

St. Joseph's Group of Institutions

OMR, Chennai - 119

FACULTY OF ELECTRICAL ENGINEERING REGULATIONS - 2022 (CURRICULUM & SYLLABUS)

B.E.- ELECTRICAL AND ELECTRONICS ENGINEERING

Choice Based Credit System (CBCS)

I - VIII Semesters

Vision of the department

To become a well renowned department in the field of Electrical and Electronics Engineering by imparting knowledge and inculcating ethical values to serve the global society.

Mission of the department

- To inculcate knowledge of fundamental principles and make the students competent in the field of Electrical and Electronics Engineering.
- > To upgrade students technical knowledge through industry-interaction.
- ➤ To enhance the professional skills of designing, leadership, management with ethical standards for a successful career.
- To provide research and intellectual resources for the challenges faced by the industry and mankind.

B.E Electrical and Electronics Engineering

Regulation R-2022

Choice Based Credit System (CBCS)

Curriculum & Syllabi

I-VIII Semester

Program Education Objectives (PEOs)

PEO1: To provide a strong foundation for students to have a successful career in electrical and its related fields and to pursue higher education and research.

PEO2: To improve their mathematical and scientific knowledge to solve emerging real world problems related to power, electronics, control systems, field theory and signal processing and will use their communication and intellectual skills for execution of complex technological solutions.

PEO3: To fulfil the needs of society in solving technical problems using engineering principles, tools and practices, in an ethical and responsible manner, in service to the society.

PEO4: To develop their self-learning capability and adaptability to encounter various complex practical problems in multi-disciplinary engineering projects effectively and undertake leadership roles when appropriate.

PEO5: To promote students awareness of lifelong learning to enhance and maintain professional skills.

Program Outcomes (POs):

- a) Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **b) Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- c) Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **d)** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

- **e) Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **f)** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **g**) **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **h) Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- i) Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **j)** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **k)** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- l) Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

PSO1: Our graduates will be able to understand the basic concepts related to engineering and technology with enhanced problem solving skills.

PSO2: Our graduates, with high proficiency in Electrical and Electronics Engineering will be able to exhibit technical knowledge in industrial and entrepreneurial focus.

PSO3: Our graduates can translate the effects of professional values and ethics in accordance with Electrical and Electronics Engineering domain, to create sustained environment for social growth.

PROGRAMME EDUCATIONAL	PROGRAMME OUTCOMES									S	PROGRAMME SPECIFIC OUTCOMES				
OBJECTIVES	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
I	3	3	3	3	2	2	-	2	3	-	3		3	2	2
II	-	-	-	-		3	1	2	1	2	2	-	3	1	-
III	3	1	1	2	1	-	-	-	-	3	3	2	2	2	1
IV	3	2	2	3	-	-	-	-	3	3	2	-	3	1	-
V	2	-		-	-	2	3	2	-	1	2	-	3	2	1

Correlation Level 1, 2 or 3 as defined below

- 1. Slight (Low)
- 2. Moderate (Medium)
- 3. Substantial (High)

SEMESTER I

S.NO.	COURSE CODE	COURSE TITLE	CATEG ORY	L	T	P	TOTAL CONTACT PERIODS	CREDITS
1.	IP4151	Induction Programme	-	-			-	0
THEO	RY							
2.	HS4101	Communicative English	HSMC	3	0	0	3	3
3.	MA4102	Engineering Mathematics	BSC	3	1	0	4	4
4.	PH4103	Engineering Physics	BSC	3	0	0	3	3
5.	CY4104	Engineering Chemistry	BSC	3	0	0	3	3
6.	GE4105	Problem solving and Python Programming	ESC	3	0	0	3	3
7.	GE4106	Engineering Graphics	ESC	2	0	4	6	4
8.	GE4151	தமிழர் மரபு /Heritage of Tamils	HSMC	1	0	0	1	1
PRAC'	TICALS							
9.	GE4107	Python Programming Laboratory	ESC	0	0	4	4	2
10.	BS4108	Physics and Chemistry Laboratory	BSC	0	0	4	4	2
		·	TOTAL	18	1	12	31	25

SEMESTER II

S.NO.	COURSE CODE	COURSE TITLE	CATEG ORY	L	T	P	TOTAL CONTACT PERIODS	CREDITS
THE	ORY						TERRODS	
1.	HS4201	Professional English	HSMC	3	0	0	3	3
2.	MA4202	Statistics and Numerical Methods	BSC	3	1	0	4	4
3.	PH4252	Physics for Electronics Engineering	BSC	3	0	0	3	3
4.	GE4204	Environmental Science and Engineering	BSC	3	0	0	3	3
5.	BE4205	Basic Civil and Mechanical Engineering	ESC	3	0	0	3	3
6.	EE4201	Principles of Electrical, Electronics and Communication Engineering	PCC	3	0	0	3	3
7.	GE4251	தமிழரும் தொழில்நுட்பம் / Tamils and Technology	HSMC	1	0	0	1	1
PRAC	CTICALS							
8.	GE4207	Engineering Practices Laboratory	ESC	0	0	4	4	2
9.	EE4211	Principles of Electrical and Electronic devices Laboratory	PCC	0	0	4	4	2
			TOTAL	19	1	8	28	24

SEMESTER III

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	TOTAL CONTACT PERIODS	CREDITS
THEOR	RY							
1.	MA4352	Transforms and Complex Functions	BSC	3	1	0	4	4
2.	EE4301	Electric Circuit Analysis	PCC	3	1	0	4	4
3.	EE4302	Electrical Machines – I	PCC	3	0	0	3	3
4.	EE4303	Analog Circuits	PCC	3	0	0	3	3
5.	EE4304	Digital Electronics	PCC	3	0	0	3	3
PRACT	ICALS					•		
6.	EE4311	Electrical and Electronic Circuits Laboratory	PCC	0	0	4	4	2
7.	EE4312	Electrical Machines Laboratory – I	PCC	0	0	4	4	2
8.	EE4313	Linear and Digital Circuits Laboratory	PCC	0	0	4	4	2
			TOTAL	15	2	12	29	23

SEMESTER IV

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	TOTAL CONTACT PERIODS	CREDITS
THEO	RY							
1.	MA4401	Probability and Statistics	BSC	3	1	0	4	4
2.	EE4401	Electrical Machines –II	PCC	2	1	0	3	3
3.	EE4402	Control Systems	PCC	2	1	0	3	3
4.	EE4403	Measurements and Instrumentation	PCC	3	0	0	3	3
5.	EE4404	Microprocessors and Microcontrollers	PCC	3	0	0	3	3
6.	EE4405	Generation, Transmission and Distribution	PCC	3	0	0	3	3
PRAC	TICALS							
7.	EE4411	Electrical Machines Laboratory– II	PCC	0	0	4	4	2
8.	EE4412	Microprocessors and Microcontrollers Laboratory	PCC	0	0	4	4	2
9.	HS4310	Professional Skills Lab	EEC	0	0	2	2	1
		•	TOTAL	16	3	10	29	24

