sp	ace,	CO5
Underwater, Defense, and Disaster management. Applications, Micro and Nano		· •		
Applications Robotics adoption in Industries - Safety Considerations for Robo	t Ope	eratio	ons -	
Economic Analysis of Robots.				
	Tota	l Ho	urs:	45
TEXTBOOKS				
1. Klafter R.D., Chmielewski T.A, and Negin M., "Robotic Engine	ering	g - A	n Int	egrate
Approach", Prentice Hall, 2003.				-

2.	Bruno Siciliano, Oussama Khatib, "Springer Handbook of Robotics", Springer, 2008.
	REFERENCE BOOKS
1.	Deb.S.R and Sankha Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill Publishing Company Limited, 2010.
2.	Mikell P. Groover, Mitchell Weiss, Roger N Nagel, Nicholas G Odrey, "Industrial Robotics Technology, Programming and Applications", Tata –McGraw Hill Pub. Co., 2008.
3.	Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.
4.	Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.
	COURSE OUTCOMES:
	Upon completion of the course, students will be able to
CO1	List and describe the fundamental components of industrial robots.
CO2	Examine the kinematics and control strategies of the robot.
CO3	To improve performance, classify the numerous robot sensors.
CO4	To list the different commercial and noncommercial uses of robots.
CO5	Able to apply basic engineering knowledge for the design of robotics

	Μ	APP	ING	BET	WEE	N CC	) AN	D PO	, PSC	) WI	TH C	ORR	ELAT	ION LI	EVEL 1	/2/3					
COs				PRO	GRA	MM	E OU	TCC	OMES	5			PROGRAMME SPECIFIC OUTCOMES								
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4					
CO1	3	3	3	2	2	2	-	-	-	-	2	3	3	2	1	2					
CO2	3	3	3	3	2	3	-	-	-	-	2	2	3	2	1	2					
CO3	3	2	3	3	2	2	-	-	-	-	2	3	3	2	1	2					
CO4	3	3	3	2	2	2	-	-	-	-	2	2	3	2	2	2					
CO5	2	2	3	3	2	3	-	-	-	-	2	3	3	2	2	2					

OMB413	DIGITAL MARKETING	L	Τ	Р	С
		3	0	0	3
OBJECTIV	/ES:				
	primary objective of this module is to examine and explore the role and	d im	porta	ance o	of
digit	al marketing in today's rapidly changing business environment.				
• It als	so focusses on how digital marketing can be utilised by organisations a	nd h	ow i	ts	
effec	ctiveness can be measured.				
UNIT I	INTRODUCTION TO DIGITAL MARKETING				9
	ket space- Digital Marketing Strategy- Components -Opportunities f	for t	ouild	ing	CO1
Brand-Web	site - Planning and Creation- Content Marketing.				
UNIT II	SEARCH ENGINE OPTIMISATION				9
Search Engi	ne optimisation - Keyword Strategy- SEO Strategy - SEO success factor	ors -	On-F	age	CO2
Techniques	- Off-Page Techniques. Search Engine Marketing- How Search Engine	wor	ks- S	EM	
components	- PPC advertising -Display Advertisement.				
UNIT III	E-MAIL MARKETING				9
E- Mail Ma	rketing - Types of E- Mail Marketing - Email Automation - Lead (	Gene	eratic	on –	CO3
Integrating	Email with Social Media and Mobile- Measuring and maximising ema	ail c	ampa	aign	

Coupons	and offers, Mobile Apps, Mobile Commerce, SMS Campaigns-Profiling and targeting.	
UNIT IV		9
	edia Marketing - Social Media Channels- Leveraging social media for brand	CO4
	ions and buzz. Successful/benchmark Social media campaigns. Engagement	
	g- Building Customer relationships - Creating Loyalty drivers - Influencer Marketing.	
UNIT V	BRAND PERFORMANCE	9
	ransformation & Channel Attribution- Analytics- Ad-words, Email, Mobile, Social	CO
	eb Analytics - Changing your strategy based on analysis- Recent trends in Digital	
marketing		
	Total Hours:	45
	TEXTBOOKS	43
1.	Fundamentals of Digital Marketing by Puneet Singh Bhatia; Publisher: Pearson	
1.	Education; First edition (July 2017).	
2.	Digital Marketing by Vandana Ahuja ;Publisher: Oxford University Press (April 2	015)
2.	Digital Marketing by Vandana Andja ,i donsher. Oxford Oniversity (1655 (14pm 2	015)
	REFERENCE BOOKS	
1.	Marketing 4.0: Moving from Traditional to Digital by Philip Kotler; Publisher: Wil	ley; 1s
	edition (April 2017);	•
2.	Ryan, D. (2014). Understanding Digital Marketing: Marketing Strategies for Enga	ging
	the Digital Generation, Kogan Page Limited.	
3.	Pulizzi, J Beginner's Guide to Digital Marketing, Mcgraw Hill Education.	
4.	Barker, Barker, Bormann and Neher(2017), Social Media Marketing: A Strategic	
••	Approach, 2E South-Western, Cengage Learning.	
	COURSE OUTCOMES:	
CO1	COURSE OUTCOMES: Upon completion of the course, students will be able to	oidly
CO1	COURSE OUTCOMES:         Upon completion of the course, students will be able to         To examine and explore the role and importance of digital marketing in today's rap	oidly
	COURSE OUTCOMES:         Upon completion of the course, students will be able to         To examine and explore the role and importance of digital marketing in today's rap changing business environment.	oidly
	COURSE OUTCOMES:         Upon completion of the course, students will be able to         To examine and explore the role and importance of digital marketing in today's rap	oidly
CO2	COURSE OUTCOMES:         Upon completion of the course, students will be able to         To examine and explore the role and importance of digital marketing in today's rap changing business environment.         To focusses on how digital marketing can be utilised by organisations and how its effectiveness can measured.	oidly
CO1 CO2 CO3 CO4	COURSE OUTCOMES:         Upon completion of the course, students will be able to         To examine and explore the role and importance of digital marketing in today's rap changing business environment.         To focusses on how digital marketing can be utilised by organisations and how its effectiveness can measured.         To know the key elements of a digital marketing strategy	oidly
CO2 CO3	COURSE OUTCOMES:         Upon completion of the course, students will be able to         To examine and explore the role and importance of digital marketing in today's rap changing business environment.         To focusses on how digital marketing can be utilised by organisations and how its effectiveness can measured.	

	Μ	APP	ING	BET	WEE	N CC	) AN	D PO	, PSC	) WI	TH C	CORR	ELAT	ION LI	EVEL 1	/2/3
COs				PRO	PROGRAMME OUTCOMES PROGRAMME SPECIFIC OUTCOME											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	2	1	3	3	1	1	2	1	3	1	-	-	2	1
CO2	3	3	2	1	3	1	1	2	1	1	1	1	-	-	2	1
CO3	3	3	3	2	1	1	2	1	3	1	1	2	-	-	2	1
CO4	3	3	2	2	3	3	2	1	1	1	3	2	-	-	2	1
CO5	3	2	2	1	2	2	2	3	1	1	2	2	-	-	2	1

OAD414	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	L	Т	Р	С
	(Common to Electronics and Communication Engineering)	3	0	0	3
OBJEC	TIVES:				
• 1	o provide a strong foundation on fundamental concepts in Artificial Intell	igen	ce.		
• 7	o enable Problem-solving through various searching techniques.				
• I	ntroduce Machine Learning and supervised learning algorithms				
• S	tudy about ensembling and unsupervised learning algorithms				
• 7	'o apply Artificial Intelligence techniques primarily for machine learning.				
UNIT I	INTRODUCTION TO AI AND SEARCHING				9
search s	tion to AI - AI Applications - Problem solving agents – search algorithms - trategies – Heuristic search strategies: A* algorithm – Game Playing: – constraint satisfaction problems (CSP)				CO1
UNIT II					9
	lge-based agents – propositional logic – propositional theorem proving –	prop	ositi	onal	CO2
model cl	necking – agents based on propositional logic. First-order logic – forward chaining – resolution.				
UNIT II					9
	tion to machine learning – Linear Regression Models: Least squares, singl	e &	mult	inle	-
	s, Bayesian linear regression, gradient descent, Linear Classificati			-	
	nant function – Probabilistic discriminative model - Logistic regression,				
	ve model – Naive Bayes, Maximum margin classifier				
UNIT I	<b>ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNIN</b>	G			9
Combini	ng multiple learners: Model combination schemes, Voting, Ensemble	e Le	arnir	ng -	
	boosting, stacking, Unsupervised learning: K-means, Instance Based Lea			-	
Gaussiar	n mixture models and Expectation maximization		-		
UNIT V	INTELLIGENCE AND APPLICATIONS				9
Natural	anguage processing-Morphological Analysis-Syntax analysis -Semantic	Anal	ysis	Ail	CO5
applicati	ons - Language Models - Information Retrieval - Information Extraction	n – 1	Mach	nine	
Translati	on - Machine Learning - Symbol-Based - Machine Learning: Connectioni	st – l	Mach	nine	
Learning	ŗ.				
		<b>Fota</b>	l Ho	urs:	45
	TEXTBOOKS				
1.	Stuart Russell and Peter Norvig, "Artificial Intelligence – A Modern App Edition, Pearson Education, 2021.	roac	h", F	ourth	1
2.	Elaine Rich and Kevin Knight, —Artificial Intelligencel, Third Edition, Ta 2010.	ita M	[cGra	aw-H	ill,
	REFERENCE BOOKS				
1.	Dan W. Patterson, "Introduction to Artificial Intelligence and Expert Sys	tem	s", P	earso	n
2	Education,2007 Kavin Night Elaina Pich and Nair P. "Artificial Intelligence" McGraw	LI:11	200	10	
2.	Kevin Night, Elaine Rich, and Nair B., "Artificial Intelligence", McGraw				
3.	Patrick H. Winston, "Artificial Intelligence", Third Edition, Pearson Educ	at10	n, 20	UD	
	COURSE OUTCOMES:				
	Unon completion of the course students will be 11.				
<u>CO1</u>	Upon completion of the course, students will be able to				
CO1 CO2	Upon completion of the course, students will be able to Use appropriate search algorithms for problem solving Provide a basic exposition to the goals and methods of Artificial Intelligen				

CO3	Build supervised learning models
<b>CO4</b>	Build ensembling and unsupervised models
CO5	Improve problem solving skills using the acquired knowledge in the areas of natural language
	processing with machine learning.

	M	APPI	NG B	ETW]	EEN (	COA	ND P	O, PS	O WI	THC	ORR	ELA	ΓΙΟΝ	LEV	EL 1/	2/3
														ROGR		
~ ~				PRC	OGRA	MMI	E OU'	ГСОМ	AES					<b>SPE</b> (		
COs		1	1				1	1	1					DUTC		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9			PO1				
C01	3	2	2	1	1	1	1	1	1	<b>0</b> 1	<b>1</b>	<b>2</b> 2	1	2	<b>3</b> 2	<b>4</b> 1
CO1 CO2	3	3	2	2	1	1	1	1	1	1	1	2	_	_	2	1
CO3	3	3	2	2	3	1	1	1	1	1	1	2	-	-	2	1
CO4	3	3	2	2	1	1	1	1	1	1	1	2	-	-	2	1
CO5	3	3	2	2	2	1	1	1	1	1	1	3	-	-	2	1
	<u> </u>									10						~
OMA42			URCE					CHN	IQUE	ES					P	<u>C</u>
OBJECT			on to	all B.F	5. / B.	Tech.	.)						3	0	0	3
			vith re	ouroc	mon	aama	nt tool	hniau	20							
			e prob			0		-		teger	nrogra	mmin	ισ			
			d the d								piogra		ıg.			
			to CPI				icui pi	ogran		•						
UNIT I			R PR													9
							- Mod	leling	phase	s – Ll	P Forr	nulati	on an	d grap	hic	CO1
Principal components of decision problem – Modeling phases – LP Formulation and graphicCCsolution – Resource allocation problems – Simplex method – Sensitivity analysis.CC																
UNIT II	D	UAL	ITY A	ND N	JETW	/ORK	S									9
Definitio															Post	CO2
optimalit	-	-		_			-	ent m	odel -	Short	est roi	ite pro	blem	•		
UNIT II			ER P					1 1		(5		· \ D				9
Cutting p										age (L	)ynam	nc) Pr	ogran	ming	•	CO3
UNIT IV			SICAL								1.4		• ,	<b>T</b>	1 •	9
Unconstr methods			-				-			-			aints -	– Jaco	bian	CO4
UNIT V		<u> </u>	CT SC							1	1					9
Network PERT	diagr	am rej	presen	tation	– Cri	tical p	oath m	nethod	– Tir	ne cha	arts ar	nd reso	ource	leveli	ng –	CO5
													Tot	al Ho	urs:	45
			BOOH													
1.	H	[.A. Ta	aha "C	)perat	ion Re	esearc	h", Pr	entice	Hall	of Ind	ia, 200	02.				
2.	Р	aneer	Selva	n "Op	eratio	ns Re	search	n", Pre	entice	Hall c	of Indi	a, 200	2			
			RENC													
1.	A	nders	on "Q	uantit	ative I	Metho	ds for	Busir	ness",	8th E	dition,	Thon	nson I	earni	ng, 20	02.
2.	W	Vinsto	n "Op	eratio	n Rese	earch"	, Tho	mson	Learn	ing, 20	003.					
3.	V	'ohra '	'Quan	titativ	e Tecl	nnique	es in N	Aanag	ement	:", Tat	a Mc	Graw	Hill,	2002.		
4.	А	nand	Sarma	ı "Ope	ration	Rese	arch",	Hima	alaya I	Publis	hing I	łouse,	2003			

	COURSE OUTCOMES:
	Upon completion of the course, students will be able to
CO1	Solve optimization problems using simplex method.
CO2	Solve optimization problems using Duality concept, solve Transportation and assignment models.
CO3	Apply integer programming and linear programming to solve real-life applications.
CO4	Solving Unconstrained external problems.
CO5	Use PERT and CPM for problems in project management.

	Μ	[APP]	ING	BET	WEE	N CC	) AN	D PO	, PSC	) WI	TH C	ORR	ELAT	ION LI	EVEL 1	1/2/3
COs	PROGRAMME OUTCOMES PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	2	2	2	1	-	-	-	1	1	1	-	-	-	1	2
CO2	2	2	2	1	1	-	-	-	1	1	-	1	-	-	1	2
CO3	2	3	2	1	1	-	-	-	2	2	-	-	-	-	1	2
CO4	2	2	2	2	1	-	-	-	1	1	1	1	_	-	1	2
CO5	2	1	2	1	1	-	-	-	2	1	1	-	-	-	1	2

OME417/	INTRODUCTION TO INDUSTRIAL ENGINEERING	L	Т	Р	С					
EC4525										
	Common to ECE, CSE, IT & ADS	3	0	0	3					
OBJECTIV	/ES:									
• To p	rovide the knowledge on Forecasting methods and planning procedu	re.								
• To e	expose the students to the basics in Inventory and Quality Control.									
• To p	rovide the knowledge on various Economic Evaluation techniques.									
UNIT I	FORECASTING AND AGGREGATE PLANNING				9					
Defining O	perations Management, functions and its historical evolution. Fe	ore	casti	ng:	CO1					
Approaches	to Forecasting: Qualitative approach - Judgmental methods, q	luar	ntitat	ive						
methods- tir	ne series, regression. Aggregate Planning: purpose, procedure and te	chn	ique	s						
UNIT II	<b>PRODUCTION MANAGEMENT &amp; SCHEDULING</b>				9					
Production 1	Management: Types of production systems, Product analysis, brief t	trea	tmen	t of	CO2					
functions of	f production Planning and Control, Value analysis Scheduling: In	ntro	duct	ion,						
concept of b	batch production systems, Loading, Sequencing, and Scheduling the	n j	obs d	on a						
single mach	ine, two machines, three machines, m-machines. Problem solving.									
UNIT III INVENTORY AND QUALITY CONTROL										
Inventory Control : Introduction, models, Inventory costs, Basic models EOQ and EBQ with										
out shortage	s, Quantity discounts, Selective control ABC analysis, Problem solv	ving	g Qua	ality						

Control : I	nspection and types, SQC - Control charts for attributes and variables, construction	
	ation – Acceptance sampling, sampling plans, Construction of O.C. curve. Problem	
solving.		
UNIT IV	GENERAL AND PERSONNEL MANAGEMENT	9
	Ianagement: General Management, Principles of Scientific Management; Brief	CO4
	of Managerial Functions. Modern Management concept. Personnel Management:	
	nnel Function, Staff Role in Person Department, Personnel Functions, Job Design,	
Job Inforn	nation.	
UNIT V	ECONOMIC EVALUATION	9
Alternativ Depreciati Straight-L Brief Trea Six Sigma	Management: Concept of Interest, Compound Interest, Economic Evaluation of es: The Annual Equivalent Method, Present Worth Method, Future Worth Method on – Purpose, Types of Depreciation; Common Methods of Depreciation; The ine Method, Declining Balance Method, The Sum of the years Digits Method, A tment of Balance Sheet, Ratio Analysis. Introduction to JIT / Lean Manufacturing, a Quality Concept, Supply Chain Management, Business Process Reengineering, at Engineering, Enterprise Resource Planning.	CO5
	Total Hours:	45
	TEXTBOOKS	
1.	O.P.Khanna, Industrial Engineering and Management, 7th Edition, DhanpatRaid 2002.	& Sons,
2.	Mortand Telsang, Production and Operating Management, 2nd Edition, S.Chano	1,2006.
	REFERENCE BOOKS	
1.	E.S.Buffa, Modern Production/Operation Management, 8th Edition, Wiley India	, 2007.
2.	Joseph G Monks, Operation Management, 3rd Edition, Tata McGraw Hill, 1987.	
	COURSE OUTCOMES:	
	Upon completion of the course, students will be able to	
CO1	Understand the Forecasting methods and planning procedure.	
CO2	Explain the concepts of general management, financial management, human reso	ources,
	production management, and marketing management.	
CO3	Illustrate the application with to identify solutions to industry problems	
<b>CO4</b>	Implement the Principles of Scientific and personnel Management	
<u>CO4</u> CO5	Identify the optimum solutions with system approach to both industry and servic	

	Μ	[APP]	ING	ветч	WEE	N CC	) AN	D PO	, PSC	) WI	ТН С	CORR	ELAT	ION LI	EVEL 1	/2/3
COs				PRO	PROGRAMME SPECIFIC OUTCOMES											
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	-	-	-	-	-	1	2	2	1	3	-	-	-	1	1
CO2	3	3	-	-	-	-	1	2	2	1	3	-	-	-	1	1
CO3	3	3	-	-	-	-	1	2	2	1	3	-	-	-	1	2
CO4	3	3	-	-	-	-	1	2	2	1	3	-	-	-	1	2
CO5	3	3	-	-	-	-	1	2	2	1	3	-	-	-	1	2

## **OPEN ELECTIVE II**

	EHICLE L	T P	<b>C</b>
(Common to CSE, ECE, ME	ECH, IT& ADS) 3	0 0	3
OBJECTIVES:			
To provide knowledge of the operation	•		
To impart knowledge on vehicle control	ol for standard drive cycles of electrical vehicles	s (EVs)	)
• To estimate the energy requirement of 1	EVs and Hybrid Electric Vehicles (HEVs)		
• To provide knowledge about different e	energy sources and energy management in HEV	s.	
• To provide knowledge of supervisory c	control of EVs		
	ENTIONAL AND ELECTRIC VEHICLES		9
	erformance, vehicle power source characteriza	tion.	
1	e: EV system- Series parallel architecture of Hy	-	
	ctric Vehicles (PHEV)- Power train components		CO1
sizing, Gears, Clutches, Transmission and Bra		una	001
sizing, Gears, eracines, transmission and Di	ukes.		
UNIT II MECHANICS OF ELECTRIC	CVEHICLES		9
	force, power and energy requirements for stand	dard	
drive cycles of EV's - motor torque and powe			CO2
UNIT III CONTROL OF DC AND AC			9
	IP operation of all electric motors - DC/DC cho	nner	,
	drives, inverter based V/f Operation (motoring		
			CO3
-	ction and operation of PMSM, Brushless DC m	lotor	CO3
drives, Switched reluctance motor (SRM) dri	ves.		
LINET IN ENERCY STODACE AND M			0
UNIT IV ENERGY STORAGE AND M		1	9
• • • • •	s, Estimation of SOC & SOH, Traction Batteries		~~.
		T1	
	ternate sources: Fuel cells, Ultra capacitors,	, Fly	CO4
wheels.		, Fly	
wheels. UNIT - V HYBRID VEHICLE CONTROL	OL STRATEGY	_	CO4 9
wheels.UNIT - VHYBRID VEHICLE CONTROHEV supervisory control - Selection of mode	OL STRATEGY es - power spilt mode - parallel mode - engine b	vrake	
wheels. UNIT - V HYBRID VEHICLE CONTROL	<b>OL STRATEGY</b> es - power spilt mode - parallel mode - engine b ode.	orake	9 CO5
wheels.UNIT - VHYBRID VEHICLE CONTROHEV supervisory control - Selection of mode	OL STRATEGY es - power spilt mode - parallel mode - engine b	orake	9 CO5
wheels.         UNIT - V       HYBRID VEHICLE CONTROL         HEV supervisory control - Selection of mode         mode - regeneration mode - series parallel mode	<b>OL STRATEGY</b> es - power spilt mode - parallel mode - engine b ode.	orake	9 CO5
wheels.         UNIT - V       HYBRID VEHICLE CONTROL         HEV supervisory control - Selection of mode         mode - regeneration mode - series parallel mode         Text Books:	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total H	orake ours:	9 CO5 45
wheels.       HYBRID VEHICLE CONTROLE         UNIT - V       HYBRID VEHICLE CONTROLE         HEV supervisory control - Selection of mode mode - regeneration mode - series parallel mode         Text Books:         1.       M. Ehsani, Y. Gao, S. E. Gay and	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total H d A. Emadi, "Modern Electric, Hybrid Electric	orake ours:	9 CO5 45
wheels.         UNIT - V       HYBRID VEHICLE CONTROLE         HEV supervisory control - Selection of mode mode - regeneration mode - series parallel mode         mode - regeneration mode - series parallel mode         Text Books:         1.       M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory,	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total He d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004.	orake ours:	9 CO5 45 Fuel Cel
wheels.       HYBRID VEHICLE CONTROLE         UNIT - V       HYBRID VEHICLE CONTROLE         HEV supervisory control - Selection of mode mode - regeneration mode - series parallel mode         mode - regeneration mode - series parallel mode         Text Books:         1.       M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory, 2.         Iqbal Husain, "Electric and Hybrid H	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total H d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS	orake ours:	9 CO5 45 Fuel Cel
wheels.       HYBRID VEHICLE CONTROLE         UNIT - V       HYBRID VEHICLE CONTROLE         HEV supervisory control - Selection of mode mode - regeneration mode - series parallel mode         Text Books:         1.         M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory, 2.         Iqbal Husain, "Electric and Hybric London, New York Washington, 1000 (1000)	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total H d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS	orake ours:	9 CO5 45 Fuel Cel
wheels.         UNIT - V       HYBRID VEHICLE CONTROL         HEV supervisory control - Selection of mode       mode       mode         mode - regeneration mode - series parallel mode       mode       series parallel mode         Text Books:         1.       M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory,         2.       Iqbal Husain, "Electric and Hybrid London, New York Washington,         Reference Books:	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total H d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS D.C,2005.	orake ours: , and I S, Boc	9 CO5 45 Fuel Cell a Raton
wheels.         UNIT - V       HYBRID VEHICLE CONTROMENTATION         HEV supervisory control - Selection of mode mode - regeneration mode - series parallel mode mode - regeneration mode - series parallel mode         Text Books:       Image: Control - Selection of mode mode - series parallel mode         1.       M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory, 2.         Iqbal Husain, "Electric and Hybric London, New York Washington, Reference Books:         1.       C. Mi, M. A. Masrur and D. W. Gate	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total H d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS D.C,2005. ao, "Hybrid Electric Vehicles: Principles and Ap	orake ours: , and I S, Boc	9 CO5 45 Fuel Cell a Raton
wheels. <b>UNIT - V HYBRID VEHICLE CONTRO</b> HEV supervisory control - Selection of mode       mode       mode         mode - regeneration mode - series parallel mode       mode       series parallel mode <b>Text Books:</b> 1.       M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory,         2.       Iqbal Husain, "Electric and Hybric London, New York Washington, <b>Reference Books:</b> 1.       C. Mi, M. A. Masrur and D. W. Gather Practical Perspectives", John Will	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total H d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS D.C,2005. ao, "Hybrid Electric Vehicles: Principles and Ap ey & Sons, 2011.	orake ours: , and I S, Boc	9 CO5 45 Fuel Cell a Raton
wheels. <b>UNIT - V HYBRID VEHICLE CONTRO</b> HEV supervisory control - Selection of mode       mode       mode         mode - regeneration mode - series parallel mode       mode       series parallel mode <b>Text Books:</b> 1.       M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory,         2.       Iqbal Husain, "Electric and Hybric London, New York Washington, <b>Reference Books:</b> 1.       C. Mi, M. A. Masrur and D. W. Gather Practical Perspectives", John Will	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total H d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS D.C,2005. ao, "Hybrid Electric Vehicles: Principles and Ap	orake ours: , and I S, Boc	9 CO5 45 Fuel Cell a Raton
wheels.       HYBRID VEHICLE CONTROLE         UNIT - V       HYBRID VEHICLE CONTROLE         HEV supervisory control - Selection of mode mode - regeneration mode - series parallel mode         Text Books:         1.       M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory, 2.         Iqbal Husain, "Electric and Hybric London, New York Washington, Reference Books:         1.       C. Mi, M. A. Masrur and D. W. Gay and Practical Perspectives", John Will	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total H d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS D.C,2005. ao, "Hybrid Electric Vehicles: Principles and Ap ey & Sons, 2011.	orake ours: , and I S, Boc	9 CO5 45 Fuel Cell a Raton
wheels.       HYBRID VEHICLE CONTROMENDATION         UNIT - V       HYBRID VEHICLE CONTROMENDATION         HEV supervisory control - Selection of mode mode - regeneration mode - series parallel mode mode - regeneration mode - series parallel mode         Text Books:         1.       M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory, 2.         Iqbal Husain, "Electric and Hybric London, New York Washington, New York Washington, Reference Books:         1.       C. Mi, M. A. Masrur and D. W. Gan Practical Perspectives", John Will S. Onori, L. Serrao and G. Rizzor Springer, 2015.	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total H d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS D.C,2005. ao, "Hybrid Electric Vehicles: Principles and Ap ey & Sons, 2011.	orake ours: , and I S, Boc oplicati	9 CO5 45 Fuel Cell a Raton ions with ategies"
wheels.       HYBRID VEHICLE CONTROME         UNIT - V       HYBRID VEHICLE CONTROME         HEV supervisory control - Selection of mode       mode         mode - regeneration mode - series parallel mode       mode         Text Books:       1.         M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory,         2.       Iqbal Husain, "Electric and Hybric London, New York Washington,         Reference Books:       1.         C. Mi, M. A. Masrur and D. W. Gan Practical Perspectives", John Will         2.       S. Onori, L. Serrao and G. Rizzor Springer, 2015.	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total H d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS D.C,2005. ao, "Hybrid Electric Vehicles: Principles and Ap ey & Sons, 2011. ni, "Hybrid Electric Vehicles: Energy Managem	orake ours: , and I S, Boc oplicati	9 CO5 45 Fuel Cell a Raton ions with ategies"
wheels.       HYBRID VEHICLE CONTROME         HEV supervisory control - Selection of mode mode - regeneration mode - series parallel mode         Text Books:         1.       M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory, 2.         Iqbal Husain, "Electric and Hybric London, New York Washington, New York Washington, Practical Perspectives", John Will 2.         S. Onori, L. Serrao and G. Rizzor Springer, 2015.         3.       Larminie, James and John Lown Sons, 2012.	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total H d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS D.C,2005. ao, "Hybrid Electric Vehicles: Principles and Ap ey & Sons, 2011. ni, "Hybrid Electric Vehicles: Energy Managem	orake ours: , and I S, Boc oplication	9 CO5 45 Fuel Cell a Raton ions with rategies", /iley and
wheels.       HYBRID VEHICLE CONTROME         HEV supervisory control - Selection of mode mode - regeneration mode - series parallel mode         Text Books:         1.       M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory,         2.       Iqbal Husain, "Electric and Hybric London, New York Washington,         Reference Books:       1.         2.       S. Onori, L. Serrao and G. Rizzor Springer, 2015.         3.       Larminie, James and John Lown Sons, 2012.         4.       Tariq Muneer and Irene Illescas	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total He d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS D.C,2005. ao, "Hybrid Electric Vehicles: Principles and Ap ey & Sons, 2011. ni, "Hybrid Electric Vehicles: Energy Managem ry, "Electric Vehicle Technology Explained" J	orake ours: , and I S, Boc oplication	9 CO5 45 Fuel Cell a Raton ions with rategies", /iley and
wheels.         UNIT - V       HYBRID VEHICLE CONTROMENDATION         HEV supervisory control - Selection of model mode - regeneration mode - series parallel model         Text Books:         1.       M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory, 2.         Iqbal Husain, "Electric and Hybric London, New York Washington, New York Washington, Reference Books:         1.       C. Mi, M. A. Masrur and D. W. Gan Practical Perspectives", John Will 2.         2.       S. Onori, L. Serrao and G. Rizzor Springer, 2015.         3.       Larminie, James and John Lowr Sons, 2012.         4.       Tariq Muneer and Irene Illescas Challenges", Elsevier, 2017.	OL STRATEGY es - power spilt mode - parallel mode - engine bode. Total H d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS D.C,2005. ao, "Hybrid Electric Vehicles: Principles and Ap ey & Sons, 2011. ni, "Hybrid Electric Vehicles: Energy Managem ry, "Electric Vehicle Technology Explained" J García, "The automobile, In Electric Vehicles:	orake ours: , and I S, Boc oplication ent Str ohn W Prosp	9 CO5 45 Fuel Cell a Raton ions with rategies", /iley and pects and
wheels.       HYBRID VEHICLE CONTROMENDATION         HEV supervisory control - Selection of mode mode - regeneration mode - series parallel mode mode - regeneration mode - series parallel mode         Text Books:         1.       M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory, 2.         Iqbal Husain, "Electric and Hybric London, New York Washington, New York Washington, New York Washington, C. Mi, M. A. Masrur and D. W. Gan Practical Perspectives", John Will         2.       S. Onori, L. Serrao and G. Rizzor Springer, 2015.         3.       Larminie, James and John Lown Sons, 2012.         4.       Tariq Muneer and Irene Illescas Challenges", Elsevier, 2017.         5.       Sheldon S. Williamson, "Energy Note: State of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total He d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS D.C,2005. ao, "Hybrid Electric Vehicles: Principles and Ap ey & Sons, 2011. ni, "Hybrid Electric Vehicles: Energy Managem ry, "Electric Vehicle Technology Explained" J	orake ours: , and I S, Boc oplication ent Str ohn W Prosp	9 CO5 45 Fuel Cell a Raton ions with rategies", /iley and pects and
wheels.       HYBRID VEHICLE CONTROMENTE         UNIT - V       HYBRID VEHICLE CONTROMENTE         HEV supervisory control - Selection of mode mode - regeneration mode - series parallel mode         Text Books:         1.       M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory,         2.       Iqbal Husain, "Electric and Hybric London, New York Washington,         Reference Books:         1.       C. Mi, M. A. Masrur and D. W. Ganger, 2015.         3.       Larminie, James and John Lown Sons, 2012.         4.       Tariq Muneer and Irene Illescas Challenges", Elsevier, 2017.         5.       Sheldon S. Williamson, "Energy N Vehicles", Springer, 2013.	OL STRATEGY es - power spilt mode - parallel mode - engine b ode. Total H d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS D.C,2005. ao, "Hybrid Electric Vehicles: Principles and Ap ey & Sons, 2011. ni, "Hybrid Electric Vehicles: Energy Managem ry, "Electric Vehicle Technology Explained" J García, "The automobile, In Electric Vehicles: Management Strategies for Electric and Plug-in I	orake ours: , and I S, Boc oplicati ent Str ohn W : Prosp Hybric	9 CO5 45 Fuel Cell a Raton ions with rategies", /iley and pects and
wheels.       HYBRID VEHICLE CONTROME         HEV supervisory control - Selection of mode mode - regeneration mode - series parallel mode         Text Books:         1.       M. Ehsani, Y. Gao, S. E. Gay and Vehicles: Fundamentals, Theory, 2.         Iqbal Husain, "Electric and Hybric London, New York Washington, New York Washington, Reference Books:         1.       C. Mi, M. A. Masrur and D. W. Generatical Perspectives", John Will 2.         2.       S. Onori, L. Serrao and G. Rizzor Springer, 2015.         3.       Larminie, James and John Lowr Sons, 2012.         4.       Tariq Muneer and Irene Illescas Challenges", Elsevier, 2017.         5.       Sheldon S. Williamson, "Energy N Vehicles", Springer, 2013.         6.       Gregory L. Plett, "Battery Manage	OL STRATEGY es - power spilt mode - parallel mode - engine bode. Total H d A. Emadi, "Modern Electric, Hybrid Electric and Design", CRC Press, 2004. id vehicles: Design fundamentals", CRC PRESS D.C,2005. ao, "Hybrid Electric Vehicles: Principles and Ap ey & Sons, 2011. ni, "Hybrid Electric Vehicles: Energy Managem ry, "Electric Vehicle Technology Explained" J García, "The automobile, In Electric Vehicles:	orake ours: , and I S, Boc oplicati ent Str ohn W : Prosp Hybric 6.	9 CO5 45 Fuel Cell a Raton ions with rategies", /iley and pects and

	Economics" by Prof. Ashok Jhunjhunwala, Prof. Prabhjot Kaur, Prof. Kaushal Kumar Jha, Prof. L Kannan, IIT Madras.						
Cours	se Outcomes (CO)						
	Learned the significance of Electric Vehicle compared to conventional vehicles.						
CO2	2 Understood the concept of mechanics of Electric Vehicles.						
<b>CO3</b>	Acquired the knowledge in control of DC And AC motor drives.						
<b>CO4</b>	Concepts related to battery technology and energy storage systems are analysed.						
<b>CO5</b>	Acquired knowledge in control strategy for Hybrid Vehicle & Battery management systems for EV						

	Μ	MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3														
COs	PROGRAMME OUTCOMES PROGRAM SPECIFIC OUT															
COS	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO1</b>	<b>PO1</b>	<b>PO1</b>	PSO	PSO	PSO	PSO
										0	1	2	1	2	3	4
CO1	3	2	3	1	3	2	2	3	3	2	1	3	-	-	2	1
CO2	3	2	3	3	3	2	2	3	3	2	1	2	-	-	2	1
CO3	3	3	3	3	2	2	2	3	2	2	2	3	-	-	2	1
CO4	3	2	3	3	3	3	3	3	3	3	2	3	-	-	2	1
CO5	3	2	2	2	3	3	3	3	3	3	2	3	-	-	2	1

AD4513 DEVELOPMENTS AND OPERATIONS (Dev-Ops) L T	P	С					
(Common to CSE, IT and ADS) 3 0	0	3					
COURSE OBJECTIVES							
• To understand Dev-Ops fundamentals.							
• To understand the tangible and real benefits of DevOps.							
• To understand DevOps culture.							
• To understand Infrastructure Automation, Continuous Delivery, & Reliability Engineeri	ng co	ncepts.					
• To understand the Practices and tools used in DevOps.	-	-					
• To understand DevOps emerging areas including DevOps security.							
UNIT I FUNDAMENTALS		9					
DevOps: Definition, Values, Principles, Methodologies, Practices, Tools, Communicati	on,						
Wall of confusion, Communication, Collaboration, Transition, Continuous improvem	ent	CO1					
(Kaizen), Linux Commands.							
UNIT II BUILDING BLOCKS		9					
Communication and Collaboration, Continuous improvement, Automation and testing, Lea	in &						
Agile - Methodologies, Implementations, Build, Measure, Learn ITIL, ITSM, SDLC		CO2					
UNIT III INFRASTRUCTURE AUTOMATION		9					
Source control, Build and release management, Configuration management, Continu	lous						
integration and delivery, Monitoring and logging		CO3 9					
UNIT IV CONTINUOUS DELIVERY							
CI practices, CD pipeline, QA, CI tools, Securing CI/CD pipeline - DevSecOps, Development							
tools, inherit tools, Build tools, Deploy tools, Operation tools, Orchestration.							
UNIT V RELIABILITY ENGINEERING		9					
SRE basics, Practice - Release Engineering, Change Management, Fault tolerance and							
resilience, SLAs, Troubleshooting, Performance Engineering: Testing and validation,							
Scalability, Organization, Emerging areas: Cloud, Containers, Server-less, Security, I	load						
balancing.							