SEMESTER V

S.NO.	COURSE	COURSE TITLE	CATEGORY	L	T	P	TOTAL	CREDITS
	CODE						CONTACT PERIODS	
	ND \$7						PERIODS	
THEC	OKY							
1.	CS4551	Fundamentals of Data Structures using C	ESC	3	0	0	3	3
2.	EE4501	Power Electronics	PCC	3	0	0	3	3
3.	EE4502	Power System Analysis	PCC	2	1	0	3	3
4.		Professional Elective-I	PEC	3	0	0	3	3
5.		Open Elective–I*	OEC	3	0	0	3	3
6.		Mandatory Course – I **	MC	3	0	0	3	0
PRAC	CTICALS				•	l	1	
7.	CS4561	Data structures using C Laboratory	ESC	0	0	4	4	2
8.	EE4511	Control and Instrumentation Laboratory	PCC	0	0	4	4	2
9.	EE4512	Power Electronics and Drives Laboratory	PCC	0	0	4	4	2
			TOTAL	17	1	12	30	21

SEMESTER VI

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	TOTAL CONTACT PERIODS	CREDITS
THE	ORY							
1.	CS4651	Object Oriented Programming	ESC	3	0	0	3	3
2.	EE4601	Power Electronic Drives and Control	PCC	3	0	0	3	3
3.	EE4602	Power System Operation and Control	PCC	2	1	0	3	3
4.	EE4603	Embedded Systems	PCC	3	0	0	3	3
5.		Professional Elective-II	PEC	3	0	0	3	3
6.		Mandatory Course – II **	MC	3	0	0	3	0
PRAC	CTICALS							•
7.	CS4661	Object Oriented Programming Laboratory	ESC	0	0	4	4	2
8.	EE4611	Mini Project	EEC	0	0	4	4	2
	•		TOTAL	17	1	8	26	19

^{*} Open Elective – I Shall be chosen from the list of open electives offered by other Programmes

^{**} Mandatory Course I and II is a Non-credit Course (Student shall select one course from the list given under Mandatory Courses I and II)

SEMESTER VII

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	TOTAL CONTACT	CREDITS
							PERIODS	
THE	ORY							
1.	EE4701	Protection and Switch Gear	PCC	3	0	0	3	3
2.	EE4702	Renewable Energy Systems	PCC	3	0	0	3	3
3.		Professional Elective-III	PEC	3	0	0	3	3
4.		Professional Elective-IV	PEC	3	0	0	3	3
5.		Open Elective–II*	OEC	3	0	0	3	3
PRAC	CTICALS							
6.	EE4711	Power System Simulation Laboratory	PCC	0	0	4	4	2
7.	EE4712	Renewable Energy Systems Laboratory	PCC	0	0	4	4	2
	•		TOTAL	15	0	8	23	19

^{*}Open Elective – II Shall be chosen from the list of open electives offered by other Programmes

SEMESTER VIII

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	TOTAL CONTACT PERIODS	CREDITS
THEO	RY							
1.	GE4791	Human Values and Ethics	HSMC	3	0	0	3	2
2.		Professional Elective-V	PEC	3	0	0	3	3
PRAC'	TICALS							
3.	EE4811	Project Work	EEC	0	0	20	20	10
			TOTAL	6	0	20	26	15

TOTAL CREDITS = 170

PROFESSIONAL ELECTIVE COURSES: VERTICALS

Professional Elective	Vertical I Power Engineering	Vertical II Converters and Drives	Vertical III Embedded Systems	Vertical IV Advanced Control	Vertical V (Diversified Courses)
1.	Power Quality	Special Electrical Machines	Digital Signal Processing	Industrial Automation	Soft Computing Techniques
2.	High Voltage Direct Current Transmission	Design of Electrical Apparatus	MEMS and NEMS	System Identification and Adaptive Control	Power System Transients
3.	High Voltage Engineering	Multilevel Power Converters	Operating Systems	Principles of Robotics	Industry 4.0
4.	Electric Energy Utilization and Conservation	Electric Vehicle	Microcontroller Based System Design	Advanced Control System	EHVAC Transmission
5.	Flexible AC Transmission Systems	Line Commutated and Active Rectifiers	VLSI Design	Process Modelling and Simulation	Smart Energy Grid
6.	Power System Stability	Power Electronics for Renewable Energy Systems	Smart System Design	Optimal Control	Energy Storage Systems

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL I: POWER ENGINEERING

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	TOTAL CONTACT PERIODS	CREDITS
1.	EE4001	Power Quality	PEC	3	0	0	3	3
2.	EE4002	High Voltage Direct Current Transmission	PEC	3	0	0	3	3
3.	I H H / II I I I I	High Voltage Engineering	PEC	3	0	0	3	3
4.		Electric Energy Utilization and Conservation	PEC	3	0	0	3	3
5.	EE4005	Flexible AC Transmission Systems	PEC	3	0	0	3	3
6.	EE4006	Power System Stability	PEC	3	0	0	3	3

VERTICAL II: CONVERTERS AND DRIVES

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	TOTAL CONTACT PERIODS	CREDITS
1.	EE4007	Special Electrical Machines	PEC	3	0	0	3	3
2.	EE4008	Design of Electrical Apparatus	PEC	3	0	0	3	3
3.	F.E.4009	Multilevel Power Converters	PEC	2	0	2	4	3
4.	EE4010	Electric Vehicle	PEC	2	0	2	4	3
5.	1 664011	Line Commutated and Active Rectifiers	PEC	3	0	0	3	3
6.	EE4012	Power Electronics for Renewable Energy Systems	PEC	3	0	0	3	3

VERTICAL III: EMBEDDED SYSTEMS

S.NO.	COURSE	COURSE TITLE	CATEGORY	L	T	P	TOTAL	CREDITS
	CODE						CONTACT	
							PERIODS	
1.	EE4013	Digital Signal Processing	PEC	3	0	0	3	3
2.	EE4014	MEMS and NEMS	PEC	3	0	0	3	3
3.	EE4015	Operating Systems	PEC	3	0	0	3	3
4.	EE4016	Microcontroller Based	PEC	3	0	0	3	3
		System Design						
5.	EE4017	VLSI Design	PEC	3	0	0	3	3
6.	EE4018	Smart System Design	PEC	3	0	0	3	3

VERTICAL IV: ADVANCED CONTROL

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	TOTAL CONTACT PERIODS	CREDITS
1.	EE4019	Industrial Automation	PEC	3	0	0	3	3
2.	EE4020	System Identification and Adaptive Control	PEC	3	0	0	3	3
3.	EE4021	Principles of Robotics	PEC	3	0	0	3	3
4.	EE4022	Advanced Control System	PEC	3	0	0	3	3
5.	EE4023	Process Modelling and Simulation	PEC	3	0	0	3	3
6.	EE4024	Optimal Control	PEC	3	0	0	3	3

VERTICAL V: DIVERSIFIED COURSES

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	TOTAL CONTACT PERIODS	CREDITS
1.	EE4025	Soft Computing Techniques	PEC	3	0	0	3	3
2.	EE4026	Power System Transients	PEC	3	0	0	3	3
3.	EE4027	Industry 4.0	PEC	3	0	0	3	3
4.	EE4028	EHVAC Transmission	PEC	3	0	0	3	3
5.	EE4029	Smart Energy Grid	PEC	3	0	0	3	3
6.	EE4030	Energy Storage Systems	PEC	3	0	0	3	3

OPEN ELECTIVE-I (V SEMESTER)

S.NO.	COURSE	COURSE TITLE	CATEGORY	L	T	P	TOTAL	CREDITS
	CODE						CONTACT	
							PERIODS	
1.	OEC411	IoT Concepts and	OEC	3	0	0	3	3
	OEC411	Applications						
2.	OEC414	Biomedical	OEC	3	0	0	3	3
	OEC414	Instrumentation						
3.	OEC412	Foundations of Robotics	OEC	3	0	0	3	3
4.	OIT411	Fundamentals of	OEC	3	0	0	3	3
	011411	Database Design						
5.	OME416	Testing of Materials	OEC	3	0	0	3	3

OPEN ELECTIVE-II (VII SEMESTER)

S.NO.	COURSE	COURSE TITLE	CATEGORY	L	T	P	TOTAL	CREDITS
	CODE						CONTACT	
							PERIODS	
1.	OAD421	Data Science	OEC	3	0	0	3	3
	UAD421	Fundamentals						
2.	OCS422	Machine Learning	OEC	3	0	0	3	3
	OC3422	Techniques						
3.	OCS423	Augmented and Virtual	OEC	3	0	0	3	3
	OC3423	Reality						
4.	OME421	Energy Conservation	OEC	3	0	0	3	3
	OME421	and Management						
5.	OME422	Air Pollution and	OEC	3	0	0	3	3
	OME422	Control						

MANDATORY COURSE-I

S.NO.	COURSE	COURSE TITLE	CATEGORY	L	T	P	TOTAL	CREDITS
	CODE						CONTACT	
							PERIODS	
1.	MX4001	Introduction to Women	MC	3	0	0	3	0
	WIA4001	and Gender Studies						
2.	MX4002	Elements of Literature	MC	3	0	0	3	0
3.		Personality	MC	3	0	0	3	0
	MX4003	Development through						
		Life Enlightment skills						
4.	MX4004	Disaster Management	MC	3	0	0	3	0

MANDATORY COURSE-II

S.NO.	COURSE	COURSE TITLE	CATEGORY	L	T	P	TOTAL	CREDITS
	CODE						CONTACT	
							PERIODS	
1.		Well Being with	MC	3	0	0	3	0
	MX4005	traditional practices						
	WIX4003	(Yoga, Ayurveda and						
		Siddha)						
2.	MX4006	History of Science and	MC	3	0	0	3	0
	WIX4000	Technology in India						
3.		Political and Economic	MC	3	0	0	3	0
	MX4007	Thought for a Humane						
		Society						
4.	MX4008	Industrial Safety	MC	3	0	0	3	0

CATEGORIZATION OF COURSES

HUMANITIES AND SOCIAL SCIENCE INCLUDING MANAGEMENT COURSES (HSMC)

	COURSE		Period	ds per	week	TOTAL	CREDITS
S.NO.	CODE	COURSE TITLE	L	T	P	CONTACT PERIODS	
1.	HS4101	Communicative English	3	0	0	3	3
2.	GE4151	தமிழர் மரபு /Heritage of Tamils	1	0	0	1	1
3.	HS4201	Professional English	3	0	0	3	3
4.	GE4251	தமிழரும் தொழில்நுட்பம்/ Tamils and Technology	1	0	0	1	1
5.	GE4791	Human Values and Ethics	3	0	0	3	2

BASIC SCIENCE COURSE (BSC)

			Perio	ds per	week	TOTAL	CREDITS
S.NO.	COURSE	COURSE TITLE	L	Т	P	CONTAC T PERIODS	
1.	MA4102	Engineering Mathematics	3	1	0	4	4
2.	PH4103	Engineering Physics	3	0	0	3	3
3.	CY4104	Engineering Chemistry	3	0	0	3	3
4.	BS4108	Physics and Chemistry Laboratory	0	0	4	4	2
5.	MA4202	Statistics and Numerical Methods	3	1	0	4	4
6.	PH4252	Physics for Electronics Engineering	3	0	0	3	3
7.	GE4204	Environmental Science and Engineering	3	0	0	3	3
8.	MA4352	Probability and Complex Functions	3	1	0	4	4
9.	MA4401	Probability and Statistics	3	1	0	4	4

ENGINEERING SCIENCE COURSE (ESC)

	COURSE	, , ,	Perio	ds per	week	TOTAL	CREDITS
S.NO.	CODE	COURSE TITLE	L	T	P	CONTACT PERIODS	
1.	GE4105	Problem solving and Python Programming	3	0	0	3	3
2.	GE4106	Engineering Graphics	2	0	4	6	4
3.	GE4107	Python Programming Laboratory	0	0	4	4	2
4.	BE4205	Basic Civil and Mechanical Engineering	3	0	0	3	3
5.	GE4207	Engineering Practices Laboratory	0	0	4	4	2
6.	CS4551	Fundamentals of Data Structures using C	3	0	0	3	3
7.	CS4561	Data structures using C Laboratory	0	0	4	4	2

8.	CS4651	Object Oriented Programming	3	0	0	3	3
9.	CS4661	Object Oriented Programming Laboratory	0	0	4	4	2

PROFESSIONAL CORE COURSES (PCC)

a No	COURSE	GOVINGE TYPE T	Perio	ds per	week	TOTAL	CREDITS
S.NO.	CODE	COURSE TITLE	${f L}$	T	P	CONTACT PERIODS	
		Principles of Electrical,					
1.	EE4201	Electronics and	3	0	0	3	3
		Communication Engineering					
2.	EE4211	Principles of Electrical and	0	0	4	4	2
		Electronic devices Laboratory		U			
3.	EE4301	Electric Circuit Analysis	3	1	0	4	4
4.	EE4302	Electrical Machines – I	3	0	0	3	3
5.	EE4303	Analog Circuits	3	0	0	3	3
6.	EE4304	Digital Electronics	3	0	0	3	3
7.	EE4311	Electrical and Electronic Circuits Laboratory	0	0	4	4	2
8.	EE4312	Electrical Machines Laboratory – I	0	0	4	4	2
9.	EE4313	Linear and Digital Circuits Laboratory	0	0	4	4	2
10.	EE4401	Electrical Machines –II	2	1	0	3	3
11.	EE4402	Control Systems	2	1	0	3	3
12.	EE4403	Measurements and Instrumentation	3	0	0	3	3
13.	EE4404	Microprocessors and Microcontrollers	3	0	0	3	3
14.	EE4405	Generation, Transmission and Distribution	3	0	0	3	3
15.	EE4411	Electrical Machines Laboratory– II	0	0	4	4	2
16.	EE4412	Microprocessors and Microcontrollers Laboratory	0	0	4	4	2
17.	EE4501	Power Electronics	3	0	0	3	3
18.	EE4502	Power System Analysis	2	1	0	3	3
19.	EE4511	Control and Instrumentation Laboratory	0	0	4	4	2
20.	EE4512	Power Electronics Laboratory	0	0	4	4	2
21.	EE4601	Power Electronic Drives and Control	3	0	0	3	3
22.	EE4602	Power System Operation and Control	2	1	0	3	3
23.	EE4603	Embedded Systems	3	0	0	3	3
24.	EE4701	Protection and Switch Gear	3	0	0	3	3
25.	EE4702	Renewable Energy Systems	3	0	0	3	3
26.	EE4711	Power System Simulation Laboratory	0	0	4	4	2
27.	EE4712	Renewable Energy Systems Laboratory	0	0	4	4	2