	Total Hours: 45							
	TEXTBOOKS							
1.	Gene Kim, Kevin Behr, George Spafford, "The Phoenix Project - a Novel IT, DevOps, and							
	helping your Business Win", 2018							
	REFERENCE BOOKS							
1.	Gary Gruver, Tommy Mouser, Leading the Transformation - Applying Agile and DevOps							
	principles at scale, IT Revolution, Portland.							
2.								
	world-class agility, reliability, and security in technology organizations".							
3.	Kenin, Gene, George, The Visible OPS Handbook - Implementing ITIL in 4 practical and							
	auditable steps".							
4.	Jez Humble, David Farley, Continuous Delivery, Addison – Wesley Signature series.							
5.	Jennifer Davis & Katherine Daniels, Effective DevOps - Building a culture of collaboration,							
	affinity, and tooling at scale.							
6.	Mary Poppendieck & Tom Poppendieck, Lean Software Development - An Agile Toolkit.							
7.	John Allspaw, Web Operations - Keeping the Data on Time.							
8.	Thomas, The Practice of cloud system administration - Designing and operating large							
	distributed systems							
	COURSE OUTCOMES							
	Upon completion of the course, students will be able to							
CO1	Explain the core concepts/principles of DevOps.							
CO2	Experiment DevOps concepts by using various tools.							
CO3	Outline the benefits of DevOps							
CO4	Implement security across the entirety of the continuous integration and continuous delivery							
	(CI/CD)							
CO5	Create scalable and highly reliable software systems							

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3														
COs	PROGRAMME OUTCOMES PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	3	2	2	1	1	-	-	-	1	1	2	-	-	1	1
CO2	3	3	2	2	1	1	-	-	-	1	1	2	-	-	1	1
CO3	3	3	2	2	1	1	-	-	-	1	1	2	-	-	1	1
CO4	3	3	2	2	1	1	-	-	-	-	1	2	-	-	1	2
CO5	3	3	2	2	1	1	-	-	-	-	1	2	-	-	1	1

<b>OEE423</b>	ADVANCED CONTROL SYSTEMS	L	Τ	P	С				
		3	0	0	3				
COURSE OBJECTIVES									
To impart knowledge on the following topics:									
• To provide knowledge on design state feedback control and state observer.									
• To p	rovide knowledge in phase plane analysis.								
• To g	ive basic knowledge in describing function analysis.								
• To study the design of optimal controller.									
• To study the design of optimal estimator including Kalman Filter									
UNIT – I	STATE VARIABLE ANALYSIS				9				

Trada 1 c		
	on- concepts of state variables and state model-State model for linear continuous time	001
•	Diagonalisation- solution of state equations- Concepts of controllability and	CO1
observabili		
UNIT – II		9
	on to state model: Effect of state feedback - Pole placement design: Necessary and	
	condition for arbitrary pole placement, State regulator design, Design of state	CO2
observers-	Separation principle- Design of servo systems: State feedback with integral control.	
UNIT-III	SAMPLED DATA ANALYSIS	9
Introductio	on spectrum analysis of sampling process signal reconstruction difference equations	
The Z trans	sform function, the inverse Z transform function, response of Linear discrete system,	CO3
the Z transf	form analysis of sampled data control systems, response between sampling instants,	
the Z and S	S domain relationship. Stability analysis and compensation techniques.	
UNIT IV		9
Introductio	n - common physical non linearities, The phase plane method: concepts, singular	
	bility of nonlinear systems, construction of phase trajectories system analysis by phase	CO4
± :	od. The describing function method, stability analysis by describing function method,	
Jump reson		
UNIT V	OPTIMAL CONTROL	9
	on: Classical control and optimization, formulation of optimal control problem,	-
	otimal control performance measures - Optimal state regulator design: Lyapunov	CO5
	Matrix Riccati equation - LQR steady state optimal control – Application examples.	005
equation, iv	matrix Recard equation - EQR steady state optimal control – Application examples.	
	Total Hours:	45
	TEXTBOOKS	73
1.		11 India
1.	M. Gopal, "Digital Control and State Variable Methods", 4th edition, McGraw Hi 2012	n muia,
2		
2.	K. Ogata, 'Modern Control Engineering', 5th Edition, Pearson, 2012.	
	REFERENCE BOOKS           M. Const. Modern Control System Theory, 2nd edition. New Acc. International	
1.	M. Gopal, Modern Control System Theory, 3rd edition, New Age International	
	Publishers, 2014.	D
2.	William S Levine, "Control System Fundamentals," The Control Handbook, CRC	Press,
	Tayler and Francies Group, 2011.	<u> </u>
3.	Ashish Tewari, 'Modern Control Design with Matlab and Simulink', John Wiley, N	New
	Delhi, 2002.	
4.	T. Glad and L. Ljung,, "Control Theory –Multivariable and Non-Linear Methods",	Taylor
	& Francis, 2002.	
5.	D.S.Naidu, "Optimal Control Systems" First Indian Reprint, CRC Press, 2009.	
6.	K. P. Mohandas, "Modern Control Engineering", Sanguine Technical Publishers, 20	006.
7.	NPTEL Video Lecture Notes on "Advanced Control Systems" by Prof. S. Majhi, Il	T
	Guwahati.	
8.	M. Gopal, Modern Control System Theory, 3rd edition, New Age International	
	Publishers, 2014.	
	COURSE OUTCOMES	
	Upon completion of the course, students will be able to	
CO1	Able to understand the modelling of state equation and its solution.	
$\frac{CO1}{CO2}$		
	Able to understand the state model, observer and feedback system.	
CO3	Able to understand the sampled data analysis, various transforms, stability and	
<u> </u>	compensation techniques.	
CO4	Able to understand the nonlinear systems and various methods of analysis.	

	CO5	Able to understand and design optimal controller.
--	-----	---------------------------------------------------

	Μ	MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3														
COs	PROGRAMME OUTCOMES PROGRAM															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	2	1	1	1	1	1	1	1	2	1	1	-	-	1	1
CO2	3	2	1	1	1	1	1	1	1	2	1	2	-	-	1	1
CO3	2	2	1	1	1	1	1	1	1	1	1	2	-	-	1	1
<b>CO4</b>	2	1	1	1	1	1	1	1	1	1	1	2	-	-	1	1
CO5	2	2	1	1	1	1	1	1	1	1	1	2	-	-	1	1

OMB443FINTECH TECHNOLOGIESLTP	С					
	3					
COURSE OBJECTIVES						
• To provide a broad introduction to the field of FinTech and Blockchain and its applicatio	n in the					
field of Financial sector.						
• To get a thorough knowledge on topics related block chain and crypto currencies, decent	ralized					
applications, innovative wealth management markets for smart contracts, applications	of					
Blockchain technologies in various finance areas, alternative and P2P lending and	crowd					
funding,						
UNIT I FINTECH IN FINANCIAL SERVICES	9					
FinTech, Future prospects and potential issues with FinTech- Global FinTech investments-						
Digital banking-Impact of digital technology on banking sector- Changes in customer buying	CO1					
behaviour-New age payments and remittances-Social media based remittances-Digital						
mortgages-Global Financial Instruments, Asset Management and Capital Markets						
UNIT II DIGITAL PAYMENTS						
New Generation Commerce-Point of sale evolution (POS)- m-POS business model-m- Wallets-						
Smart credit cards-T-commerce- Crowd funding and Crowd investing-P2P lending- Robo	CO2					
advising-FinTech and Global economy-New operating models for banks-Banking as service and						
Open APIs-Neo banks-Challenger banks						
UNIT III FINTECH ANALYTICS	9					
Big data in the Financial services Industry-Internet of Things (IOT) - IOT in Financial						
services-Innovative wealth management-Personal Finance Management-InsurTech-P2P	CO3					
insurance Block chained insurance-Risk associated with crypto market-Cost associated with						
crypto market investment-Crypto currency wallets.						
UNIT IV BLOCH CHAIN TECHNOLOGY	9					
Blockchain-Components of Blockchain -Public and private keys-Crypto currencies-	CO4					
Distributed ledgers- Impact of Blockchain in Financial Services-Applications of Blockchain						
in Financial Services-Clearing and Settlement- Trade Finance-Compliances-Know Your						
Customer-Anti Money Laundering.						
UNIT V INFORMATION SECURITIES IN FINTECH						
Distributed ledger for identification-Identification for Unbanked-Unique identification system						
in India-Using biometrics as Identification Cybercrime-Cyber security categories and players-	CO5					
Reg Tech						
Total Hours:	45					

	1	TEXTBOOKS						
1.	E	Blockchain Application in Finance, Peter Borovykh, Blockchain Driven, 2nd Edition, 2018						
2.	F	FinTech in a Flash, Financial Technology Made Easy, Agustin Rubini, Banking						
	I	nnovations 2nd edition 2017						
	ŀ	REFERENCE BOOKS						
1	. I	nclusive FinTech: Blockchain, Cryptocurrency and ICO, David Lee Chuen and Linda						
	L	Low, World Scientific Publishing, 2018						
2	. S	Susanne Chishti and Janos Barberies : The Fintech Book : The Financial technology						
	H	Handbook for investors, entrepreneurs and visionaries 1st edition. Kindle edition. Wiley						
	,	2016)						
		SE OUTCOMES						
	Upon c	completion of the course, students will be able to						
CO1	Ability	to apply the concepts of FinTech and critically evaluate its role in financial services.						
CO2	•	to apply the concept of new generation commerce and new operating models						
	for ban							
CO3	Knowl	edge to use the concepts of FinTech in wealth management, personal finance						
	management, crowd funding and crowd investing.							
CO4	Apply the concept of cryptocurrencies, risk associated with crypto market and cost							
	involved.							
CO5	Critically evaluate the role of FinTech in financial services and understand recent developments							
		as Distributed ledger for identification, Identification for Unbanked-Unique						
	identifi	cation system in India, Cybercrime, Cyber security categories						

		MA	PPIN	G BE	TWE	EN C	O AN	D PC	), PS(	) WI	ГН С	ORRE	LATIO	N LEV	EL 1/2/.	3						
COs	PROGRAMME OUTCOMES													PROGRAMME SPECIFIC OUTCOMES								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3	PSO 4						
CO1	2	2	1	2	2	2	1	1	2	1	3	1	-	-	1	1						
CO2	3	3	2	3	2	2	2	2	3	1	3	2	-	-	1	1						
CO3	3	3	3	3	3	3	2	2	3	1	3	3	-	-	1	1						
CO4	3	3	2	3	3	2	2	2	2	1	3	2	-	-	1	1						
CO5	3	3	1	2	2	2	2	2	2	1	3	1	-	-	1	1						

<b>OME424</b>	Sustainable Manufacturing	L	Т	Р	С
(	Common to CSE, IT, ADS, EEE, Mechanical Departments	3	0	0	3
COURSE (	DBJECTIVES				
To impart k	nowledge on the following topics:				
	o provide students with knowledge of key environmental and sustainal elevant to modern manufacturing.	bilit	y issi	ues	
	o provide a set of tools and skills that may be used to design, analyze, nanufacturing Processes, products, and business operations.	and	imp	ove	

UNIT I	Need for Sustainable Manufacturing	9
	n to the environmental issues pertaining to the manufacturing sector – pressure to	
reduce cos	ts - processes that minimize negative environmental impacts - environmental	CO1
legislation	and energy costs - acceptable practice in society - adoption of low carbon	
technologie	es – need to reduce the carbon footprint of manufacturing operations.	
UNIT II	Techniques for non-market valuation	9
Cost and i	ncome-based approaches, demand estimation methods - expressed and revealed	
	choice modelling - Multi-criteria analysis- Stakeholder analysis - Environmental	CO2
accounting	at sector and national levels	
UNIT III	Sustainability performance evaluators and Principles of sustainable	9
F	operations	
	ks and techniques – environmental management systems – life cycle assessment –	900
	nd environmental impact assessments – carbon and water foot-printing.	CO3
	assessment Manufacturing and service activities –Influence of product design on	
	– Process analysis – Capacity management – Quality management –Inventory	
-	nt – Just-In-Time systems – Resource efficient design – Consumerism and	
sustainable		0
UNIT IV	Strategies and Design Approaches	9
	f Competitive Strategy and Manufacturing Strategies and development of a strategic	004
	nt programme – Manufacturing strategy in business - success Strategy formation and	CO4
	n – Structured strategy formulation – Sustainable manufacturing system design	
$\frac{\text{options} - A}{\text{UNIT V}}$	pproaches to strategy formulation – Realization of new strategies/system designs	9
	Challenges and Opportunities	9
	in logistics and supply chain – developing the right supply chain strategy for the need to align the supply network around the strategy – Tools that can be used	CO5
	lly to identify areas for improvement in supply chains – Specific challenges and new	05
	the plan, source and delivering of sub-processes.	
tilliking in	Total Hours:	45
	TEXTBOOKS	73
1.	Seliger, G,(2012), Sustainable Manufacturing: Shaping Global Value Creation, Spr	inger
2.	Davim, J.P.(2010), Sustainable Manufacturing, John Wiley & Sons.	iliger
2.	Davin, 5.1. (2010), Sustainable Manufacturing, John Whey & Sons.	
	REFERENCE BOOKS	
1.	Gupta, S.M. and Lambert, A.J.D.(2008), Environment Conscious Manufacturing, C	CRC
	Press	
2.	Douglas C.Montgomery, "Design and Analysis of Experiments", 5th Edition, John	Wilev
	COURSE OUTCOMES	
	Upon completion of the course, students will be able to	
CO1	Identify key requirements and concepts in lean manufacturing.	
CO2	Understand the need for sustainability assessment and their types.	
CO3	Develop sustainability assessment framework model depending on the process und	er
	investigation.	~1
CO4	To Frame Strategic polices and implement sustainability approaches	
C04 C05	Apply knowledge of lean and other sustainability concepts in a typical sustainable	
	manufacturing setup.	
	manuraturing stup.	

# MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3

COs								JTCC					SPEC		AMM DUTCC	
COS	PO1	PO3	PO3		PO5	PO6	P07	POS		<b>PO1</b>	PO1	PO1 2	PSO	PSO	PSO	PSO
	101	102	105	104	105	100	10/	100	109	0	1	2	1	2	3	4
CO1	3	2	3	3	-	-	3	-	-	-	-	3	I	-	1	1
CO2	3	2	3	3	-	-	3	-	-	-	-	3	-	-	1	1
CO3	3	2	3	3	-	-	3	-	-	-	-	3	-	-	1	1
CO4	3	2	3	3	-	-	3	-	-	-	-	3	-	-	1	2
CO5	3	2	3	3	-	-	3	-	-	-	-	3	-	-	1	2

<b>OEC414</b>	<b>BIOMEDICAL INSTRUMENTATION</b>	L	Т	P	С
(	Common to CSE, IT, ADS, EEE, Mechanical Departments	3	0	0	3
COURSE (	OBJECTIVES				
To impart k	nowledge on the following topics:				
• To s	study about the biopotentials and its propagation				
• To u	understand the different types of electrodes and its placement for various	ıs re	cord	ing	
• To s	study the design of bio amplifier for various physiological recording				
• To l	earn different measurement techniques for non-physiological parameter	ers			
• To o	liscuss the recent trends in the field of diagnostic and therapeutic equip	omer	nt		
UNIT I	<b>BIOPOTENTIAL RECORDING AND ELECTRODE TYPES</b>				9
	al origin and its propagation. Types of electrodes and its equivalent	nt ci	rcuit	s -	
-	dle and micro electrodes. Recording problems - measurement with two				<b>CO1</b>
UNIT II	FEATURES OF BIOSIGNAL AND ELECTRODE CONFIGUR				9
Features of	Bio-signal – frequency and amplitude ranges. ECG – Einthoven's trian	gle,	stand	dard	
12 lead sys	tem. EEG – unipolar, bipolar, average mode and 10-20 electrode sy	stem	. EN	1G-	CO2
	d bipolar mode.				
UNIT III	BIOAMPLIFIER CIRCUITS AND ASSIST DEVICES				9
Basic requi	rements for bio-amplifier - differential bio-amplifier, PLI, Right leg	driv	en E	ECG	
	and pass filtering. Assist Devices- Dialyzer, Cardiac Pacemakers, and	l He	art L	ung	CO3
Machine.					
UNIT IV	MEASUREMENT OF NON-ELECTRICAL AND BIO-CHEMI	CAL	4		9
	PARAMETERS				
-	e, respiration rate and pulse rate measurements. Blood Pressure: indire				
	y method, direct methods: electronic manometer, Systolic, diastolic pre				<b>CO4</b>
	rdiac output measurement: Indicator dilution, and dye dilution method.	Cal	orime	eter,	
	assium Analyzer, auto analyzer (simplified schematic description).				
UNIT V	CURRENT TRENDS IN MEDICAL DEVICES	1		•,	9
	nedicine and its applications, Thermograph – System, working, end	OSCO	ору і	init,	CO5
Cryogenic a	application, Introduction to tele-medicine.	Cate.	IIIa		<u>CO5</u>
	TEXTBOOKS	ota	l Ho	urs:	45
1		Duca	tion	hall -	fIndia
1.	Leslie Cromwell, "Biomedical Instrumentation and measurement", New Delhi,2007.	ren	lice	nan o	i maia,
2.	John G. Webster, "Medical Instrumentation: Application and Design	" Io	hn V	Viloy	and
۷.	sons, NewYork,2004.(Unit I,II&III).	, JO	1111 V	viley	anu
	50115, INEW I 01K,2004.(UIIIT I,11&111).				

	REFERENCE BOOKS
1.	MyerKutz, "Standard Handbook of Biomedical Engineering and Design", McGraw Hill
	Publisher, 2003.
2.	Chan and Anthony Y.K, 'Biomedical Device Technology: Principles and Design'',
	Springfield, Illinois : Charles C. Thomas publisher Limited, 2016.
3.	Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill,
	NewDelhi, 2003.(Unit II&IV)
4.	Chan and Anthony Y.K, 'Biomedical Device Technology: Principles and Design'',
	Springfield, Illinois : Charles C. Thomas publisher Limited, 2016.
	COURSE OUTCOMES
	Upon completion of the course, students will be able to
CO1	To acquire knowledge about biopotentials and its propagation
CO2	To get familiarized with different electrode placements for various physiological
	recording
CO3	To design bio amplifiers for various physiological recording
<b>CO4</b>	To understand various techniques for non-electrical and physiological measurements
CO5	To understand the recent trends in the field of diagnostic and therapeutic equipment

	Μ	[APP]	ING	ветч	ELAT	ION LI	EVEL 1	/2/3								
COs		PROGRAMME OUTCOMES PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PU3	P04	P05	PO6	P07	POS	POO	PO1	PO1	<b>PO1</b>	PSO	PSO	PSO	PSO
	101	102	105	104	105	100	107	100	10)	0	1	2	1	2	3	4
CO1	2	2	2	-	1-	3	-	-	1	-	-	-	1	2	1	1
CO2	2	2	2	-	1-	3	-	-	1	-	-	-	1	2	1	1
CO3	3	3	3	-	3	3	-	-	2	-	-	-	2	3	3	2
CO4	2	2	3	-	3	3	-	-	2	-	-	-	2	3	3	2
CO5	2	2	3	-	3	3	-	-	2	-	-	-	2	3	3	2

# **OPEN ELECTIVE -III**

OIT41			P	С
	3	0	0	3
	CTIVES:			
	The role of database management system in an organization and learn the	data	base	
co	icepts.			
•	The design databases using data modelling and data normalization technic	jues.		
	Construct database queries using relational algebra and calculus.			
•	The concept of a database transaction and related database facilities.		1	
•	To learn the basic concepts of Transactions, concurrency control technique	es, a	na	
UNIT-	overy procedures CONCEPTUAL MODELLING			9
	ction database design -Database Environment, - Data Models: Entity Rela	tion	hin	9
	Relational Model- Database Development Lifecycle	tions	sinp	
UNIT-				9
	y Constraints- SQL Data Manipulation and Definition- Views- Relational	Mod		,
	hical and Network	wiou	C15-	
UNIT-				9
	ction to Structured Query Language-DDL Commands-DML Commar	الو_٦	T	2
	ands -views-Index-Synonyms- Sub queries- SQL Functions-Joins-PL/SQL			
prograi		/_5111	ipic	
			<b>x</b>	0
UNIT-				9
	EER to relationship Model-ER DiagramsFunctional Dependenci	es-F	irst,	
Second	and Third Normal Forms-Dependency preservation			_
UNIT-	5 TRANSACTION MANAGEMENT			9
Transa	tion Concepts- Properties- Schedules- Serializability- Concurrency Control	ol — 7	ſwo	
	ocking techniques			
Total I	lours:			45
	TEXT BOOKS			
1.	Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System	Con	cept	s",
	McGraw-Hill, 4thEdition, 2002.			
	REFERENCE BOOKS			
1.	Ramez Elmasri, Shamkant B. Navathe, "Fundamental Database Systems	", Pe	arso	n
	Education, 3rdEdition, 2003.			
2.	Raghu Ramakrishnan, "Database Management System", Tata McGraw-H	Hill		
_	Publishing Company, 3rd Edition, 2003.			
3.	Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, "Database Sy	/sten	n	
4.	Implementation", Pearson Education, United States, 1st Edition, 2000.			
5.	Peter Rob, Corlos Coronel, "Database System, Design, Implementation a			
	Management", Thompson Learning Course Technology, 5th Edition, 200	3.		
	COUDSE OUTCOMES.			
	COURSE OUTCOMES:			
<u>CO1</u>	On completion of the course, the students will be able to:		-	atia
CO1	The fundamentals of Database systems are vital components of moder	n 1n1	orm	at101
	systems.			