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

S.NO.	COURSE	COURSE TITLE	Periods per RSE TITLE week			TOTAL CONTACT	CREDITS
	CODE		L	T	P	PERIODS	
1.	EE4310	Professional Skills Lab	0	0	2	2	1
2.	EE4612	Mini Project	0	0	4	4	2
3.	EE4811	Project Work	0	0	20	20	10

OPEN ELECTIVE COURSES (OEC)

	COURSE		Perio	ds per	week	TOTAL	CREDITS
S.NO.	CODE	COURSE TITLE	L	T	P	CONTACT PERIODS	
1.	OEC411	IoT Concepts and Applications	3	0	0	3	3
2.	OEC414	Biomedical Instrumentation	3	0	0	3	3
3.	OEC412	Foundations of Robotics	3	0	0	3	3
4.	OIT411	Fundamentals of Database Design	3	0	0	3	3
5.	OME416	Testing of Materials	3	0	0	3	3
6.	OAD421	Data Science Fundamentals	3	0	0	3	3
7.	OCS422	Machine Learning Techniques	3	0	0	3	3
8.	OCS423	Augmented and Virtual Reality	3	0	0	3	3
9.	OME421	Energy Conservation and Management	3	0	0	3	3
10.	OME422	Air Pollution and Control	3	0	0	3	3

PROFESSIONAL ELECTIVE COURSES (PEC)

S.NO.	COUR SE	COURSE TITLE	Per	riods p week	er	TOTAL CONTACT	CREDITS
	CODE		L	T	P	PERIODS	
1.	EE4001	Power Quality	3	0	0	3	3
2.	EE4002	High Voltage Direct Current Transmission	3	0	0	3	3
3.	EE4003	High Voltage Engineering	3	0	0	3	3
4.	EE4004	Electric Energy Utilization and Conservation	3	0	0	3	3
5.	EE4005	Flexible AC Transmission Systems	3	0	0	3	3
6.	EE4006	Power System Stability	3	0	0	3	3
7.	EE4007	Special Electrical Machines	3	0	0	3	3
8.	EE4008	Design of Electrical Apparatus	3	0	0	3	3
9.	EE4009	Multilevel Power Converters	2	0	2	4	3
10.	EE4010	Electric Vehicle	2	0	2	4	3
11.	EE4011	Line Commutated and Active Rectifiers	3	0	0	3	3
12.	EE4012	Power Electronics for Renewable Energy Systems	3	0	0	3	3

13.	EE4013	Digital Signal Processing	3	0	0	3	3
14.	EE4014	MEMS and NEMS	3	0	0	3	3
15.	EE4015	Operating Systems	3	0	0	3	3
16.	EE4016	Microcontroller Based System Design	3	0	0	3	3
17.	EE4017	VLSI Design	3	0	0	3	3
18.	EE4018	Smart System Design	3	0	0	3	3
19.	EE4019	Industrial Automation	3	0	0	3	3
20.	EE4020	System Identification and Adaptive Control	3	0	0	3	3
21.	EE4021	Principles of Robotics	3	0	0	3	3
22.	EE4022	Advanced Control System	3	0	0	3	3
23.	EE4023	Process Modelling and Simulation	3	0	0	3	3
24.	EE4024	Optimal Control	3	0	0	3	3
25.	EE4025	Soft Computing Techniques	3	0	0	3	3
26.	EE4026	Power System Transients	3	0	0	3	3
27.	EE4027	Industry 4.0	3	0	0	3	3
28.	EE4028	EHVAC Transmission	3	0	0	3	3
29.	EE4029	Smart Energy Grid	3	0	0	3	3
30.	EE4030	Energy Storage Systems	3	0	0	3	3

SUMMARY

			Na	me of	the P	rogra	mme	- EEI	E		
S.No	Subject Area			Cree	dits p	er Ser	neste	r		Credits	Percentage
5.110	Subject Area	I	II	III	IV	V	VI	VII	VIII	Total	%
1.	HSMC	4	4						2	10	5.88
2.	BSC	12	10	4	4					30	17.65
3.	ESC	9	5			5	5			24	14.12
4.	PCC		5	19	19	10	9	10		72	42.35
5.	PEC					3	3	6	3	15	8.82
6.	OEC					3		3		6	3.53
7.	EEC				1		2		10	13	7.65
8.	Non- Credit/ (Mandatory)		V			V	V				
	TOTAL	25	24	23	24	21	19	19	15	170	100

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E./B.Tech. (Honours) Minor degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes. Moreover, for minor degree the student can register for courses from any one of the following verticals also.

Vertical I	Vertical II	Vertical III	Vertical IV	Vertical V
Fintech and Block Chain	Entrepreneurship	Public Administration	Business Data Analytics	Environment and Sustainability
Financial Management	Foundations of Entrepreneurship	Principles of Public Administration	Statistics for Management	Sustainable infrastructure Development
Fundamentals of Investment	Team Building and Leadership Management for Business	Constitution of India	Data mining for Business Intelligence	Sustainable Agriculture and Environmental Management
Banking, Financial Services and Insurance	Creativity and Innovation in Entrepreneurship	Public Personnel Administration	Human Resource Analytics	Sustainable Bio Materials
Introduction to Blockchain and its Applications	Principles of Marketing Management for Business	Administrative Theories	Marketing and Social Media Web Analytics	Materials for Energy Sustainability
Fintech Personal Finance and Payments	Human Resource Management for Entrepreneurship	Indian Administrative System	Operation and Supply Chain Analytics	Green Technology
Introduction to Fintech	Financing New Business Ventures	Public Policy Administration	Financial Analytics	Environmental Quality Monitoring and Analysis
-	-	-	-	Integrated Energy Planning for Sustainable Development
	-	-	-	Energy Efficiency for Sustainable Development

SEMESTER – I

IP4151	INDUCTION PROGRAMME	L	T	P	C
	(Common to all branches of B.E. / B. Tech. Programmes)	-	-	-	_

Objectives

- ❖ This is a mandatory 2 week programme to be conducted as soon as the students enter the institution. Normal classes start only after the induction program is over.
- The induction programme has been introduced by AICTE with the following objective: "Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have a broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed."
- ❖ "One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character."
- ❖ Hence, the purpose of this programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

ACTIVITY I PHYSICAL ACTIVITY

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc

ACTIVITY II | CREATIVE ARTS

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it everyday for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, grow into engineering design later.

ACTIVITY III UNIVERSAL HUMAN VALUES

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, make decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and don'ts, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It would be effective that the faculty mentor assigned is also the faculty advisor for the student for the full duration of the UG programme.

ACTIVITY IV | LITERARY ACTIVITY

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

ACTIVITY V PROFICIENCY MODULES

Listening – Listening to technical talks, Presentations, Formal job interviews, (analysis of the interview performance); Speaking – Participating in a Role play, (interview/telephone interview), virtual interviews, Making presentations with visual aids; Reading – Company profiles, Statement of Purpose, (SOP), an excerpt of interview with professionals; Writing – Job / Internship application – Cover letter & Resume; Grammar – Numerical adjectives, Relative Clauses Vocabulary – Easily confused words.

ACTIVITY VI LECTURES BY EMINENT PEOPLE

Motivational lectures by eminent people from all walks of life should be arranged to give the students exposure to people who are socially active or in public life.

ACTIVITY VII VISITS TO LOCAL AREA

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the underprivileged.

ACTIVITY VIII FAMILIARIZATION TO DEPT./BRANCH & INNOVATIONS

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

ACTIVITY IX DEPARTMENT SPECIFIC ACTIVITIES

About a week can be spent in introducing activities (games, quizzes, social interactions, small experiments, design thinking etc.) that are relevant to the particular branch of Engineering /Technology / Architecture that can serve as a motivation and kindle interest in building things (become a maker) in that particular field. This can be conducted in the form of a workshop. For example, CSE and IT students may be introduced to activities that kindle computational thinking and get them to build simple games. ECE students may be introduced to building simple circuits as an extension of their knowledge in Science, and so on. Students may be asked to build stuff using their knowledge of science.

Induction Programme is totally an activity based programme and therefore there shall be no tests / assessments during this programme.

References:

Guide to Induction program from AICTE

HS4101	COMMUNICATIVE ENGLISH	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	3	0	0	3

Objectives

- ❖ To develop listening skills to comprehend lectures, ask questions and seek clarifications
- To improve speaking skills to speak fluently in real contexts
- ❖ To hone reading skills to comprehend different types of texts
- ❖ To enhance writing skills to convey their ideas effectively

	* 10 Cm	lance writing skins to convey their ideas effectively					
Listening – short texts – short formal and informal conversations; Speaking – basics of speaking – introducing oneself – exchanging information – speaking on given topics &situations Reading – critical reading – finding key information in a given text – sifting facts from opinions; Writing – autobiographical writing – developing hints; Language development – Parts of speech – articles – voices – Question types: wh- and yes/no; Vocabulary development – prefixes – suffixes – Polite Expressions. UNIT II SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIENDS Listening – TED talks – extensive speech on current affairs and discussions; Speaking – describing a simple process – asking and answering questions; Reading – short narratives and descriptions	To street	engthen the grammar and general vocabulary					
Listening – short texts – short formal and informal conversations; Speaking – basics of speaking – introducing oneself – exchanging information – speaking on given topics &situations Reading – critical reading – finding key information in a given text – sifting facts from opinions; Writing – autobiographical writing – developing hints; Language development – Parts of speech – articles – voices – Question types: wh- and yes/no; Vocabulary development – prefixes – suffixes – Polite Expressions. UNIT II SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIENDS Listening – TED talks – extensive speech on current affairs and discussions; Speaking – describing a simple process – asking and answering questions; Reading – short narratives and descriptions		· · · · · · · · · · · · · · · · · · ·					
introducing oneself – exchanging information – speaking on given topics &situations Reading – critical reading – finding key information in a given text – sifting facts from opinions; Writing – autobiographical writing – developing hints; Language development – Parts of speech – articles – voices – Question types: wh- and yes/no; Vocabulary development – prefixes – suffixes – Polite Expressions. UNIT II SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIENDS Listening – TED talks – extensive speech on current affairs and discussions; Speaking – describing a simple process – asking and answering questions; Reading – short narratives and descriptions CO2	UNIT - I	LISTENING TO CONVERSATIONS AND SPEECHES	9				
FRIENDS Listening – TED talks – extensive speech on current affairs and discussions; Speaking – describing a simple process – asking and answering questions; Reading – short narratives and descriptions CO2	introducing oneself – exchanging information – speaking on given topics &situations Reading – critical reading – finding key information in a given text – sifting facts from opinions; Writing – autobiographical writing – developing hints; Language development – Parts of speech – articles – voices – Question types: wh- and yes/no; Vocabulary development – prefixes – suffixes – Polite						
FRIENDS Listening – TED talks – extensive speech on current affairs and discussions; Speaking – describing a simple process – asking and answering questions; Reading – short narratives and descriptions CO2							
a simple process – asking and answering questions; Reading – short narratives and descriptions CO2	UNIT II		9				
from newspapers - reading comprehension texts with varied question types - writing - paragraph	a simple proce	1	CO2				

writing – topic sentence – main ideas– free writing, short narrative descriptions using suggested							
vocabulary and structures – Language development – prepositions, clauses; Vocabulary							
development—guessing meanings of words in context—use of sequence words.							
development guessing meanings of words in context use of sequence words.	<u> </u>						
UNIT- III READING FOR COMPREHENSION	9						
Listening – Listening to TED talks and long speeches for comprehension; Speaking – role play –	[
asking about routine actions and expressing opinions; Reading—short texts and longer passages							
(cloze reading) & critical analysis of a text; Writing – types of paragraphs and writing essays –							
rearrangement of jumbled sentences; Language development – degrees of comparison – pronouns –	CO3						
Direct vs; Indirect Questions; Vocabulary development – idioms and phrases– cause & effect							
expressions, adverbs.							
1	1						
UNIT - IV FREE WRITING AND EXTENDED WRITING	9						
Listening – Listening comprehension for English proficiency tests; Speaking –describing							
friends/places/hobbies; Reading – comprehension – reading longer texts – reading different types of							
texts - magazines; Writing - informal letter writing - e-mails - conventions of personal email;	CO4						
Language development – Tenses – Simple present – simple past– present continuous and past	CO4						
continuous – conditionals; Vocabulary development– synonyms – antonyms – single word							
substitutes – Collocations.	İ						
Substitutes Conocutions.							
UNIT - V GRAMMAR AND LANGUAGE DEVELOPMENT	9						
UNIT - V GRAMMAR AND LANGUAGE DEVELOPMENT Listening – popular speeches and presentations; Speaking – impromptu speeches &debates	9						
UNIT - V GRAMMAR AND LANGUAGE DEVELOPMENT	9						
UNIT - V GRAMMAR AND LANGUAGE DEVELOPMENT Listening – popular speeches and presentations; Speaking – impromptu speeches &debates							
UNIT - V GRAMMAR AND LANGUAGE DEVELOPMENT Listening – popular speeches and presentations; Speaking – impromptu speeches &debates Reading –comparisons and contrast; Writing – brainstorming – writing short essays – developing							
UNIT - V GRAMMAR AND LANGUAGE DEVELOPMENT Listening – popular speeches and presentations; Speaking – impromptu speeches &debates Reading –comparisons and contrast; Writing – brainstorming – writing short essays – developing an outline – identifying main and subordinate ideas – dialogue writing; Language development –							
UNIT - V GRAMMAR AND LANGUAGE DEVELOPMENT Listening – popular speeches and presentations; Speaking – impromptu speeches &debates Reading –comparisons and contrast; Writing – brainstorming – writing short essays – developing an outline – identifying main and subordinate ideas – dialogue writing; Language development – modal verbs – present/ past perfect tense; Vocabulary development – Phrasal verbs– fixed and semi–fixed expressions.	CO5						
UNIT - V GRAMMAR AND LANGUAGE DEVELOPMENT Listening – popular speeches and presentations; Speaking – impromptu speeches &debates Reading –comparisons and contrast; Writing – brainstorming – writing short essays – developing an outline – identifying main and subordinate ideas – dialogue writing; Language development – modal verbs – present/ past perfect tense; Vocabulary development – Phrasal verbs– fixed and							
UNIT - V GRAMMAR AND LANGUAGE DEVELOPMENT Listening – popular speeches and presentations; Speaking – impromptu speeches &debates Reading –comparisons and contrast; Writing – brainstorming – writing short essays – developing an outline – identifying main and subordinate ideas – dialogue writing; Language development – modal verbs – present/ past perfect tense; Vocabulary development – Phrasal verbs– fixed and semi–fixed expressions.	CO5						