CO2	Understand the need for Databases and relational Model concepts.
CO3	Database applications all pervasive and range in size from small in-memory databases
	to terabytes or even larger in various applications domains.
CO4	The course focuses and the fundamentals of knowledgebase and relational database management systems, and the current developments in database theory and their practices.
CO5	Write Queries in SQL and execute multiple sub-queries, functions and joins.

		MA	PPI	NG B	BETV	VEEI	N CC	) AN	D PC	, PSC	WIT	H CO	RRELA	<b>FION LI</b>	EVEL 1/2	2/3
COs				PRO	OGR.	PROGRAMMESPECIFIC OUTCOMES										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	2	3	2	1	-	-	-	2	1	1	1	-	-	2	1
CO2	3	1	1	1	1	-	-	-	2	3	3	3	-	-	2	1
CO3	3	2	3	2	1	-	-	-	3	2	3	3	-	-	2	1
<b>CO4</b>	1	2	3	2	-	-	-	-	1	3	3	1	-	-	2	1
CO5	1	1	3	3	2	-	-	-	2	2	2	2	-	-	2	1

OMA421	ALGEBRA AND NUMBER THEORY	L	Т	Р	С
		3	0	0	3
OBJECT	IVES:				
*	To introduce the basic notions of groups, rings, fields which will	l the	en b	e us	ed to solv
rel	ated problems.				
*	To introduce and apply the concepts of rings, finite fields and poly	non	nials	5.	
*	To understand the basic concepts in number theory				
*	To examine the key questions in the Theory of Numbers.				
↔ bas	To give an integrated approach to number theory and abstract alge sis for further reading and study in the subject.	bra,	and	d pro	ovide a fir
UNIT I	GROUPS AND RINGS				9
Lagrange's	Definition - Properties - Homomorphism - Isomorphism - Cyclic gro s theorem. Rings: Definition - Sub rings - Integral domain - Field - Int nomorphism.				
Lagrange's					
Lagrange's - Ring hor UNIT II Rings - F	s theorem. Rings: Definition - Sub rings - Integral domain - Field - Int nomorphism.	eger	' mo	odulo	on CO 9
Lagrange's - Ring hor UNIT II Rings - F	s theorem. Rings: Definition - Sub rings - Integral domain - Field - Int nomorphism. FINITE FIELDS AND POLYNOMIALS Polynomial rings - Irreducible polynomials over finite fields - Fa		izat	odulo	on CO 9 of
Lagrange's - Ring hor UNIT II Rings - F polynomia UNIT III Division a	s theorem. Rings: Definition - Sub rings - Integral domain - Field - Int nomorphism. FINITE FIELDS AND POLYNOMIALS Polynomial rings - Irreducible polynomials over finite fields - Fa als over finite fields.	eger actor ONS and	izat	tion	on CO 9 of CO 9
Lagrange's - Ring hor UNIT II Rings - F polynomia UNIT III Division a numbers -	s theorem. Rings: Definition - Sub rings - Integral domain - Field - Int nomorphism. FINITE FIELDS AND POLYNOMIALS Polynomial rings - Irreducible polynomials over finite fields - Fa als over finite fields. DIVISIBILITY THEORY AND CANONICAL DECOMPOSITION algorithm – Base - b representations – Number patterns – Prime a	eger actor ONS and	izat	tion	on CO 9 of CO 9
Lagrange's - Ring hor UNIT II Rings - F polynomia UNIT III Division a numbers - UNIT IV Linear D	s theorem. Rings: Definition - Sub rings - Integral domain - Field - Int nomorphism. FINITE FIELDS AND POLYNOMIALS Polynomial rings - Irreducible polynomials over finite fields - Fa als over finite fields. DIVISIBILITY THEORY AND CANONICAL DECOMPOSITION algorithm – Base - b representations – Number patterns – Prime a GCD – Euclidean algorithm – Fundamental theorem of arithmetic – I	eger actor ONS and LCM	izat	npos	$\begin{array}{c c} \mathbf{o} n & \mathbf{CO} \\ \hline & 9 \\ \hline \mathbf{of} & \mathbf{CO} \\ \hline & 9 \\ \hline \\ \mathbf{ite} & \mathbf{CO} \\ \hline & 9 \\ \hline \\ \mathbf{ns:} & \hline \end{array}$

Wilson's theorem – Fermat's little theorem – Euler's theorem – Euler's Phi functions – Tau and	CO5
Sigma functions.	

TEX	Г BOOKS:
1.	Grimaldi, R.P. and Ramana, B.V., "Discrete and Combinatorial Mathematics", Pearson
Educa	tion, 5 th Edition, New Delhi, 2007.
2.	Koshy, T., "Elementary Number Theory with Applications", Elsevier Publications, New
Delhi,	, 2002.
REF	ERENCE BOOKS:
1.	Lidl, R. and Pitz, G, "Applied Abstract Algebra", Springer Verlag, New Delhi, 2nd Edition,
2006.	
2.	Niven, I., Zuckerman. H.S., and Montgomery, H.L., "An Introduction to Theory of Numbers",
John V	Wiley and Sons, Singapore, 2004.
3.	San Ling and Chaoping Xing, "Coding Theory – A first Course", Cambridge Publications,
Camb	ridge, 2004.
COUR	SE OUTCOMES
Upon c	completion of the course, students will be able to
CO1	Apply the basic notions of groups, rings, fields which will then be used to solve related problems.
CO2	Explore of advanced algebraic techniques and demonstrating accurate and efficient use of the same with context to extending concept related to polynomials.
CO3	Understand the basic concepts in number theory and approach into the analysis of numbers
CO4	Apply the basic ideas of number theory to real world problems by the way of congruence and Linear Diophantine equations and Chinese remainder theorem.
CO5	Understand the three classical theorems, apply the same to solve the non - trivial problems related to the field and have strong foundation in dealing with numbers.

		M	APPIN	G OF	COs V	WITH	POs A	ND PS	SOs							
			]	PROG	PROGRAM SPECIFIC OUTCOMES (PSOs)											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	3	2	2	1	1	1	1	1	1	1	-	1	-	1	1
CO2	3	3	2	1	1	1	-	1	1	1	-	1	1	-	1	1
CO3	3	3	2	1	2	1	-	1	2	2	-	-	1	-	2	1
CO4	3	3	2	2	1	1	-	2	1	1	1	1	1	-	2	1
CO5	3	3	2	1	1	1	1	1	2	1	1	-	1	-	1	1

OCS432	DEEP LEARNING	L	T	P	C
		3	0	0	3
OBJECTIVES					
	erstand the basic ideas and principles of neural networks.				
	erstand the basic concepts of deep learning.				
• To appr	eciate the use of deep learning applications.				
UNIT I	BASICS OF NEURAL NETWORKS				9
Basic Concept Networks.	of Neurons - Perceptron Algorithm - Feed Forward and Bac	kpr	opag	gation	CO1
UNIT II	INTRODUCTION TO DEEP LEARNING				9
Deep Feed-For	ward Neural Networks – Gradient Descent – Back-Propagation	on a	and	Other	· CO2
1	Algorithms – Vanishing Gradient Problem – Mitigation – Rec				
, , ,	Heuristics for Avoiding B ad Local Minima – Heuristics for Fa			0	
	elerated Gradient Descent - Regularization for Deep Learning	— ]	Drop	oout –	
Adversial Train	ning – Optimization for Training Deep Models.				_
UNIT III	CONVOLUTIONAL NEURAL NETWORKS				9
	tures - Convolution - Pooling Layers - Transfer Learni	-		-	
	using Transfer Learning – Recurrent and Recursive Nets – Recu			Veural	
Networks – De	ep Recurrent Networks – Recursive Neural Networks – Applicat	tion	IS.		_
	UNCUDEDVICED DEED LEADNING				
UNIT IV	UNSUPERVISED DEEP LEARNING			1	9 CO4
	- Standard – Sparse – Denoising – Contractive – Variational A nerative Networks - Deep Boltzmann Machine (DBM)	uto	enco	oders-	04
UNIT V	APPLICATIONS OF DEEP LEARNING			<u>.</u>	9
	ntation – Object Detection – Multi class Object Detection				
	and Localization- Automatic Image Captioning – Image ger				
	versarial networks– Opinion Mining using Recurrent Neural ntiment Analysis using Recursive Neural Networks – Sentence (				
0	ional Neural Networks – Dialogue Generation with LSTMs		5111	cation	
Total Hours:	aonar rearan rectworks – Dialogue Generation with LSTIMS				45
	BOOKS				
	Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learni	ing'	', M	IIT Pi	ess.
2017.		U	,		,
2. France	is Chollet, "Deep Learning with Python", Manning Publication	s, 2	018		
	RENCE BOOKS	,			
	Kim, "Matlab Deep Learning: With Machine Learning, Neu	ral	Ne	twork	s and
	ial Intelligence", Apress, 2017.		-		-
	Venkatesan, Baoxin Li, "Convolutional Neural Networks in V	'isu	al C	ompu	ting".
0	Press, 2018.			1	ζ,
	Kumar Manaswi, "Deep Learning with Applications Using Pyth	on'	', A1	press,	2018.
	F. Wiley, "R Deep Learning Essentials", Packt Publications, 20			. ,	
	& Yu, Deep Learning: Methods and Applications, Now Publishe			3.	
COUL	RSE OUTCOMES:				

	On completion of the course, the students will be able to:
CO1	Understand the role of deep learning in machine learning applications.
CO2	Design and implement deep learning applications.
CO3	Critically analyze different deep learning models in image related projects.
CO4	Design and implement convolutional neural networks.
CO5	Know about applications of deep learning in NLP and image processing.

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3																
COs	PROGRAMME OUTCOMES											PROGRAMMESPECIFIC OUTCOMES						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4		
CO1	3	3	3	3	2	2	-	-	-	-	2	2	-	-	2	1		
CO2	3	3	3	3	2	2	-	-	-	-	2	2	-	-	2	1		
CO3	3	3	3	3	2	2	-	-	-	-	2	2	-	-	2	1		
<b>CO4</b>	3	3	3	3	2	2	-	-	-	-	2	2	-	-	2	1		
CO5	3	2	2	2	3	2	-	-	-	-	1	2	-	-	2	1		

UNID4J2	ON	<b>AB432</b>
---------	----	--------------

## **OPERATIONAL RESEARCH**

0

9

9

9

9

**CO5** 

3

### **OBJECTIVES**

To classify and formulate real-life problem for modelling, solving and applying for decision  $\triangleright$ making.

To study the formulation and various methods of solutions for linear programming, transportation, ⊳ assignment, CPM and PERT problems

To solve problems using dynamic programming method  $\geqslant$ 

#### LINEAR MODELS **UNIT I**

Introduction to operations research-Linear programming problems (LPP)-Graphical method-Simplex method-Big M Method-Dual simplex method-Primal Dual problems -Dual theory and CO1 Sensitivity analysis.

#### **TRANSPORTATION MODELS UNIT II**

Transportation and assignment problems-Applications (Emphasis should be more on problems than **CO2** theory)

#### **UNIT III** NETWORK MODELS

Shortest path problem: Dijkstra's algorithms, Floyd's algorithm, systematic method – CPM PERT-Network diagram-Events and activities-Project Planning-Reducing critical events and **CO3** activities-Critical path calculations-example-Sequencing problems.

#### **DECISION MODELS AND INVENTORY MODELS UNIT IV**

Replacement problems-Capital equipment-Discounting costs-Group replacement. Inventory models-various costs- Deterministic inventory models-Economic lot size-Stochastic inventory **CO4** models-Single period inventory models with shortage cost. 9

#### **UNIT V QUEUING MODELS**

Characteristics of Queuing Models - Single and multi server models Poisson Queues - (M / M / 1) : (FIFO  $/ \infty / \infty$ ), (M / M / 1) : (FIFO  $/ N / \infty$ ),

(M / M / C): (FIFO  $/ \infty / \infty$ ), (M / M / C): (FIFO  $/ N / \infty$ ) models.

**TOTAL: 45 HOURS** 

## **TEXT BOOKS**

H. A. Taha, operational research-An introduction, Macmillan, 1976 1.

- 2. F. S. Hiller and G. J. Liebermann, Introduction to operational research (7th edition)
- 3. B. E. Gillet, Introduction to operational research-A computer oriented algorithmic approach, McGraw Hill, 1989

4. H. M. Wagner, Principles of operational research with applications to managerial decisions, PH, Inc, 1975

## **REFERENCE BOOKS**

- 1. Bazara M.J., Jarvis and Sherali H., "Linear Programming and Network Flows", John Wiley, 2009.
- 2. Budnick F.S., "Principles of Operations Research for Management", Richard D Irwin, 1990.
- 3. Philip D.T. and Ravindran A., "Operations Research", John Wiley, 1992. Shennoy G.V. and Srivastava U.K., "Operation Research for Management", Wiley Eastern, 1994.
- 4. Tulsian and Pasdey V., "Quantitative Techniques", Pearson Asia, 2002.
- 5. J. C. Pant, 'Introduction to Optimisation: Operations Research', Jain Brothers, Delhi, 2008.
- 6. Pannerselvam, 'Operations Research', Prentice Hall of India 2010.

## **COURSE OUTCOMES**

### Upon completion of the course, students will be able to

- CO1 To analyze the problems in engineering, management or business environment, focusing on important details
- CO2 To formulate real problems in terms of input-output parameters relationships and identify the solution procedure

CO3 To understand the concept of network and project planning

CO4 To understand the inventory management in manufacturing context

CO5 To understand the application of queuing theory in real world

		MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3														
COs		PROGRAMME OUTCOMES PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4														IFIC
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	3	3	3	3	2	1	1	1	2	2	2	-	-	1	1
<b>CO2</b>	2	3	3	3	3	2	1	1	1	1	2	2	-	-	1	1
<b>CO3</b>	2	3	3	3	3	2	1	1	1	1	2	2	-	-	1	1
<b>CO4</b>	2	3	3	3	3	3	1	1	1	1	2	2	_	-	1	1
CO5	2	3	3	3	3	3	1	1	1	2	2	2	-	-	1	1

<b>OME427</b>	<b>REVERSE ENGINEERING</b>	L	Т	Р	С
	Common to ECE, CSE, IT & ADS	3	0	0	3
OBJECTIVES					
<ul> <li>To learn</li> </ul>	the need for and the various tools required for reverse engineering				
<ul> <li>To know</li> </ul>	the important research challenges associated with Reverse engineering				
To study	the various concepts in quality and reliability principles in the design of	on e	nai	heer	ina
TO study	the various concepts in quality and renatinity principles in the design of	anc	лgп		шg
product	the various concepts in quanty and renaomity principles in the design of		Ingi		ing
•	INTRODUCTION				9
product UNIT I					
product UNIT I Basic concept- I	INTRODUCTION	or R	lapic	1	
product UNIT I Basic concept- I Prototyping: CAI	INTRODUCTION Digitization techniques – Model reconstruction – Data Processing fo D model preparation, Data requirements – Geometric modeling technique	or R .es: '	apio Wire	1	9
product UNIT I Basic concept- I Prototyping: CAI frame, surface an	INTRODUCTION Digitization techniques – Model reconstruction – Data Processing fo	or R es: ' sup	apio Wire opor	1 e t C	9

UNIT II TOOLS FOR REVERSE ENGINEERING	9
Functionality- dimensional- developing technical data - digitizing techniques - construction of	
surface model - solid-part material- characteristics evaluation -software and application prototyping	
– verification.	CO2
UNIT III CONCEPTS OF REVERSE ENGINEERING	9
History of Reverse Engineering – Preserving and preparation for the four stage process – Evaluation	
and Verification-Technical Data Generation, Data Verification, Project Implementation.	CO3
UNIT IV DATA MANAGEMENT	9
Data reverse engineering – Three data Reverse engineering strategies – Definition – organization	
data issues - Software application – Finding reusable software components – Recycling real-time	CO4
embedded software – Design experiments to evaluate a Reverse Engineering tool – Rule based detection	
for reverse Engineering user interfaces – Reverse Engineering of assembly programs: A model based	
approach and its logical basics	
UNIT V INTEGRATION OF REVERESE ENGINEERING	9
Cognitive approach to program understated – Integrating formal and structured methods in reverse	
engineering – Integrating reverse engineering, reuse and specification tool environments to reverse	
engineeringcoordinate measurement - feature capturing - surface and solid members	CO5
TOTAL: 45 HO	URS

	TEXTBOOKS	
	1. Kevin Otto & Kristin Wood, Product Design Techniques in Reverse Eng Product Development, Pearson Education (LPE), 2011.	gineering and New
	<ol> <li>Reverse Engineering: Mechanisms, Structures, Systems &amp; Materials 1st W. Messler Jr. Dec 10, 2013</li> </ol>	Edition by Robert
	REFERENCE BOOKS	
	1. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applicat prototype development", CRC Press, 2011.	ions : A tool box for
	<ol> <li>Chua, C.K., Leong K.F. and Lim C.S., "Rapid prototyping: Principles and edition, World Scientific Publishers, 2010.</li> </ol>	d applications", secon
	3. Kathryn, A. Ingle, Reverse Engineering, McGraw-Hill	
Upon	RSE OUTCOMES completion of the course, students will be able to Understand need for and the various tools required for reverse engineering	ng with exposure to the
001	software needed for implementing reverse engineering.	ng with exposure to the
CO2	Understand select the suitable tools and methodology for reverse engine	eering for any product.
CO3	Understand important research challenges associated with Reverse engine processing tools.	neering and its data
CO4	Understand important integrating reverse engineering, reuse and specific reverse engineering	
CO5	Understand with various concepts in quality and reliability principles in engineering product or a service.	the design of an
	MAPPING OF COs WITH POs AND PSOs	
COs	PROGRAM OUTCOMES (POs)	PROGRAM SPECIFIC