Text Books:

- 1. Sanjay Kumar & PushpLata Communication Skills Second Edition, Oxford University Press: 2015.
- 2. Board of Editors. Using English, A Course book for Undergraduate Engineers and Technologists. Orient Black Swan Limited, Hyderabad:2020
- 3. Richards, C. Jack. Interchange Students 'Book-2 New Delhi: CUP, 2015.

References:

- 1. Bailey, Stephen. Academic Writing: A Practical Guide for Students. New York: Rutledge, 2011.
- 2. Means, L. Thomas and Elaine Langlois. English & Communication for Colleges. Cengage Learning, USA:2007
- 3. Redston, Chris & Gillies Cunningham Face 2 Face (Pre-intermediate Student Book & Workbook) Cambridge University Press, New Delhi: 2005
- 4. Comfort, Jeremy, et al. Speaking Effectively: Developing Speaking Skills for Business English. Cambridge University Press, Cambridge: Reprint2011
- 5. Dutt P. Kiranmaiand Rajeevan Geeta Basic Communication Skills, Foundation Books:2013
- 6. John Eastwood et al: Be Grammar Ready: The Ultimate Guide to English Grammar, Oxford University Press: 2020..

Course	Outcomes (CO)
Upon co	ompletion of the course, students will be able to
CO1	Listen and comprehend different spoken discourses/excerpts
CO2	Speak clearly and confidently with one or many listeners using appropriate communicative strategies
CO3	Read different genres of texts adopting various reading strategies
CO4	Write coherently and flawlessly on different topics
CO5	Communicate using a wide vocabulary without grammatical errors

Course Outcomes	Program Outcomes												Program Specific Outcomes		
0 4.00011100	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	_	_	_	_	_	_	_	_	2	3	_	_	1	1	2
CO2	_	1	_	2	_	_	_	_	_	3	_	_	1	1	2
CO3	_	2	_	3	_	_	_	_	_	2	_		1	1	2
CO4	_	_	_	_	_	_	_	_	2	2	_	_	1	1	2
CO5	_	2	1	1	2	_	2	_	_	3	_	_	2	1	2

MA4102	ENGINEERING MATHEMATICS	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	3	1	0	4

Objectives

- ❖ To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- ❖ To familiarize the students with differential calculus.
- ❖ To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- ❖ To make the students understand various techniques of integration.
 To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

UNIT - I	MATRICES	9+3
Eigenvectors	equation - Cayley-Hamilton theorem (without proof) - Eigenvalues and of a real matrix – Properties of Eigenvalues and Eigenvectors – Diagonalization Reduction of a quadratic form to canonical form by orthogonal transformation – dratic forms.	CO1
UNIT - II	DIFFERENTIAL CALCULUS	9+3
Limit of a fu	nction - Continuity - Derivatives - Differentiation rules — Interval of increasing	CO2

and decreasing functions – Maxima and Minima - Intervals of concavity and convexity.	
UNIT – III FUNCTIONS OF SEVERAL VARIABLES	9+3
Partial differentiation – Homogeneous functions and Euler's theorem – Total derivatives – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Maxima and Minima of functions of two variables – Lagrange's method of undetermined multipliers.	
UNIT - IV INTEGRAL CALCULUS	9+3
Definite and Indefinite integrals – Substitution rule – Techniques of Integration – Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.	
,	10.2
UNIT - V MULTIPLE INTEGRALS	9+3
Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Change of variables from cartesian to polar co-ordinates in double integrals – Triple integrals – Volume of solids.	
Total Periods:	60
Text Books:	
1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi Edition, 2014.	
2. James Stewart, "Calculus: Early Transcendental", Cengage Learning, 7th Edition Delhi, 2015. [For Units I & III - Sections 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2	

References:

5.5, 7.2 - 7.4 and 7.8].

- 1. Anton, H, Bivens, I and Davis, S, "Calculus", Wiley, 10th Edition, 2016.
- 2. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. Narayanan, S. and Manicavachagom Pillai, T. K., "Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2007.

to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem),

- 4. Srimantha Pal and Bhunia, S.C, "Engineering Mathematics" Oxford University Press, 2015.
- 5. T. Veerarajan, "Engineering Mathematics I", McGraw Hill Education; First edition 2017.

Course	e Outcomes (CO)
Upon c	completion of the course, students will be able to
CO1	Understand the concepts of matrix algebra for analysing practical problems.
CO2	Apply differential calculus tools in solving various application problems.
CO3	Use differential calculus ideas on several variable functions.
CO4	Apply different methods of integration in solving practical problems.
CO5	Evaluate area, volume and other practical problems by multiple integrals.

Course Outcomes					Prog	gram	Outc	omes					Sı	ogra pecifi tcom	c	
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	

CO1	3	3	3	1	2	3	-	-	3	2	3	3	2	2	3	
CO2	3	3	3	2	2	1	-	-	-	-	1	2	3	3	2	
CO3	3	3	3	2	2	1	-	-	-	-	1	2	3	2	2	
CO4	3	3	3	2	2	1	-	-	-	-	1	2	2	1	1	
CO5	3	3	3	2	1	1	-	-	-	-	1	2	2	1	1	

PH4103	ENGINEERING PHYSICS	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	3	0	0	3

Objectives

- ❖ To make the students to understand about the elastic property and stress strain diagram.
- ❖ To educate the students about principle of laser and its role in optical fibers and its applications as sensors and communication.
- ❖ To teach the students about the heat transfer through solids and liquids.
- ❖ To educate the students about the quantum concepts and its use to explain black body radiation, Compton effect, tunnelling electron microscopy and its applications.
- ❖ To make the students to understand the importance of various crystal structures and various growth techniques.

UNIT - I PROPERTIES OF MATTER	9
Elasticity – Stress-strain diagram and its uses - factors affecting elastic modulus and tensile strength – torsional stress and deformations—twisting couple-torsion pendulum: theory and experiment - bending of beams - bending moment – cantilever: theory and experiment –uniform and non-uniform bending: theory and experiment – Practical applications of modulus of elasticity-I-shaped girders-stress due to bending in beams.	CO1
UNIT II LASER AND FIBER OPTICS	9
Lasers: population of energy levels, Einstein's A and B coefficients derivation — resonant cavity, optical amplification (qualitative) — Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction— Industrial and medical applications of Laser— Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) — losses associated with optical fibers — Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement - Industrial and medical applications of optical fiber-Endoscopy- Fiber optic communication system.	CO2
UNIT-III THERMAL PHYSICS	9
Transfer of heat energy – thermal expansion of solids and liquids – expansion joints – bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity–Rectilinear flow of heat- Lee's disc method: theory and experiment-conduction through compound media(series and parallel)-Radial flow of heat—thermal insulation— applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters.	C03
Turnue and some water nearers.	<u>. </u>
UNIT - IV QUANTUM PHYSICS	9

Black body radiation – Planck's theory(derivation) Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance Schrödinger's wave equation time independent and time dependent equations—particle in a one-dimensional rigid box—Electron microscope-tunnelling (qualitative)-scanning tunnelling microscope-Applications of electron microscopy.