													OU	ГСОМ	IES (PS	SOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	-	2	-	2	-	-	-	-	3	-	-	2	1
CO2	3	3	3	-	2	-	2	-	-	-	-	3	-	-	2	1
CO3	3	3	3	-	2	-	2	-	-	-	-	3	-	-	2	1
CO4	3	3	3	-	2	-	2	-	-	-	-	3	-	-	2	1
CO5	3	3	3	-	2	-	2	-	-	-	-	3	-	-	2	1

<b>OME429</b>	Introduction to Industrial Automation	F		С
	Common to Electronics and Communication Engineering 3 0	0	)	3
<b>OBJECTIVES</b>				
✤ Te	learn the applications of industrial automation and robotics			
✤ Te	know about worker machine systems and outline automation principles			
✤ Te	study about the Model Flexible Manufacturing Systems			
UNIT I	INDUSTRIAL AUTOMATION AND ROBOTICS			9
Introduction to	utomation- Architecture of industrial automation systems- Introduction to Roboti	cs		
- Classification	of Robots and Characteristics- NC - CNC - Part programming - DNC - Adapti	ve		
control – Robot	anatomy – Specifications – End effectors – Industrial applications.		CO	)1
UNIT II	PRODUCTION SYSTEM			9
Production syst	ems- Facilities – Manual work systems- worker-machine systems and automated	L		
systems - Mar	ufacturing support Systems-Automation in Production systems - Automat	ed		
Manufacturing	systems -Computerized manufacturing support systems - Manual labour	in	CO	)2
Production syst	ems-Automation principles and strategies.			
UNIT III	AUTOMATED TRANSPORTATION AND STORAGE			9
Automated Guid	led Vehicle (AGV) Systems-Types of vehicles- AGV Applications-Vehicle Guidan	ce		
Technology-Veh	icle Management and Vehicle Safety-Automated Storage/Retrieval Systems (ASR	S)	CO	)3
and Carousel St	orage Systems - Vehicle Management and Vehicle safety.			
UNIT IV	CELLULAR MANUFACTURING SYSTEMS (CMS)			9
1	Technology (GT) in Computer Aided Manufacturing- Features of GT- Cellul			
manufacturing-	Role of similarity in GT- Coding-Classification and clustering- Production flo	W	CO	)4
analysis-CMS d	esign factors.			
UNIT V	FLEXIBLE MANUFACTURING SYSTEM (FMS)			9
Types of auton	ation, Flexibility- Types of FMS- FMS Layout configuration- Automated wo	rk		
	erial handling and machining- Performance measures - Bottleneck model	_		
Extended bottle	neck model – Sizing of FMS- FMS Scheduling and Control.		CO	)5
	TOTAL: 45	HO	UR	S

# TEXTBOOKS

 John Nicholas, Competitive Manufacturing Management – Continuous Improvement, Lean Production, and Customer-Focused Qualities, McGraw-Hill International Editions,19982.
 Sing N, and Rajamani, D, Cellular Manufacturing Systems: Design, Planning & Control, First Edition, Chapman & Hall,1996.

	REFERENCE BOOKS										
	Mikell P. Groover, Automation, Production Systems, and Computer-Integrate Manufacturing,										
	2nd Edition, Prentice Hall of India Private Limited, 2001.										
	Deb, Robotics Technology and Flexible Automation, Tata McGraw Hill, New Delhi 2009.										
	Askin, R. G, and Standridge, C. R, Modelling and Analysis of Manufacturing Systems, John										
	Wiley & sons Inc.,1993.										
COU	RSE OUTCOMES										
Upon	completion of the course, students will be able to										
CO1	Appraise the applications of industrial automation and robotics.										
CO2	Categorize manual and worker machine systems and outline automation principles										
CO3	Organize the role of automated transportation and storage systems.										
CO4	Recall role of Group Technology and design Cellular manufacturing systems.										

CO5 Model Flexible Manufacturing Systems and study its performance measures.

		MA	PPI	NG B	BETV	VEE	N CC	) AN	D PC	, PSO	WIT	H CO	RRELA	<b>FION LI</b>	EVEL 1/2	2/3
COs				PRO	OGR	PROGRAMMESPECIFIC OUTCOMES										
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4														PSO4	
CO1	3	-	3	-	2	-	-	-	-	-	-	3	-	-	1	1
CO2	3	-	3	-	2	-	-	-	-	1	-	3	-	-	1	1
<b>CO3</b>	3	-	3	-	2	-	-	-	-	-	-	3	-	-	1	1
<b>CO4</b>	3	-	3	-	2	-	-	-	-	-	-	3	-	-	1	1
<b>CO5</b>	3	-	3	-	2	-	-	-	-	-	-	3	-	-	1	1

# **ELECTIVE - MANAGEMENT COURSES**

MB4751	PRINCIPLES OF MANAGEMENT	L	Р	Τ	С				
		3	0	0	3				
OBJECTIVE	S								
• To ena	able the students to study the evolution of Management.								
• To stu	dy the functions and principles of management.								
• To lease	rn the application of the principles in an organization.								
• To acq	uire the skills of effective leadership and communication.								
• To gai	n the knowledge of tools and techniques for an effective managerial skill.								
UNIT I	INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS				9				
Definition of	Management – Science or Art – Manager Vs Entrepreneur – Types of ma	nag	ers -	-					
managerial rol	les and skills – Evolution of Management – Scientific, human relations, system	sterr	n and	1					
	pproaches – Types of Business organization – Sole proprietorship, par				01				
company – P	ublic and private sector enterprises - Organization culture and Enviro	nme	ent –	-					
Current trends	and issues in Management.								
UNIT II	PLANNING				9				
Nature and pu	rpose of planning – Planning process – Types of planning – Objectives -	- Se	tting						
objectives –	Policies – Planning premises – Strategic Management – Planning To	ools	and	C	02				
Techniques -	Decision making steps and process.								
UNIT III	ORGANISING				9				
	urpose - Formal and informal organization - Organization chart - Orga								
structure – Types – Line and staff authority – Departmentalization – Delegation of authority –									
Centralization	and decentralization - Job Design - Human Resource Management - HR H	Plan	ning	,					

Recruitment, selection, Training and Development, Performance Management, Career planning and management.

UNIT IV DIRECTING

Foundations of individual and group behaviour – Motivation – Motivation theories – Motivational techniques – Job satisfaction – Job enrichment – Leadership – Types and theories of leadership – Communication – Process of communication – Barrier in communication – Effective communication – Communication and IT.

UNIT V CONTROLLING

System and process of controlling – Budgetary and non–budgetary control techniques – Use of computers and IT in Management control – Productivity problems and management – Control and performance – Direct and preventive control – Reporting.

### **TEXT BOOKS**

TOTAL: 45 HOURS

9

9

- 1. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.
- 2. Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India), Pvt. Ltd., 15th Edition, 2020.

## **REFERENCE BOOKS**

- 1. Harold Koontz & Heinz Weihrich, "Essentials of Management", Tata McGraw Hill, 10th Edition, 2015.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management", 11th Edition, Pearson Education, 2017.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 6th Edition 2017.

## **COURSE OUTCOMES**

### Upon completion of the course, students will be able to

	completion of the course, students will be usic to
CO1	Ability to understand the various terms and definitions related to management and organization.
CO2	Ability to acquire the skill of planning and various strategies of management in an organization.
CO3	Ability to understand the types of organization and also get an insight into HR planning,
	recruitment, selection and career planning and management.
CO4	Ability to acquire the skills of leadership and understand the importance of communication to
	run an organization effectively.
C05	Ability to understand the concept of budget and budgetary control and acquire the skill of
	controlling technique.

	MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3															/2/3
COs				PRO		PROGRAMME SPECIFIC OUTCOMES										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	<b>PO1</b>	PO1	<b>PO1</b>	PSO	PSO	PSO	PSO
										0	1	2	1	2	3	4
CO1	1	1	1	1	1	3	1	2	3	1	1	2	-	-	1	3
CO2	1	2	3	2	2	3	2	2	3	2	1	2	-	-	1	3
CO3	1	2	3	1	2	3	2	2	3	3	1	2	-	-	1	3
CO4	1	2	2	1	2	3	1	2	3	3	1	2	-	-	1	3

<b>CO5</b> 1 2	3 2	3	3	1	2	3	1	1	2	-	-	1	3

MB4741	TOTAL QUALITY MANAGEMENT	L	P	Т	C
		3	0	0	3
OBJECTIV					
• 10 fac	cilitate the understanding of Quality Management principles and process.				
UNIT I	INTRODUCTION				9
Introduction	- Need for quality - Evolution of quality - Definitions of quality - Dimer	nsior	18		
	nd service quality - Basic concepts of TQM - TQM Framework - Contribution			CO	11
-	Juran and Crosby - Barriers to TQM - Customer focus - Customer orient	atio	n,	CU	1
	tisfaction, Customer complaints, Customer retention.				
UNIT II	TQM PRINCIPLES				9
-	- Quality Statements, Strategic quality planning, Quality Councils - Emp				
	- Motivation, Empowerment, Team and Teamwork, Recognition and Re appraisal - Continuous process improvement - PDCA cycle, 5S, Kai			CO	2
	tnership - Partnering, Supplier selection, Supplier Rating.	Izen	-		
UNIT III	TQM TOOLS AND TECHNIQUES I				9
	raditional tools of quality - New management tools - Six sigma: Con	cent	S.		
	y, applications to manufacturing, service sector including IT - Bench mar			CO	)3
	enchmark, Bench marking process - FMEA - Stages, Types.	U			
UNIT IV	TQM TOOLS AND TECHNIQUES II				9
	les - Cost of Quality - Quality Function Deployment (QFD) - Taguchi q	uali	ty	CO	1
	- TPM - Concepts, improvement needs - Performance measures.			CO	
UNIT V	QUALITY MANAGEMENT SYSTEM				9
	-Benefits of ISO Registration-ISO 9000 Series of Standards-S				
-	andards—AS 9100, TS16949 and TL 9000 ISO 9001 Requireme ion— Documentation—Internal Audits—Registration ENVIRONMEN			CO	15
	1ENTSYSTEM: Introduction—ISO 14000 Series Standards—Concept			CU	13
	— Requirements of ISO 14001— Benefits of EMS.	.5 01			
1.00	ΤΟΤΑ	L:	45 H	IOU	RS
TEXT BOO					
1. Dale	H. Besterfiled, Carol B. Michna, Glen H. Besterfield, Mary B. Sacre, Heman	t Ur	dhw	ares	ne
	ashmi Urdhwareshe, "Total Quality Management", Pearson Education	Asi	a, R	evis	ed
	Edition, Indian Reprint, Sixth Impression, 2013.				
	R. Evans and William M. Lindsay, "The Management and Control of Quali	ty",	8th E		on,
REFERENC	ndian Edition, Cengage Learning, 2012.				
	raman. B and Gopal .R.K., "Total Quality Management - Text and C	19600	" Pr	entic	<u>م</u>
	India) Pvt. Ltd., 2006.	<i>asc</i>	,11	CIIII	æ
	hi. L and Anand Samuel, "Total Quality Management", Prentice Hall (Indi	a) P	vt.L	td	
2006.		/		,	
3. ISO90	01-2015 standards				
COURSE O					
	etion of the course, students will be able to				
	udents can understand the principles of quality management and to explain	n hov	w the	ese	
princi	ples can be applied within quality management systems.				

CO2	Students can identify the key aspects of the quality improvement cycle and to select and use
	appropriate tools and techniques for controlling, improving and measuring quality.
CO3	Students can understand the Organisational, communication and teamwork requirements for
	effective quality management
CO4	Critically analyse the strategic issues in quality management, including current issues and
	developments, and to devise and evaluate quality implementation plans
CO5	The student would be able to apply the tools and techniques of quality management to
	manufacturing and services processes.

	Ν	APP	ING I	BETW	/EEN	CO A	ND P	O, PS	O WI	TH C	ORRE	ELAT	ION I	LEVE	L 1/2/	3
COs			]	PROG	GRAM	IME (	OUTC	COME	S			SPE			MME TCOI	
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS PS 1 01 02 0														PS O4
<b>CO1</b>	3	2	2	3	3	1	1	1	2	3	1	3	-	-	1	3
CO2	3	2	3	3	3	1	1	1	2	2	1	3	-	-	1	3
<b>CO3</b>	3	2	3	3	3	1	1	1	2	3	1	3	-	-	1	3
<b>CO4</b>	3	2	3	3	3	1	1	1	2	2	1	3	-	-	1	3
CO5	2	2	3	1	1	1	1	1	2	3	1	3	-	-	1	3

MB4043	ENGINEERING ECONOMICS AND FINANCIAL L P ACCOUNTING	T	C
	3 0	0	3
OBJECTIVE	S		
To ma	ke the Engineering student to know about the basic of economics & how to orga	niz	e a
busine	SS		
To kno	w the financial aspects related to business.		
	w about functions of banks.		
To unc	lerstand the different methods of appraisal of projects and		
To kno	w about the break even analysis		
UNIT I	Basic Economics		9
economics – f Exception to forecasting –	economics – nature and scope of economics – micro economics and macro actors of production – demand analysis – definition of demand – Law of demand – law of demand – Factors affecting demand – elasticity of demand – demand definition of supply – factors affecting supply – elasticity of supply – market rfect competition – imperfect competition - monopoly – duopoly – oligopoly and poly.	C	01
UNIT II	Organization and Business Financing		9
<ul> <li>state Enterprise</li> <li>central bank</li> <li>financing - Sh</li> </ul>	hess – proprietorship – partnership - joint stock company - cooperative organization ise - mixed economy - Money and banking – kinds of banking - commercial banks ing functions - control of credit - monetary policy - credit instrument – Types of ort term borrowing - Long term borrowing - Internal generation of funds - External orrowings - Assistance from government budgeting support and international rations.	C	02
UNIT III	Financial Accounting		9

Introduct	ion t	o Fin	ancia		count	ina	Acc	ounti	ng Pi	rincin	أمر	Type	s of A	ccounts	Fine	1
Accounts																
- fund fl		-										neet. I	manera	II Katio	Anarysi	.5 CO.
								t Ana		()						
Capital b										ariod	Dre	fitabi	lity ind	ev – Ne	t nrecer	
value and	U	0		0				•	-				•		-	
costing -					-	-		-					-		-	
UNIT V								oject				Dasic .			st sheet	•
Break Ev											•	analua	ic Br	ant ava	n chart	
concepts		•					0					•				
Appraisi																
technical			-		-			-			-	repor	is – app		100055	
teennea	Teasi	onnty	- 000	monn	c rea	5101111	y – 11	maner		1510111	ty.			тота	L:45	HUIB
TEXT B		S												101A	L . 45	
			nd Ia	in Pk	· "Fi	nanci	al M	anage	ment	" Mc	Grau	7 - <b>Hi</b> l	1 Public	shing C	o Itd	3rd
					-	nanci		anage	mem	, 1010	Jaw	- 1111	I I UUII	sning C	0., Liu.	, 5
	ditior	·		<i>,</i>		• • • •	<b>T</b> (A)			-			~1 1	1.0		Ŧ
2. Varshney RL and Maheshwari KL, "Managerial Economics", S Chand and Co., 22nd N													New			
Delhi, 2014.																
REFER	ENCI	E BO	OKS													
New 3. V. L Hill,2	Delhi .Mote	,2010	)								-			New A d Cases	-	
COURS	E OU	TCC	<b>MES</b>	5												
Upon co	mple	tion o	of the	cour	se, st	uden	ts wil	ll be a	able t	0						
CO1 Id	lentif	y suit	able o	lemai	nd for	recast	ing te	echnic	ues a	nd pr	revail	ing ma	arket str	ucture.		
CO2 D	escril	be the	e form	ns of l	ousin	ess an	d dif	ferent	iate b	oetwe	en pro	oprieto	orship a	nd parti	nership.	
CO3 E	xplai	n the	kinds	of ba	unks a	nd ill	ustra	te the	Bala	nce sl	heet, 1	ratios,	and cas	sh and f	und flo	w.
CO4 In	nterpr	et fix	ed co	st and	l varia	able c	ost a	nd caj	oital b	oudge	ting.					
CO5 T	he ma	anage	rial u	ses of	f brea	k eve	n ana	lysis	and f	inanc	ial fe	asibili	ty and	econom	ic feasi	bility.
	Μ	APP	ING	вет	WEE	N CC	) AN	D PO	. PSC	) WI	тн с	CORR	ELAT	ION LI	EVEL 1	/2/3
COs									,							
COS				PRO	GRA	MM	E OU	JTCC	OMES	5				PROGR CIFIC C		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	<b>PO1</b>	PSO	PSO	PSO	PSO
										0	1	2	1	2	3	4
CO1	1	1	1	1	1	1	1	1	1	2	3	2	-	-	1	3
CO2	1	2	2	1	1	1	1	1	1	2	3	2	-	-	1	3
CO3	1	3	3	3	3	1	1	1	1	2	3	2	-	-	1	3
	1 .	-	_	-	-	<u> </u>	<u> </u>	<u> </u>		-	<u> </u>	-		1		

MB4203	HUMAN RESOURCE MANAGEMENT	L	Р	Т	C
		3	0	0	3

-

-

-

-

**CO4** 

CO5

# **OBJECTIVES**

- To learn the basic concepts of Human Resource Management •
- To understand the importance of Human Resource Planning and Recruitment •
- To understand the fundamentals and importance of Training and Development
- To understand the intricacies in Employee Engagement
- To understand the importance of Performance Evaluation and Control •

#### PERSPECTIVES IN HUMAN RESOURCE MANAGEMENT UNIT I

Evolution of human resource management – The importance of the human capital – Role of human resource manager – Challenges for human resource managers - trends in Human resource policies **CO1** - Computer applications in human resource management - Human resource accounting and audit.

9

9

9

9

**TOTAL : 45 HOURS** 

#### **UNIT II** HUMAN RESOURCE PLANNING AND RECRUITMENT

Importance of Human Resource Planning – Forecasting human resource requirement – matching supply and demand - Internal and External sources - Organizational Attraction - Recruitment, **CO2** Selection, Induction and Socialization - Theories, Methods and Process.

#### TRAINING AND DEVELOPMENT **UNIT III**

Types of training methods – purpose – benefits - resistance. Executive development programme - Common practices - Benefits - Self-development - Knowledge management. **CO3** 

#### **UNIT IV EMPLOYEE ENGAGEMENT**

Compensation plan - Reward - Motivation - Application of theories of motivation - Career management – Mentoring - Development of mentor – Protégé relationships- Job Satisfaction, CO4 Employee Engagement, Organizational Citizenship Behavior: Theories, Models. 9

#### PERFORMANCE EVALUATION AND CONTROL UNIT V

Method of performance evaluation - Feedback - Industry practices. Promotion, Demotion, Transfer and Separation – Implication of job change. The control process – Importance – Methods CO5 - Requirement of effective control systems grievances - Causes - Implications - Redressal methods.

# **TEXT BOOKS**

- 1. Gary Dessler and Biju Varkkey, Human Resource Management,14th Edition, Pearson Education Limited, 2015.
- 2. David A. Decenzo, Stephen. P. Robbins, and Susan L. Verhulst, Human Resource Management, Wiley, International Student Edition, 11th Edition, 2014.
- 3. Luis R. Gomez Mejia, David B. Balkin, Robert L Cardy. Managing Human Resource. PHI Learning. 2012

### **REFERENCE BOOKS**

- 1. Bernadin, Human Resource Management, Tata McGraw Hill, 8th edition 2012.
- 2. Wayne Cascio, Managing Human Resource, McGraw Hill, 2015.
- 3. Ivancevich, Human Resource Management, McGraw Hill 2012.
- 4. Uday Kumar Haldar, Juthika Sarkar. Human Resource management. Oxford. 2012

# **COURSE OUTCOMES**

### Upon completion of the course, students will be able to

CO1	To understand the various aspects of HR
CO2	To gain knowledge on Human Resource Management skills
CO3	To develop the skills needed to be an Human Resource Manager

CO4 To	o unders	tand th	e conce	pts of	work	place	manage	ement					
CO5 To	o unders	tand an	d appli	cation	s of n	ew tre	nds in t	he area	of Hun	nan Res	ource ma	inagemei	nt
			MA	PPI	NG O	F COs	S WITH	I POs .	AND P	SOs			
COs		PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO 4	PO5	PO 6	<b>PO7</b>	PO8	PO9	PO1 0	PSO1	PSO2	PSO3
CO1	2	2	1	2	2	2	1	1	2	1	3	3	3
CO2	3	3	2	3	2	2	2	2	3	1	3	3	3
CO3	3	3	3	3	3	3	2	2	3	1	3	2	2
CO4	3	3	2	3	3	2	2	2	2	1	3	3	3
CO5	3	3	1	2	2	2	2	2	2	1	3	2	3

<b>MB4044</b>	KNOWLEDGE MANAGEMENT L H	• T	С						
	3 0	0	3						
OBJECTIV	ES								
• To mak	e the students realize the importance of capturing knowledge elements and its	struct	ures						
applicati	on as a competitive advantage to business.								
• To under	stand different components knowledge management.								
• To condu	ict knowledge audit and knowledge management practices in organization.								
UNIT I	INTRODUCTION		9						
An Introduct	on to Knowledge Management - The foundations of knowledge management-								
including cul	tural issues- History of KM-technology applications organizational concepts								
and processes- management aspects- and decision support systems. The Evolution of									
Knowledge management : From Information Management to Knowledge Management - K									
M Cycle, Ind	ustrial Economy to Knowledge Economy.Key Challenges Facing the Evolution								
of Knowledg	e Management - Ethics for Knowledge Management.								
UNIT II	CREATING THE CULTURE OF LEARNING AND KNOWLEDGE	9	9						
	SHARING								
Mechanics of	f Knowledge Management-Tools and Technologies, Communities of Practice								
and Knowle	dge conversion, The knowledge Management Matrix- Organization and								
Knowledge	Management - Building the Learning Organization. Knowledge Markets:	CC	)2						
Cooperation	among Distributed Technical Specialists - Tacit Knowledge and Quality								
Assurance.									
UNIT III	KNOWLEDGE MANAGEMENT-THE TOOLS	(	9						
Social Natur	e of Knowledge, Social Network Analysis, Obstacles to knowledge sharing,								
Organization	al learning & Social Capital. Knowledge Application – Individual level, Group								
level & Orga	nization Level - Information Technology in Support of Knowledge Management	CC	)3						
- Knowledge	Management and Vocabulary Control - Information Mapping in Information								
Retrieval - In	formation Coding in the Internet Environment - Repackaging Information.								

UNIT IV	KNOWLEDGE MANAGEMENT-APPLICATION	9					
KM Strategy,	Knowledge audit, GAP Analysis, Road Map, KM Metrics, Balance Score						
Card.KM Tools – Knowledge Capture & Creation tools, Knowledge sharing & Dissemination							
Tools, Knowledge Acquisition & Application tools-Components of a Knowledge Strategy							
UNIT V	FUTURE TRENDS	9					
Km Team–Rol	es & Responsibilities, Political issues in KM, Ethics in KM, Strategies issues						
in Knowledge	Management, Future of Knowledge Management- Development of a	CO5					
knowledge management map/plan that is integrated with an organization's strategic and							
business plan .							

### **TOTAL : 45 HOURS**

- TEXT BOOKS

   Srikantaiah.T. K., Koenig, M., "Knowledge Management for the Information Professional" Information Today, Inc., 2000.
- 2. Knowledge Management a resource book A Thohothathri Raman, Excel, 2004.
- 3. Knowledge Management- Elias M. Awad Hasan M. Ghazri, Pearson Education

### **REFERENCE BOOKS**

- 1. The KM Toolkit Orchestrating IT, Strategy & Knowledge Platforms, Amrit Tiwana, Pearson, PHI, II Edn.
- 2. The Fifth Discipline Field Book Strategies & Tools For Building A learning Organization PeterSenge et al. Nicholas Brealey 1994
- 3. Knowledge Management Sudhir Warier, Vikas publications
- 4. Leading with Knowledge, Madanmohan Rao, Tata Mc-Graw Hill

### **COURSE OUTCOMES**

Upon completion of the course, students will be able to

- CO1 | To understand the various aspects of Knowledge Management
- CO2 To Formulate action plans for knowledge intensive organisations.
- CO3 To develop the culture of learning in an organization.
- CO4 To understand the Knowledge management Tools.
- CO5 To understand and applications of new trends in knowledge Management

		MA	PPIN	G BE	TWE	EN C	O AN	ID PC	), PS(	) WI	ГН С	ORRE	LATIO	N LEV	EL 1/2/.	3
COs				PRO		PROGRAMME SPECIFIC OUTCOMES										
	<b>PO1</b>	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO12 PSO PSO PSO PSO PSO														
										0	1		1	2	3	4
CO1	2	2	1	2	2	2	1	1	2	1	3	2	-	-	1	3
CO2	3	3	2	3	2	2	2	2	3	1	3	2	-	-	1	3
CO3	3	3	3	3	3	3	2	2	3	1	3	2	-	-	1	3

CO4	3	3	2	3	3	2	2	2	2	1	3	2	-	-	1	3
CO5	3	3	1	2	2	2	2	2	2	1	3	2	-	-	1	3

GE4792	INDUSTRIAL MANAGEMENT	P (
(	Common to ECE and MECH30	0 3
OBJECTIVES	•	
✤ To enable	e the students to study the evolution of Management, to study the functions and prin	ciple
	gement and to learn the application of the principles in an organization.	1
UNIT I	INTRODUCTION	9
Management D Forms of Orga operative Enter	Definition – Functions – Evolution of Modern Management – Scientific Development of Management Thought. Approaches to the study of Management, nization – Individual Ownership – Partnership – Joint Stock Companies – Co- rprises – Public Sector Undertakings, Corporate Framework – Share Holders – tors – Committees – Chief Executive – Trade Union	CO
UNIT II	FUNCTIONS OF MANAGEMENT	9
Decision Makin staff – Decentry Performance ap human factor –	ture and Purpose – Objectives – Strategies – Policies and Planning Premises – ng – Organizing – Nature and Process – Premises – Departmentalization – Line and alization – Organizational culture, Staffing - selection and training – Placement – opraisal – Career Strategy – Organizational Development. Leading – Managing Leadership – Communication, Controlling - Process of Controlling – Controlling ductivity and operations management – Preventive control, Industrial Safety.	CO
UNIT III	ORGANIZATIONAL BEHAVIOUR	9
Individual beha Organizational	Drganization – Managerial Role and functions – Organizational approaches, aviour – causes – Environmental Effect – Behavior and Performance, Perception – Implications. Personality – Contributing factors - Dimension – Need Theories – es – Job Satisfaction, Learning and Behavior – Learning Curves, Work Design and	CO
UNIT IV	GROUP DYNAMICS	9
Barriers to co characteristics- in Group Decis and conflict,	r – Groups – Contributing factors – Group Norms, Communication – Process – mmunication – Effective communication, leadership – formal and informal - Managerial Grid – Leadership styles – Group Decision Making – Leadership Role ion, Group Conflicts – Types – Causes – Conflict Resolution – Inter group relations Organization centralization and decentralization – Formal and informal – Structures – Organizational Change and Development – Change Process –	СО
UNIT V	MODERN CONCEPTS	9
	y Objectives (MBO), Management by Exception (MBE), Strategic Management -	

	TOTAL: 45 HOURS
	TEXTBOOKS
	<ol> <li>Herald Knottz and Heinz Weihrich, "Essentials of Management", Tata McGraw Hill Education Pvt. Ltd., 2010.</li> <li>Stenhan P. Bahhing, "Organization Behaviour," Research Education Inc., 12 edition, 2010.</li> </ol>
	<ul> <li>2. Stephen P. Robbins, "Organization Behaviour", Pearson Education Inc., 13 edition, 2010.</li> <li><b>REFERENCE BOOKS</b></li> </ul>
	<ol> <li>Joseph J, Massie, "Essentials of Management" Prentice Hall of India Pvt. Ltd. 1985.</li> <li>Ties, AF, Stoner and R.Edward Freeman, "Management" Prentice Hall of India Pvt. Ltd. New Delhi 110 011, 1992</li> <li>Tripathi. P.C. &amp; P.N. Reddy, "Principles of Management", Tata McGraw Hill, 2006.</li> </ol>
	SE OUTCOMES ompletion of the course, students will be able to
CO1	Know about Evolution of Modern Management and Forms of Organization.
CO2	Understand the need for planning and controlling activities in the organisation
CO3	Learn about the individuals and group behaviours in the organisation
CO4	Know about the effect Leadership roles and Organizational Structures
CO5	Understand the different modern concepts to evaluate the management activities.

	Μ	(APP)	ING	BET	WEE	N CC	CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3										
COs		PROGRAMME OUTCOMES											PROGRAMME SPECIFIC OUTCOMES				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1	PO1	PSO 1	PSO 2	PSO 3	PSO	
CO1	2	2	1	2	2	2	1	1	2	1	3	2	-	-	1	1	
CO2	3	3	2	3	2	2	2	2	3	1	3	2	-	-	1	2	
CO3	3	3	3	3	3	3	2	2	3	1	3	2	-	-	1	2	
<b>CO4</b>	3	3	2	3	3	2	2	2	2	1	3	2	-	-	1	2	
CO5	3	3	1	2	2	2	2	2	2	1	3	2	-	-	1	3	

# MANDATORY COURSES

MX4001	INTRODUCTION TO WOMEN AND GENDER STUDIES	P	С
		0	0
OBJECTIVES			
<ul> <li>To enhang students, throug</li> <li>To upgramong marginal collaborative action</li> <li>To evolve</li> <li>UNIT I</li> <li>Key concepts in Studies as an a Sensitization - V</li> </ul>	nce social sensitivity, sensibility and responsibility thereby instilling the life skills h applied learning. ade knowledge and comprehension of gender issues for attitudinal and behavioural lized groups to claim the right to life with dignity and equality through extens	cha sior ern	anges 1 and
	FEMINIST THINKERS AND THEORIES	+	9
Liberal Feminis - Black Feminis Masculinity Stu Feminist thinker <b>UNIT III</b> Women's Edu Dropouts, profe Identities -Educ	<ul> <li>Sin (10) This (10) This (10) (10) (10) (10) (10) (10) (10) (10)</li></ul>	- s. 9 t, er	
women.	-		
UNIT IV	WOMEN, WORK AND EMPLOYMENT		9
-Concept of Wo Division of Lab	rspective: Fredrick Engels, Rosa Luxemburg, Sandra Whiteworth, Boserup Esther rk – Productive and non – productive work – Use value and market value - Gende our – Mode of Production – Women in organized andunorganized sector - New y and its impact on Women's Employment – Globalization –Structural grams.		
UNIT V	GENDER AND ENTREPRENEURSHIP		9
to Entrepreneurs emerging Tech	eaning, Importance of Entrepreneurship, Entrepreneurial traits, Factors contributin ship, enabling environment, small Enterprises, women in agri-business - Gender an nology – Impact - Self-help Groups and Micro Credit - Gender mainstreaming ng, planning and Analysis.	d g,	
	Total He	our	's: 45
TEXT BOOKS			
2. JoRolan	thari Pillai- 1995, Women and Empowerment, New Delhi: Gyan Publishing House ad-: 1997, Questioning Empowerment, Oxfam Oxford. ownsend etal-: 1999, Women and Power, Fighting Patriarchy and Poverty. Zed		ooks,

London.

**4.** Naila Kabeer: 1996, Reversed Realities, Kali for women, New Delhi.

COUR	RSE OUTCOMES
Upon o	completion of the course, students will be able to
COI	To enhance the social sensitivity, sensibility and responsibility thereby instilling the life skills among students.
CO2	To upgrade knowledge and comprehension of gender issues for attitudinal and behavioural change among men, women and transgender etc. to claim the right to life with dignity and equality.
CO3	To bring social, economic, political and cultural empowerment and gender equality in personal as well Professional life.
CO4	To crystallize the teaching of Women's Studies in term of teaching, research and extension. in order
CO5	To create more gender equality and equity world by education, sensitization and empowerment.

								MA	PPIN	IG OF	COs V	WITH	POs AND PSOs				
COs	PRO	GRAI	M OU	JTCC		GRAM TCOMI											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CO1	-	-	-	-	-	1	1	1	1	-	-	1	-	-	-	2	
CO2	-	-	-	-	-	1	1	1	1	-	-	1	-	-	-	2	
CO3	-	-	-	-	-	1	1	1	1	-	-	1	-	-	-	2	
CO4	-	-	-	-	-	1	1	1	1	-	-	1	-	-	-	2	
CO5	-	-	-	-	-	1	1	1	1	-	-	1	-	-	-	2	

MX4002	ELEMENTS OF LITERATURE L T P	С
	(Common to all branches of B.E. / B. Tech Programmes) 3 0 0	0
OBJECTIVES		•
• To unde	rstand the recent contexts, concepts and ideologies.	
• To acqua	aint themselves with the major generic divisions in English literature.	
• To ackne	owledge the conventions of literary research and documentation.	
UNIT I	KEY ELEMENTS OF LITERATURE	9
Language - Plot	- Setting/Milieu - Character - Theme - Point of View - Tone/Mood.	
UNIT II	PROSE	9
-	ose - written and spoken prose - individual and common style - simplicity and abstract and concrete - realism, romance and unreality - the science of rhetoric.	
UNIT III	POETRY	9
	of form - the physical form of poetry - metre - variation - rhyme - internal pattern - e - the use of associations - patterns of imagery the main types of poetry.	
UNIT IV	NOVEL	9

-	fiction - verisimilitude - the point of view - plot - character - character revealed - cene and background - dominant themes - the experimental novel.	
UNIT V	DRAMA	9
	action - plots - conventional divisions - direct experience of characters - dialogue n - verse and prose - types of drama - drama and history - use of notes –	
	Total Ho	urs: 45

TEXT	BOOKS
1.	Barnet Sylvan, Types of Drama; Plays and Essays, Boston, Little Brown, 1981.
2.	Brooks, Peter, Reading for the Plot; Design and Intention in Narrative, Oxford, Clarendon Press,
1984.	
3.	Hardings D.W., Words Into Rhythm; English Speech, OUP, New Delhi, 1976.
4.	Murfin, Ross, and Supriya M. Ray. The Bedford Glossary of Critical and Literary Terms. New
York: I	Macmillan Press Ltd., 1997.
5.	Paul, Poplawski, ed. English Literature in Context. London: CUP,2008.
COUR	SE OUTCOMES
Upon o	completion of the course, students will be able to
	-
CO1	Comprehend various forms of literature like prose, poetry, drama and fiction.
CO2	Interpret and appreciate the didactic purpose in literature.
CO3	Identify the poetic devices to the connection of poems.
CO4	Describe the process and origin of the development of drama in its structure with the text.
CO5	Define the various types of novels with their structure

								MA	PPIN	IG OF	COs V	NITH	POs AND PSOs				
COs		GRAI				OU	GRAM TCOMI	ES (PSC	PSOs)								
COs	<b>PO1</b>	<b>PO2</b>	PO3	PO4	PO5	PO6	PO7	PO8	PO9	<b>PO10</b>	<b>PO1</b>	<b>PO1</b>	PSO1	PSO2	PSO3	PSO4	
											1	2					
CO1	-	-	-	-	-	1	-	1	-	-	-	1	-	-	-	1	
CO2	-	-	-	-	-	1	-	1	-	1	-	1	-	-	-	1	
CO3	-	-	-	-	-	1	-	1	-	1	-	1	-	-	-	1	
<b>CO4</b>	-	-	-	-	-	1	-	1	-	-	-	1	-	-	-	1	
CO5	-	-	-	-	-	1	-	1	-	-	-	1	-	-	-	1	

MX4003	PERSONALITY DEVELOPMENT THROUGH LIFE L T I ENLIGHTENMENT SKILLS	P C
	(Common to all branches of B.E. / B. Tech Programmes) 3 0	) ()
OBJECTIVES		
<ul> <li>To deve</li> </ul>	lop inter personal skills and be an effective goal-oriented team player.	
<ul> <li>To deve</li> </ul>	lop professionals with idealistic, practical and moral values.	
<ul> <li>To deve</li> </ul>	lop communication and problem-solving skills.	
✤ To re-er	gineer attitude and understand its influence on behavior	
U <b>NIT I</b>		9
Neetisatakam-H	Iolistic development of personality I	
	1,22 (wisdom), Verses- 29,31,32 (pride & heroism), Verses- 26,28,63,65 (virtue)	
U <b>NIT II</b>		9
Neetisatakam-H	Iolistic development of personality II	
Verses- 52,53,5	9 (don'ts), Verses- 71,73,75,78 (do's)	
UNIT III		9
Approach to da	y-to-day work and duties.	
Shrimad Bhagw	vadGeeta: Chapter 2-Verses 41, 47,48, Chapter 3-Verses 13, 21, 27, 35, Chapter 6	-
Verses 5,13,17,	23, 35, Chapter 18-Verses 45, 46, 48.	
UNIT IV		9
Statements of b	asic knowledge.	
Shrimad Bhagw	vad Geeta: Chapter2-Verses 56, 62, 68, Chapter 12 -Verses 13, 14, 15, 16, 17, 18	
UNIT V		9
Personality of F	Role model.	
Shrimad Bhagv	vad Geeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18	,
38,39, Chapter1	8 – Verses 37,38,63.	
TEXT BOOKS	5	
	d Bhagavad Gita" by Swami Swarupananda, Advaita Ashram (Publication Depar	rtmen
Kolkata		
	ari'a Three Satekam (Niti aringer vairague) by D Conjugth Destrive Sangkrit Sang	thone

2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi

# COURSE OUTCOMES

COUR	
Upon o	completion of the course, students will be able to
CO1	Study of Shrimad Bhagwad Geeta will help the student in developing his personality and achieve the
COI	highest goal in life.
CO2	The person who has studied Geeta will lead the nation and mankind to peace and prosperity.
CO3	Study of Neetishatakam will help in developing versatile personality.
CO4	Issues basic knowledge to the students from gita
CO5	Develop personality role model