CO4

UNIT - V | CRYSTAL PHYSICS

9

Single crystalline, polycrystalline and amorphous materials — single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices — inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures — Graphite structure-crystal imperfections: point defects, line defects — Burger vectors, stacking faults—growth of single crystals: solution and melt growth techniques - Epitaxial growth-Applications of Single crystal(Qualitative). Crystal structure determination — Laue and powder diffraction method.

CO₅

Total Periods:

45

Text Books:

- 1. Bhattacharya. D.K.& Poonam, T. "Engineering Physics". Oxford University Press, 2019.
- 2. Gaur. R.K.&Gupta, S.L. "Engineering Physics". Dhanpat Rai Publishers, 2017.
- 3. Halliday. D., Resnick. R.& Walker, J. "Principles of Physics". Wiley, 2015.

References:

- 1. Tipler. P.A.& Mosca.G. "Physics for Scientists and Engineers with Modern Physics'. W.H. Freeman, 2007.
- 2. Serway.R.A.& Jewett, J.W. "Physics for Scientists and Engineers" Cengage Learning, 2019.
- 3. Pandey.B.K.& Chaturvedi.S. "Engineering Physics". Cengage Learning India, 2019.

Course Outcomes (CO)

Upon completion of the course, students will be able to

CPOIL	ompletion of the edulacy students will be usic to
CO1	Gain knowledge on the basics of properties of matter and its applications,
CO2	Acquire knowledge on the concepts of waves and optical devices and their applications in fibre optics.
CO3	Have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers.
CO4	Get knowledge on advanced physics concepts of quantum theory and its applications in tunneling microscopes, and
CO5	Understand the basics of crystals, their structures and different crystal growth techniques.

Course Outcomes	Program Outcomes												Program Specific Outcomes			
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	3	3	3	3	2	2	1	3	2	1	2	2	2	2	
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	2	3	

CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	2	2	
CO4	3	3	2	2	2	1	1	1	1	1	1	3	3	3	2	
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	2	3	

CY4104	ENGINEERING CHEMISTRY	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	3	0	0	3

Objectives

- ❖ To Study the principles of water characterization and treatment for industrial purposes.
- ❖ To apply the principles and applications of surface chemistry and catalysis.
- ❖ To learn about Phase rule and various types of alloys.
- ❖ To analyze Various types of fuels, applications and combustion.
- ❖ To understand Conventional and non-conventional energy sources and energy storage device

dev	ice.	
UNIT - I	WATER AND ITS TREATMENT	9
EDTA method sludge, cause feed water-calgon con	f water— Types — Expression of hardness—Units—Estimation of hardness by hod — Numerical problems on EDTA method — Boiler troubles (scale and stic embrittlement, boiler corrosion, priming and foaming)—Treatment of boiler Internal treatment (carbonate, phosphate, colloidal, sodium aluminate and aditioning)—External treatment—Ion exchange process, Zeolite process—n of brackish water by reverse Osmosis.	CO1
UNIT II	SURFACE CHEMISTRY AND CATALYSIS	9
Surface che solute from Langmuir's Adsorption PAC. Catalysis: Catalysis: Catalysis: Catalysis	emistry: Types of adsorption – Adsorption of gases on solids – Adsorption of solutions – Adsorption isotherms – Freundlich's adsorption isotherm – adsorption isotherm – Kinetics of uni-molecular surface reactions – in chromatography – Applications of adsorption in pollution abatement using Catalyst – Types of catalysis – Criteria – Contact theory – Catalytic poisoning ic promoters – Industrial applications of catalysts – Catalytic convertor – Auto Enzyme catalysis – Michaelis – Menten equation.	CO2
UNIT– III	PHASE RULE AND ALLOYS	9
Phase rule: Water syste component Alloys: Into Functions at	Introduction – Definition of terms with examples – One component system— em – Reduced phase rule – Thermal analysis and cooling curves – Two systems—Lead- silver system – Pattinson process. roduction – Definition – Properties of alloys – Significance of alloying – end effect of alloying elements – Nichrome, Alnico, Stainless steel (18/8) Heat fisteel – Non-ferrous alloys – Brass and bronze.	CO3
IINIT - IV	FUELS AND COMBUSTION	9
Fuels: Intro Coal— Anal metallurgica synthetic p	oduction – classification of fuels – Comparison of solid, liquid, gaseous fuels – ysis of coal (proximate and ultimate). – Carbonization – Manufacture of al coke (Otto Hoffmann method) – Petroleum – Cracking – Manufacture of etrol (Bergius process, Fischer Tropsch Process) – Knocking – Octane Diesel oil—Cetane number– Compressed natural gas (CNG) – Liquefied	CO4

petroleum gases (LPG) –Power alcohol and biodiesel.

Combustion of fuels: Introduction – Calorific value – Higher and lower calorific values – Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignition temperature – Explosive range – Flue gas analysis by Orsat Method.

UNIT - V NON - CONVENTIONAL ENERGY SOURCES AND STORAGE 9 DEVICES

Nuclear energy — Fission and fusion reactions — Differences — Chain reactions — Nuclear reactors — Classification of reactors — Light water nuclear reactor for power generation —Breeder reactor — Solar energy conversion — Solar cells — Wind energy — Fuel cells — Hydrogen - oxygen fuel cell. Batteries — Types of batteries — Alkaline batteries — Lead - acid, Nickel — cadmium and Lithium batteries.

CO5

Total Periods: 45

Text Books:

- 1. P.C.Jain, Monica Jain, Engineering Chemistry \$\|17^{th}Ed.Dhanpat Rai Pub. Co., New Delhi, (2015).
- 2. S.S. Dara, S.S. Umare, A text book of Engineering Chemistry | S. Chand & Co. Ltd., New Delhi (2020).
- 3. P. Kannan, A. Ravi Krishnan, Engineering Chemistry I,Sri Krishna Hi-tech Publishing Company (P) Ltd. Chennai, (2009).

References:

- 1. B.K. Sharma Engineering chemistry | Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 2. B. Sivasankar Engineering Chemistry | Tata Mc Graw Hill Pub. Co. Ltd, New Delhi(2008).
- 3. Prasanta Rath- Engineering Chemistry | Cengage Learning India (P) Ltd., Delhi, (2015).
- 4. Shikha Agarwal Engineering Chemistry– Fundamentals and Applications I, Cambridge University Press, Delhi, (2015).
- 5. A. Pahari, B. Chauhan- Engineering Chemistry I, Fire wall Media., New Delhi., (2010). Sheik Mideen, Engineering Chemistry, Airwalk Publications, Chennai (2018).