	Ν	ЛАРР	ING	BETV	WEEN	N CO	AND	PO, I	PSO V	VITH	COF	REL	ATIO	N LE	VEL	1/2/3							
COs		PROGRAMME OUTCOMES												OUTCOMES PROGRAMME SPECIF OUTCOMES									
	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO1         PO1           0         1											PO1 2	PS 01	PS O2	PS 03	PSO4							
CO1	-	-	-	-	-	1	-	1	-	-	-	1	-	-	-	1							
CO2	-	-	-	-	-	1	-	1	-	-	-	1	-	-	-	1							
CO3	-	-	-	-	-	1	-	1	-	-	-	1	-	-	-	1							
<b>CO4</b>	-	-	-	-	-	1	-	1	-	-	-	1	-	-	-	1							

MX4004	DISASTER MANAGEMENT	L	Т	Р	C
	Common to all Branches	3	0	0	0
OBJECTIVE ◆ To pro ◆ To ens disaster prever ◆ To gair ◆ To enh ◆ To dev in areas where UNIT I Definition: Di Earthquake, La economic, pol caste, class, g pandemics, co		y, dis DRR) saste saste ig so term disas	r res r res cial, as of ters,	pons	
Disasters UNIT II	APPROACHES TO DISASTER RISK REDUCTION (DRR)				9
Disaster cycle based DRR, Panchayati Ra holders- Instit	- Phases, Culture of safety, prevention, mitigation and preparedness con Structural- nonstructural measures, Roles and responsibilities of- con j Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other utional Processess and Framework at State and Central Level- State Authority(SDMA) – Early Warning System – Advisories from App	nmu er st Disa	nity, ake- aster	C	202
UNIT III	INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVEL	OP	ME	NT	9
dams, embank	ng Vulnerabilities, differential impacts, impact of Development projects ments, changes in Land-use etc Climate Change Adaptation- IPCC Scer le context of India - Relevance of indigenous knowledge, appropriate tec rces.	nario	and	C	03
UNIT IV	DISASTER RISK MANAGEMENT IN INDIA				9
Shelter, Healt Preparedness, and legislation	Inerability profile of India, Components of Disaster Relief: Water, Food, Sa h, Waste Management, Institutional arrangements (Mitigation, Respo Disaster Management Act and Policy - Other related policies, plans, prog – Role of GIS and Information Technology Components in Preparedne esponse and Recovery Phases of Disaster – Disaster Damage Assessment	onse gram	and mes	C	04

UN	NIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS	9
	lide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and	
		C <b>O</b> 5
	sment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man	
	disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and	
field w	works related to disaster management.	TIDC
	TOTAL: 45 HO	UKS
	TEXTBOOKS	
	1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386 ISBN-13: 978-9380386423	427
	<ol> <li>Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India</li> </ol>	
	Education Pvt. Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361]	
	3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Manager	nent.
	NIDM, New Delhi, 2011	,
	4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage	
	Publishers, Newdelhi, 2010.	
	REFERENCE BOOKS	
	<ol> <li>Govt. of India: Disaster Management Act , Government of India, New Delhi, 2005</li> <li>Government of India, National Disaster Management Policy, 2009.</li> </ol>	
COUF	RSE OUTCOMES	
Upon	completion of the course, students will be able to	
CO1	Differentiate the types of disasters, causes and their impact on environment and society	
CO2	Assess vulnerability and various methods of risk reduction measures as well as mitigation	
CO3	Draw the hazard and vulnerability profile of India, Scenarios in the Indian context,	
CO4	Know about the relief measures, Disaster damage assessment and management.	
CO5	Learn through case studies about the damages caused due to various disasters.	

	Ν	MAPP	PING	BETV	VEEN	N CO	AND	PO, I	PSO V	VITH	COR	REL	ATIO	N LE	VEL	1/2/3
COs		PROGRAMME OUTCOMES													E SPI	ECIFIC S
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 I													PS	PSO4
										0	1	2	01	02	03	
CO1	-	-	1	-	-	3	3	-	-	-	-	2	-	-	-	2
CO2	-	-	1	-	-	3	3	-	-	-	-	2	-	-	-	2
CO3	-	-	1	-	-	3	3	-	-	-	-	2	-	-	-	2
CO4	-	-	1	-	-	3	3	-	-	-	-	2	-	-	-	2
CO5	-	-	2	-	-	3	3	-	-	-	-	2	-	-	-	2

MX40	5 WELL BEING WITH TRADITIONAL PRACTICES	L	Τ	Р	С
		3	0	0	0
OBJE	CTIVES				
•	Explaining the purpose of well being and impact it has on their work and lif	fe			
•	To teach basic methods used in the systems of Ayurveda, Siddha and Yoga				
•	Identify key factors that contribute to work place burnout and sustainability.				

Unit1	HEALTH AND HAPPINESS	9
	viscal health, physical and emotional safety, and a feeling of belonging, sense	CO1
of purpose, achi	evement and success.Need for Managing Self, Positive Psychology and Yoga.	COI
Unit 2	WELL BEING	9
	Ibeing: Perspectives from Positive Psychology, Yoga and Ayurveda, Attaining	
•	ethods, Obstacles, Realms and Types of Interventions for Managing Self and	CO2
Career		002
Unit 3	YOGA PRACTICES	9
	Eight parts of yoga.(Ashtanga). Asan and Pranayam - Various yoga poses	
and their benefice Types of prana	ts for mind & body - Regularization of breathing techniques and its effects- yam	CO3
Unit 4	AYURVEDA PRACTICS	9
Health Benefits	of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage	004
	Ayurveda and allied disciplines – Approach to health disease in Ayurveda	CO4
Unit 5	BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE	9
Principles of Si	ddha- the five natural elements and three humours, Physical constituents.	CO5
	TOTAL: 45 HOURS	
TEXT BOOK	5	
<ol> <li>Yogic A</li> <li>Textboo</li> </ol>	health and well being in workplace by Gillhassan and Donna Butler. Asanas for Group Training - Part- I": Janardan Swami Yogabhyasi Mandal, Nag ok of Ayurveda: Volume 1 - Fundamental Principles of Ayurveda by Dr Vasant	
4. Siddha <b>REFERENCE</b>	medicine handbook of raditional remedies by Paul Joseph	
	cial Psychology of Mental Health: Basic Mechanisms and Applications by Dian	e N
Ruble	and sychology of Mental Health. Dasic Mechanishis and Applications by Dian	
	oga or conquering the Internal Nature" by Swami Vivekananda, Advaita	
	cation Department), Kolkata.	
COURSE OU	ГСОМЕ	
CO1	To create awareness about health and happiness	
CO2	To develop healthy mind in a healthy body thus improving social health also	
CO3	To educate the importance of various yoga asanas	
CO4	To know the values of ayurveda system	
001	TO KHOW the values of ayurveda system	

	MA	PPIN	G BE	TWE	EN C	COA	ND PO	D, PS	<b>O</b> WI	ТН (	CORI	RELA	TIO	N LE	VEL	1/2/3
COs														RAM OUT	ME COM	IES
	PO1	PO2	PO3	PO4	PO1	PO1	PS	PS	PS	PS						
										0	1	2	01	02	03	04
CO1	-	-	2	-	-	2	2	2	-	-	-	2	1	-	-	2
CO2	-	-	2	-	-	2	2	2	-	-	-	2	-	-	-	2
CO3	-	-	2	-	-	2	2	3	-	-	-	2	-	-	-	2
<b>CO4</b>	-	-	1	-	-	2	3	3	-	-	-	2	-	-	-	2
CO5	-	-	1	-	-	2	2	2	-	-	-	2	-	-	-	2

		HISTORY OF SCIENCE AND	T		Р	C
		TECHNOLOGY IN INDIA			0	
ODIECTU		3	0		0	0
OBJECTIV						
-	-	re to the development of science and technology				
	-	nowledge of India's scientific and technological t				
		anding of the socio-cultural and philosophical co	ontext i	n	whie	ch
	technology devel	-				
	elp in repositioni	ng India's contributions in science and technolog	SY .			
Unit1		Introduction			9	
		dian sciences - An overview of Indian contributio	ons to		CC	)1
sciences - An	n overview of Indi	an contributions to technology				
Unit 2		Astronomy			9	
	t of astronomy in	India- Pancanga: Indian calendrical computations-	- The			
		etary models- Computation of eclipses: Its simpl				
	-	vational astronomy in India	10105			
••••B••••••					CC	)2
Unit 3		Mathematics			9	
	v of the developm	ent of mathematics in India – Mathematics conta	ained		-	
		al aspects of the Chandassastra – Solutions to the			CC	)3
		nate equations- Weaving mathematics into beauti				-
		evolution of sine function in India – The discove				
1 5	•	ulus by Kerala astronomers.	5			
Unit 4		Ayurveda			9	
History of A	Ayurveda – Rati	onal foundations of Ayurveda – Textual source	es in		CC	)4
	Tryurveau ana	allied disciplines –Approach to health diseas				
i i j ui v ouu		allied disciplines –Approach to health diseas t and nutrition in Ayurveda – Ayurveda and mo	se in			
		t and nutrition in Ayurveda – Ayurveda and mo	se in			
	Approach to die	t and nutrition in Ayurveda – Ayurveda and mo	se in		9	I
medicine – A Unit 5	Approach to die Ayurveda and Yo	t and nutrition in Ayurveda – Ayurveda and mo ga	se in		9	1
medicine – A Unit 5 Agriculture:	Approach to die Ayurveda and Yo Origin and devel	t and nutrition in Ayurveda – Ayurveda and mo ga <b>Technological development in India</b>	se in odern		9	1
medicine – A Unit 5 Agriculture: Water mana	Approach to die Ayurveda and Yo Origin and devel	t and nutrition in Ayurveda – Ayurveda and mo ga Technological development in India opment- Ancient crops- Traditional practices	se in odern		9 CC	
medicine – A Unit 5 Agriculture: Water mana Medieval W	Approach to die Ayurveda and Yo Origin and devel gement: Overview	t and nutrition in Ayurveda – Ayurveda and mo ga Technological development in India opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu	se in odern			
medicine – A Unit 5 Agriculture: Water mana Medieval W Pottery: Ove Silpasastra:	Approach to die Ayurveda and Yo Origin and devel gement: Overview ater structures erview- Technical Architecture	t and nutrition in Ayurveda – Ayurveda and mo ga Technological development in India opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu	se in odern dies-			
Medicine – A Unit 5 Agriculture: Water mana Medieval W Pottery: Ove Silpasastra: Construction	Approach to die Ayurveda and Yo Origin and devel gement: Overview ater structures erview- Technical Architecture n Technology	t and nutrition in Ayurveda – Ayurveda and mo ga Technological development in India opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu aspects and Construction: An introduction to Silpasa	se in odern dies-			
medicine – A Unit 5 Agriculture: Water mana Medieval W Pottery: Ove Silpasastra: Construction	Approach to die Ayurveda and Yo Origin and devel gement: Overview ater structures erview- Technical Architecture n Technology	t and nutrition in Ayurveda – Ayurveda and mo ga <u>Technological development in India</u> opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu aspects	se in odern dies-			
medicine – A Unit 5 Agriculture: Water mana Medieval W Pottery: Ove Silpasastra: Construction Metallurgy:	Approach to die Ayurveda and Yo Origin and devel gement: Overview ater structures erview- Technical Architecture n Technology	t and nutrition in Ayurveda – Ayurveda and mo ga <u>Technological development in India</u> opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu aspects and Construction: An introduction to Silpasa Zinc- Iron and Steel Technology in India	se in odern dies-			
medicine – A Unit 5 Agriculture: Water mana Medieval W Pottery: Ove Silpasastra: Construction Metallurgy:	Approach to die Ayurveda and Yo Origin and devel gement: Overview ater structures erview- Technical Architecture n Technology Copper/Bronze/Z	t and nutrition in Ayurveda – Ayurveda and mo ga <u>Technological development in India</u> opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu aspects and Construction: An introduction to Silpasa Zinc- Iron and Steel Technology in India	se in odern dies-			
medicine – AUnit 5Agriculture:Water manaMedieval WPottery: OveSilpasastra:ConstructionMetallurgy:1	Approach to die Ayurveda and Yo Origin and devel gement: Overview ater structures erview- Technical Architecture n Technology Copper/Bronze/Z FOTAL: 45HOU FEXT BOOKS Suvobrata Sarkar,	t and nutrition in Ayurveda – Ayurveda and mo ga <u>Technological development in India</u> opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu aspects and Construction: An introduction to Silpasa <u>Cinc- Iron and Steel Technology in India</u> URS History of Science, Technology, Environment, a	se in odern dies- astra-	edi	CC	)5
medicine – A         Unit 5         Agriculture:         Water mana         Medieval W         Pottery: Ove         Silpasastra:         Construction         Metallurgy:         1	Approach to die Ayurveda and Yo Origin and devel gement: Overview ater structures erview- Technical Architecture n Technology Copper/Bronze/Z FOTAL: 45HOU FEXT BOOKS Suvobrata Sarkar, India, Taylor & F	t and nutrition in Ayurveda – Ayurveda and mo ga <u>Technological development in India</u> opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu aspects and Construction: An introduction to Silpasa Cinc- Iron and Steel Technology in India URS History of Science, Technology, Environment, a rancis, London	se in odern dies- astra- and Me		CC	)5
medicine – A         Unit 5         Agriculture:         Water mana         Medieval W         Pottery: Ove         Silpasastra:         Construction         Metallurgy:         1	Approach to die Ayurveda and Yo Origin and devel gement: Overview ater structures erview- Technical Architecture n Technology Copper/Bronze/Z FOTAL: 45HOU FEXT BOOKS Suvobrata Sarkar, India, Taylor & F	t and nutrition in Ayurveda – Ayurveda and mo ga <u>Technological development in India</u> opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu aspects and Construction: An introduction to Silpasa <u>Cinc- Iron and Steel Technology in India</u> URS History of Science, Technology, Environment, a	se in odern dies- astra- and Me		CC	)5
medicine – 2Unit 5Agriculture:Water manaMedieval WPottery: OveSilpasastra:ConstructionMetallurgy:12	Approach to die Ayurveda and Yo Origin and devel gement: Overview ater structures erview- Technical Architecture n Technology Copper/Bronze/Z FOTAL: 45HOU FEXT BOOKS Suvobrata Sarkar, India, Taylor & F	t and nutrition in Ayurveda – Ayurveda and mo ga <u>Technological development in India</u> opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu aspects and Construction: An introduction to Silpasa <u>Cinc- Iron and Steel Technology in India</u> <b>IRS</b> History of Science, Technology, Environment, a rancis, London reesh P.a. 2022, A Brief History of Science in In	se in odern dies- astra- and Me		CC	)5
medicine – 2Unit 5Agriculture:Water manaMedieval WPottery: OveSilpasastra:ConstructionMetallurgy:1213	Approach to die Ayurveda and Yo Origin and devel gement: Overview ater structures erview- Technical Architecture Technology Copper/Bronze/Z FOTAL: 45HOU FEXT BOOKS Suvobrata Sarkar, India, Taylor & F NeeraMisra, Saba Prakashan Private Prittam Dutta 202	t and nutrition in Ayurveda – Ayurveda and mo ga <u>Technological development in India</u> opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu aspects and Construction: An introduction to Silpasa Cinc- Iron and Steel Technology in India URS History of Science, Technology, Environment, a rancis, London reesh P.a. 2022, A Brief History of Science in In Limited. 1, WHAT IS ASTRONOMY ?, Notion Press	se in odern dies- astra- and Me		CC	)5
medicine – 2Unit 5Agriculture:Water manaMedieval WPottery: OveSilpasastra:ConstructionMetallurgy:123	Approach to die Ayurveda and Yo Origin and devel gement: Overview ater structures erview- Technical Architecture n Technology Copper/Bronze/Z FOTAL: 45HOU FEXT BOOKS Suvobrata Sarkar, India, Taylor & F NeeraMisra, Saba Prakashan Private Prittam Dutta 202 REFERENCE B	t and nutrition in Ayurveda – Ayurveda and mo ga Technological development in India opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu aspects and Construction: An introduction to Silpasa Zinc- Iron and Steel Technology in India URS History of Science, Technology, Environment, a rancis, London reesh P.a. 2022, A Brief History of Science in In Limited. 1, WHAT IS ASTRONOMY ?, Notion Press OOKS	se in odern dies- astra- and Me dia, Ga	arı	CC	)5
medicine – A         Unit 5         Agriculture:         Water mana         Medieval W         Pottery: Ove         Silpasastra:         Construction         Metallurgy:         1         2         3         1         1         2         3	Approach to die Ayurveda and Yo Origin and devel gement: Overview ater structures erview- Technical Architecture n Technology Copper/Bronze/Z FOTAL: 45HOU FEXT BOOKS Suvobrata Sarkar, India, Taylor & F NeeraMisra, Saba Prakashan Private Prittam Dutta 202 REFERENCE B D. P. Chatpathaya	t and nutrition in Ayurveda – Ayurveda and mo ga <u>Technological development in India</u> opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu aspects and Construction: An introduction to Silpasa Cinc- Iron and Steel Technology in India URS History of Science, Technology, Environment, a rancis, London reesh P.a. 2022, A Brief History of Science in In Limited. 1, WHAT IS ASTRONOMY ?, Notion Press OOKS	se in odern dies- astra- and Me dia, Ga	arı	CC	)5
medicine – A         Unit 5         Agriculture:         Water mana         Medieval W         Pottery: Ove         Silpasastra:         Construction         Metallurgy:         7         1         2         3         1         1	Approach to die Ayurveda and Yo Origin and devel gement: Overview ater structures erview- Technical Architecture Technology Copper/Bronze/Z FOTAL: 45HOU FEXT BOOKS Suvobrata Sarkar, India, Taylor & F NeeraMisra, Saba Prakashan Private Prittam Dutta 202 REFERENCE B D. P. Chatpathaya civilization, Uma	t and nutrition in Ayurveda – Ayurveda and mo ga <u>Technological development in India</u> opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu aspects and Construction: An introduction to Silpasa Cinc- Iron and Steel Technology in India URS History of Science, Technology, Environment, a rancis, London reesh P.a. 2022, A Brief History of Science in In Limited. 1, WHAT IS ASTRONOMY ?, Notion Press OOKS ya, History of science, philosophy, and culture in das Gupta, Pearson Education.	se in odern adies- astra- and Me adia, Ga		CC	<b>)</b> 5
medicine – 2Unit 5Agriculture:Water manaMedieval WPottery: OveSilpasastra:ConstructionMetallurgy:123123121212121212121121121111111111111	Approach to die Ayurveda and Yo Origin and devel gement: Overview ater structures erview- Technical Architecture Technology Copper/Bronze/Z FOTAL: 45HOU FEXT BOOKS Suvobrata Sarkar, India, Taylor & F NeeraMisra, Saba Prakashan Private Prittam Dutta 202 REFERENCE B D. P. Chatpathaya civilization, Uma	t and nutrition in Ayurveda – Ayurveda and morga Technological development in India opment- Ancient crops- Traditional practices w- Harappan water management- Other case stu aspects and Construction: An introduction to Silpasa Zinc- Iron and Steel Technology in India URS History of Science, Technology, Environment, a rancis, London reesh P.a. 2022, A Brief History of Science in In Limited. 1, WHAT IS ASTRONOMY ?, Notion Press OOKS aya, History of science, philosophy, and culture in das Gupta, Pearson Education. van H. Bunch, Alexander Hellemans, The History	se in odern adies- astra- and Me adia, Ga		CC	<b>)</b> 5

3	Projit Bihari Mukharji · 2016, Doctoring Traditions-Ayurveda, Small Technologies, and Braided Sciences, University of Chicago Press
	COURSE OUTCOME
CO1	Gain knowledge on Indian sciences
CO2	Able to understand the evolution of stars as well as of the large scale structure of the Universe
CO3	Can use to solve problems involved in arithmetic, algebra, geometry, and other fields of mathematics
CO4	Helps in understanding each individual at a very subtle, personal level and gives a detailed protocol for diet, daily routines and activities to be followed.
CO5	Gain knowledge on origin of agriculture, technical aspects of pottery and silpasastra

		MA	PPIN	G BET	WEE	N CO	AND I	PO, PS	O WI	тн сс	ORRE	LATIO	N LE	VEL 1	/2/3	
COs			J	PROG		PROC	-	IME S COM	PECII ES	FIC						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS O4
CO1	-	-	-	1	-	-	2	2	-	-	-	2	-	-	1	1
CO2	2	2	1	1	1	2	2	1	-	-	1	3	-	-	-	1
CO3	3	3	2	1	1	-	-	-	1	-	1	2	-	-	1	1
CO4	1	-	-	-	-	3	3	1	-	-	-	3	-	-	-	1
CO5	2	2	1	1	2	3	3	1	-	-	-	2	-	-	-	1

MX4007	POLICAL AND ECONOMIC THOUGHT FOR HUMAN SOCIETY	L	Р	Т	C
		3	0	0	3
OBJECTIVE	S				
<ul> <li>To unc</li> </ul>	lerstand the concept of political science and theories of political science.				
<ul> <li>To known</li> </ul>	ow the types of political socialization and their role.				
• To exp	plore various theories of economic thought.				
• To lease	rn the importance of human values of life.				
UNIT I	POLITICAL THOUGHTS			9	
Political scien	ce: Definition, Nature & Scope; Relation of Political Science with other Sc	ocial			
Sciences; Trac	litional approaches to the study of Political Science: Normative, Empirical	and			
Feminist-State	e: Definition; Elements; Relation with other organizations; Theories of or	igin		CO	1
of state (The	eory of Divine, Force, and Evolutionary); Sovereignty- definition	and			
characteristics					
UNIT II	POLITICAL CULTURE AND POLITICAL SOCIALIZATION			9	
•	dimensions of political culture, meaning and types of political socializa		(	CO2	
agencies of po	litical socialization and their role-Meaning and types of political participat	ion,			

political anothy reasons for political anothy Determinants of political participation	
political apathy – reasons for political apathy, Determinants of political participation – psychological, social and political.	
UNIT III HISTORY OF ECONOMIC THOUGHT	9
Nature and Importance of Economic thought – Approaches of Economic Thought – Scholastics – Mercantilism, French and English – Thomas Munn – Scientific Method and the French Physiocrats – Quesnay – The Classical School – Adam Smith – Division of Labour – Ricardo and Theory of Rent – Comparative Cost Theory – Stationary State – Malthus and Theory of Population and Theory of Gluts.	CO3
UNIT IV ECONOMIC BEHAVIOUR AND MORAL SENTIMENTS	9
Importance of ethics in economics; Outcomes of ethical analysis; Duties, rules and virtues; Economic behaviour: Self-interest and rational behaviour- Adam Smith and self-interest - Social Philosophy (Naturalism, Optimism, Self Interest, Invisible hand, Laisseze faire); Economic ideas: Wealth, Labour & Division of labour, Value, Distribution.	CO4
UNIT V HUMAN VALUES	9
Value Education, Self-Exploration - its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self-exploration, Continuous Happiness and Prosperity- A look at basic Human Aspirations, Right understanding, Relationship - the basic requirements for fulfillment of aspirations of every human being with their correct priority, Method to fulfill the human Values, understanding and living in harmony at various levels.	CO5
TOTAL : 45	HOURS
TEXT BOOKS	
1. Bhargava, R. (2008) 'What is Political Theory', in Bhargava, R and Acharya, A. (eds. Theory: An Introduction, New Delhi: Pearson Longman.	) Political
<ul> <li>Theory: An Introduction. New Delhi: Pearson Longman.</li> <li>Olivier Blanchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 20</li> <li>R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and P Ethics.</li> </ul>	)17.
<ul> <li>Theory: An Introduction. New Delhi: Pearson Longman.</li> <li>Olivier Blanchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 20</li> <li>R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and P Ethics.</li> </ul> <b>REFERENCE BOOKS</b>	)17. rofessiona
<ul> <li>Theory: An Introduction. New Delhi: Pearson Longman.</li> <li>Olivier Blanchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 20</li> <li>R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and P Ethics.</li> </ul> <b>REFERENCE BOOKS</b> <ol> <li>O.P.Gauba, (2015) An Introduction to Political Theory, New Delhi: Mayur Publishers</li> <li>Ashaf, Ali and Sharma B.N. 2001.Political Sociology, University Press, Hyderabad .</li> <li>Jonathan Conlin, Great Economic Thinkers: From Adam Smith to Amartya Sen, Spea</li> </ol>	017. rofessiona
<ul> <li>Theory: An Introduction. New Delhi: Pearson Longman.</li> <li>Olivier Blanchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 20</li> <li>R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and P Ethics.</li> <li><b>REFERENCE BOOKS</b> <ol> <li>O.P.Gauba, (2015) An Introduction to Political Theory, New Delhi: Mayur Publishers</li> <li>Ashaf, Ali and Sharma B.N. 2001.Political Sociology, University Press, Hyderabad.</li> <li>Jonathan Conlin, Great Economic Thinkers: From Adam Smith to Amartya Sen, Spea Publishing, 2018.</li> </ol> </li> </ul>	017. rofessiona
<ul> <li>Theory: An Introduction. New Delhi: Pearson Longman.</li> <li>Olivier Blanchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 20</li> <li>R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and P Ethics.</li> <li><b>REFERENCE BOOKS</b> <ol> <li>O.P.Gauba, (2015) An Introduction to Political Theory, New Delhi: Mayur Publishers</li> <li>Ashaf, Ali and Sharma B.N. 2001.Political Sociology, University Press, Hyderabad .</li> <li>Jonathan Conlin, Great Economic Thinkers: From Adam Smith to Amartya Sen, Spea Publishing, 2018.</li> <li>Linda Yueh, The Great Economists: How Their Ideas Can Help Us Today, Viking, 20</li> </ol> </li> </ul>	017. rofessiona
<ol> <li>Theory: An Introduction. New Delhi: Pearson Longman.</li> <li>Olivier Blanchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 20</li> <li>R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and P Ethics.</li> <li><b>REFERENCE BOOKS</b> <ol> <li>O.P.Gauba, (2015) An Introduction to Political Theory, New Delhi: Mayur Publishers</li> <li>Ashaf, Ali and Sharma B.N. 2001.Political Sociology, University Press, Hyderabad.</li> <li>Jonathan Conlin, Great Economic Thinkers: From Adam Smith to Amartya Sen, Spea Publishing, 2018.</li> <li>Linda Yueh, The Great Economists: How Their Ideas Can Help Us Today, Viking, 20</li> <li>B P Banerjee, 2005, Foundations of Ethics and Management, Excel Book.</li> <li>B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Luck</li> </ol> </li> </ol>	017. rofessiona king Tiger 018.
<ul> <li>Theory: An Introduction. New Delhi: Pearson Longman.</li> <li>Olivier Blanchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 20</li> <li>R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and P Ethics.</li> <li><b>REFERENCE BOOKS</b> <ol> <li>O.P.Gauba, (2015) An Introduction to Political Theory, New Delhi: Mayur Publishers</li> <li>Ashaf, Ali and Sharma B.N. 2001.Political Sociology, University Press, Hyderabad.</li> <li>Jonathan Conlin, Great Economic Thinkers: From Adam Smith to Amartya Sen, Spea Publishing, 2018.</li> <li>Linda Yueh, The Great Economists: How Their Ideas Can Help Us Today, Viking, 20</li> <li>B P Banerjee, 2005, Foundations of Ethics and Management, Excel Book.</li> </ol> </li> </ul>	017. rofessiona king Tiger 018. know.
<ul> <li>Theory: An Introduction. New Delhi: Pearson Longman.</li> <li>Olivier Blanchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 20</li> <li>R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and P Ethics.</li> <li><b>REFERENCE BOOKS</b> <ol> <li>O.P.Gauba, (2015) An Introduction to Political Theory, New Delhi: Mayur Publishers</li> <li>Ashaf, Ali and Sharma B.N. 2001.Political Sociology, University Press, Hyderabad.</li> <li>Jonathan Conlin, Great Economic Thinkers: From Adam Smith to Amartya Sen, Spea Publishing, 2018.</li> <li>Linda Yueh, The Great Economists: How Their Ideas Can Help Us Today, Viking, 20</li> <li>B P Banerjee, 2005, Foundations of Ethics and Management, Excel Book.</li> <li>B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Luck Reprinted 2008.</li> </ol> </li> <li><b>Tene</b> van Staveren, The Values of Economics: An Aristotelian Perspective, London: H 2001</li> </ul>	017. rofessiona king Tiger 018. know.
<ol> <li>Theory: An Introduction. New Delhi: Pearson Longman.</li> <li>Olivier Blanchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 20</li> <li>R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and P Ethics.</li> <li><b>REFERENCE BOOKS</b> <ol> <li>O.P.Gauba, (2015) An Introduction to Political Theory, New Delhi: Mayur Publishers</li> <li>Ashaf, Ali and Sharma B.N. 2001.Political Sociology, University Press, Hyderabad.</li> <li>Jonathan Conlin, Great Economic Thinkers: From Adam Smith to Amartya Sen, Spea Publishing, 2018.</li> <li>Linda Yueh, The Great Economists: How Their Ideas Can Help Us Today, Viking, 20</li> <li>B P Banerjee, 2005, Foundations of Ethics and Management, Excel Book.</li> <li>B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Luck Reprinted 2008.</li> <li>Irene van Staveren, The Values of Economics: An Aristotelian Perspective, London: H 2001</li> </ol> </li> <li><b>COURSE OUTCOMES Upon completion of the course, students will be able to</b> </li> </ol>	017. rofessiona king Tiger 018. know.
<ul> <li>Theory: An Introduction. New Delhi: Pearson Longman.</li> <li>Olivier Blanchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 20</li> <li>R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and P Ethics.</li> <li><b>REFERENCE BOOKS</b> <ol> <li>O.P.Gauba, (2015) An Introduction to Political Theory, New Delhi: Mayur Publishers</li> <li>Ashaf, Ali and Sharma B.N. 2001.Political Sociology, University Press, Hyderabad.</li> <li>Jonathan Conlin, Great Economic Thinkers: From Adam Smith to Amartya Sen, Spea Publishing, 2018.</li> <li>Linda Yueh, The Great Economists: How Their Ideas Can Help Us Today, Viking, 20</li> <li>B P Banerjee, 2005, Foundations of Ethics and Management, Excel Book.</li> <li>B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Luck Reprinted 2008.</li> </ol> </li> <li><b>COURSE OUTCOMES Upon completion of the course, students will be able to</b> CO1 To explain the traditional approached of political science and theories of state.</li></ul>	017. rofessiona king Tiger 018. know.
<ul> <li>Theory: An Introduction. New Delhi: Pearson Longman.</li> <li>Olivier Blanchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 20</li> <li>R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and P Ethics.</li> <li><b>REFERENCE BOOKS</b> <ol> <li>O.P.Gauba, (2015) An Introduction to Political Theory, New Delhi: Mayur Publishers</li> <li>Ashaf, Ali and Sharma B.N. 2001.Political Sociology, University Press, Hyderabad.</li> <li>Jonathan Conlin, Great Economic Thinkers: From Adam Smith to Amartya Sen, Spea Publishing, 2018.</li> <li>Linda Yueh, The Great Economists: How Their Ideas Can Help Us Today, Viking, 20</li> <li>B P Banerjee, 2005, Foundations of Ethics and Management, Excel Book.</li> <li>B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Luck Reprinted 2008.</li> </ol> </li> <li>Trene van Staveren, The Values of Economics: An Aristotelian Perspective, London: H 2001</li> </ul> <b>COURSE OUTCOMES Upon completion of the course, students will be able to</b> CO1 To explain the traditional approached of political science and theories of state. CO2 To identify the political culture, socialization, participation and apathy.	017. rofessiona king Tiger 018. know.
<ul> <li>Theory: An Introduction. New Delhi: Pearson Longman.</li> <li>Olivier Blanchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 20</li> <li>R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and P Ethics.</li> <li><b>REFERENCE BOOKS</b> <ol> <li>O.P.Gauba, (2015) An Introduction to Political Theory, New Delhi: Mayur Publishers</li> <li>Ashaf, Ali and Sharma B.N. 2001.Political Sociology, University Press, Hyderabad.</li> <li>Jonathan Conlin, Great Economic Thinkers: From Adam Smith to Amartya Sen, Spea Publishing, 2018.</li> <li>Linda Yueh, The Great Economists: How Their Ideas Can Help Us Today, Viking, 20</li> <li>B P Banerjee, 2005, Foundations of Ethics and Management, Excel Book.</li> <li>B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Luck Reprinted 2008.</li> </ol> </li> <li><b>COURSE OUTCOMES Upon completion of the course, students will be able to</b> CO1 To explain the traditional approached of political science and theories of state.</li></ul>	017. rofessiona king Tiger 018. know.

	MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3															
COs	PROGRAMME OUTCOMES											PROGRAMME SPECIFIC OUTCO				
	<b>PO1</b>	PO2	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO1</b>	PO1	PO1	PS	PS	PS	PSO4
										0	1	2	01	02	03	
CO1	1	1	1	3	1	1	1	1	2	2	1	2	-	-	1	3
CO2	1	1	1	3	1	2	1	1	2	2	1	2	-	-	1	3
CO3	1	2	1	3	1	2	1	2	2	2	1	2	-	-	1	3
CO4	1	2	2	3	1	2	3	2	2	3	1	2	-	-	2	3
CO5	1	2	1	3	1	1	3	3	3	3	1	2	-	-	1	3

MX4008	4008INDUSTRIAL SAFETYLTP										
	Common to all Branches	3	0	0	0						
OBJECTIVE											
• To impart knowledge on safety engineering fundamentals and safety management prac											
UNIT I INTRODUCTION											
Evolution of	modern safety concepts - Fire prevention - Mechanical hazards - Boilers	, Pres	sure	5	CO1						
vessels, Electrical Exposure.											
UNIT II	CHEMICAL HAZARDS				9						
Chemical exp	posure – Toxic materials – Ionizing Radiation and Non-ionizing Radiatior	ı - Ind	ustr	ial	CO2						
Hygiene – In	dustrial Toxicology.										
UNIT III	ENVIRONMENTAL CONTROL				9						
	ealth Hazards – Environmental Control – Industrial Noise - Noise Control of Noise, Vibration, - Personal Protection.	e me	asur	ing	CO3						
UNIT IV	HAZARD ANALYSIS				9						
	ty Analysis – Techniques – Fault Tree Analysis (FTA), Failure Modes	and	Effe	ecte	,						
•	(IEA), HAZOP analysis and Risk Assessment	anu		~	<b>CO4</b>						
UNIT V	INDUSTRIAL SAFETY				9						
	- Disaster management – catastrophe control, hazard control, Safety ed	lucati	on a	and	,						
-	ctories Act, Safety regulations Product safety – case studies.				CO5						
		DTAI	.: 4	5 H(	OURS						
ТЕХТВ											
1 John V.C	Grimaldi, "Safety Management", AITB S Publishers, 2003.										
REFER	ENCE BOOKS										
1 Safety Manual, "EDEL Engineering Consultancy", 2000.											
2 David L	.Goetsch, "Occupational Safety and Health for Technologists", 5th Editio	n, En	gine	ers a	and						
	rs, Pearson Education Ltd., 2005		0								
	OUTCOMES										
Upon com	pletion of the course, students will be able to										
CO1 Understand the modern safety concepts and Mechanical hazards											
CO2 Id	entify the effects of Chemical exposure and Toxic materials										
CO3 U	nderstand the Industrial Health Hazards due to environment										
CO4 Understand the System Safety Analysis Techniques											
CO4 U	nderstand the System Safety Analysis Techniques										

	MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3															
COs	PROGRAMME OUTCOMES											PROGRAMME SPECIFIC OUTCOME				
	<b>PO1</b>	PO2	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO1</b>	<b>PO1</b>	<b>PO1</b>	PS	PS	PS	PSO4
										0	1	2	01	<b>O2</b>	03	
CO1	-	-	2	-	-	3	2	2	-	-	-	3	-	-	1	2
CO2	-	-	2	-	-	3	2	2	-	-	-	2	-	-	1	2
CO3	-	-	2	-	-	3	2	2	-	-	-	2	-	-	1	2
CO4	-	-	2	-	-	3	2	2	-	-	-	3	-	-	1	2
CO5	-	-	2	-	-	3	2	2	-	-	-	3	-	-	2	2

### ENROLLMENT FOR B.E. / B. TECH. (HONOURS) / MINOR DEGREE (OPTIONAL)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E. / B. Tech. (Honours) or Minor Degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a professional elective from any one of the other programmes, Moreover, for minor degree the student can register for courses from any one of the following verticals also.

Complete details are available in clause 4.10 of Regulations 2022.

### PROFESSIONAL ELECTIVES / VERTICALS FOR <u>MINOR DEGREE</u> (In addition to all the Professional Electives / verticals of other programmes)

Vertical I Fintech and Block	Vertical II Entrepreneursh	Vertical III Public Administratio	Vertical IV Business Data Analytics	Vertical V Environment and
Financial Management	Foundations of Entrepreneurship	Principles of Public Administration	Statistics for Management	Sustainable infrastructure Development Sustainable
Fundamentals of Investment	Team Building & Leadership Management for Business	Constitution of India	Datamining for Business Intelligence	Sustainable Agriculture and
Banking, Financial Services and	Creativity & Innovation in Entrepreneurshi	Public Personnel Administration	Human Resourc e Analytic	Sustainable Bio Materials
Introduction to Blockchain and its	Principles of Marketing Management For	Administrative Theories	Marketing and Social Media Web Analytics	Materials for Energy Sustainability
Fintech Personal Finance and	Human Resource Management for Entrepreneurs	Indian Administrative System	Operation and Supply Chain	Green Technology
Introduction to Fintech	Financing New Business Ventures	Public Policy Administration	Financial Analytics	Environmental Quality Monitoring and
-	-	-	-	Integrated Energy Planning for Sustainable Development
-	-	-	-	Energy Efficiency for Sustainable