Course Outcomes (CO)

various batteries.

Upon completion of the course, students will be

	<u> </u>
CO1	Able to understand impurities in industrial water, boiler troubles, internal and external
	treatment methods of purifying water.
CO2	Able to understand concepts of absorption, adsorption, adsorption isotherms, application of
	adsorption for pollution abatement, catalysis and enzyme kinetics.
CO3	Able to recognize significance of alloying, functions of alloying elements and types of
	alloys ,uses of alloys .They should be acquainted with phase rule and reduced phase and its
	Applications in alloying.
CO4	Able to identify various types of fuels, properties, uses and analysis of fuels. They should be
	able to understand combustion of fuels, method of preparation of bio-diesel, synthetic petrol.
CO5	Able to understand conventional, non-conventional energy sources, nuclear fission and
	fusion, power generation by nuclear reactor, wind, solar energy and preparation, uses of

Course Outcomes Program Outcomes	Program Specific Outcomes
----------------------------------	---------------------------

	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	3	3	3	3	2	3	2	2	2	2	2	2	2	1	
CO2	3	3	2	2	2	2	2	1	1	1	1	2	2	1	1	
CO3	3	3	3	3	3	2	2	1	2	2	2	2	2	2	2	
CO4	3	3	3	2	2	3	3	2	2	3	2	2	3	1	2	
CO5	3	2	3	3	3	3	3	2	2	2	2	2	3	2	3	

GE4105		P	C
	(Common to all branches of B.E. / B. Tech Programmes) 3 0	0	3
Objectives			
9	know the basics of algorithmic problem solving		
	write simple python programs		
	develop python program by using control structures and functions		
	use python pre defined data structures		
❖ To v	write file-based program		
UNIT - I	ALGORITHMIC PROBLEM SOLVING		9
pseudo cod algorithms, processing s	Building blocks of algorithms: statements, state, control flow, functions, Notation: e, flowchart, programming language, Algorithmic problem solving: Basic flowcharts and pseudo code for sequential, decision processing and iterative trategies, Illustrative problems: find minimum in a list, insert a card in a list of guess an integer number in a range, Towers of Hanoi.	С	01
UNIT II	INTRODUCTION TO PYTHON		9
Introduction string, and Assignment	oduction, Technical Strength of Python, Python interpreter and interactive mode, n to colab, pycharm and jupyter idle(s) ,Values and types: int, float, boolean, list; Built-in data types, variables, Literals, Constants, statements, Operators: t, Arithmetic, Relational, Logical, Bitwise operators and their precedence, s, tuple ssignment, Accepting input from Console, printing statements, Simple grams.	С	O2
LINITE III	COMPROT ELOW ELINOPIONE AND CEDINICE		0
conditional and else; M and argum Strings: stri	ls: Boolean values and operators, conditional(if), alternative(if-else), chained (if-elif-else); Iteration: while, for; Loop manipulation using pass, break, continue lodules and Functions: function definition and use, flow of execution, parameters ents, local and global scope, return values, function composition, recursion. In slices, immutability, string functions and methods, string module; Illustrative square root, gcd, exponentiation, sum and array of numbers, linear search, binary	С	9 O3
UNIT - IV	LISTS, TUPLES, DICTIONARIES		9
Lists: Defin Manipulation assignment	ning list and list slicing, list operations, list slices, list methods, list loop, list on, mutability, aliasing, cloning lists, list parameters, lists as arrays. Tuples: tuple tuple as return value, tuple Manipulation; Dictionaries: operations and methods; st processing—list comprehension; Illustrative programs: selection sort, insertion	C	04

UNIT -	V FILES, MODULES, PACKAGES	9
Files a of a file close() argum	nd exception: Concept of Files, Text Files; File opening in various modes and closing le, Format Operators, Reading from a file, Writing onto a file, File functions- open(), read(),readline(), readlines(), write(), writelines(), tell(),seek(), Command Line ents; Errors and exceptions: handling exceptions; modules, packages; introduction to r, matplotlib. Illustrative programs: word count, copy a file.	CO
Total P	eriods:	45
Text Bo	ooks:	
1.	Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2 nd edition	on,
	Updated for Python3, Shroff/O_Reilly Publishers, 2016	
	(http://greenteapress.com/wp/thinkpython/)	
2.	Guidovan Rossum and Fred L.DrakeJr,-An Introduction to Python Revised and	
	nupdated for Python3.2, Network Theory Ltd.,2011.	
3.	Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford	
	University Press, 2019.	
Referei	nces:	
	John V Guttag, —Introduction to Computation and Programming Using Python_, Revand expanded Edition, MIT Press, 2013	ised
2.	Robert Sedgewick, Kevin Wayne, Robert Dondero,—Introduction to Programming in	
	Python:An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd.,2016.	
3.	Timothy A.Budd,—Exploring Python , Mc-Graw Hill Education(India)PrivateLtd.,,201	5.
	Kenneth A.Lambert,—Fundamentals of Python: First Programs, CENGAGE Learning,	
5.	Charles Dierbach,—Introduction to Computer Science using Python: A	
	Computational Problem-Solving Focus, Wiley India Edition, 2013.	
6.	Paul Gries, Jennifer Campbell and Jason Montojo,—Practical Programming: An	
	Introduction.	
	Outcomes (CO) ompletion of the course, students will be able to	
CO1	Develop algorithmic solutions to simple computational problems	
CO2	Develop simple console application in python	
CO3	Develop python program by applying control structure and decompose program into functions.	
CO4	Represent compound data using python lists, tuples and dictionaries.	
CO5	Read and write data from/to files in Python.	

Course Outcomes	Program Outcomes	Specific Outcomes	
outcomes		Outcomes	

	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	2	2	1	2	1	2	1	-	-	1	-	2	2	1	1	
CO2	2	1	2	2	1	1	1	2	2	2	1	2	2	1	1	
CO3	2	2	2	2	2	2	2	2	-	1	1	2	2	1	1	
CO4	2	2	2	2	1	2	1	-	2	1	1	2	2	1	1	
CO5	2	2	2	2	2	1	1	-	-	2	1	2	2	1	1	

GE4106	ENGINEERING GRAPHICS	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	2	0	4	4

Objectives

- ❖ To develop graphic skills for communication of concepts, ideas and design of engineering products.
- ❖ To inculcate drawing practice in standardized form whenever technical drawing is needed.

7+12

❖ To expose them to existing national standards related to technical drawings.

PLANE CURVES AND FREEHAND SKETCHING

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications - Use of drafting instruments - BIS conventions and specifications - Size, layout and folding of drawing sheets - Lettering and one dimensioning.

UNII - I PLANE CURVES AND FREEHAND SKETCHING	/+14					
Basic Geometrical constructions, Curves used in engineering practices: Conics Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloidal curves - construction of involutes of square and circle - Drawing of tangents and normal to the above curves. Visualization concepts and Free Hand sketching: Visualization principles -Representation of Three-Dimensional objects - Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using drawing instruments)	CO1					
UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE	7+12					
Orthographic projection - principles-Principal planes - First angle projection-projection or points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.	l CO2					
UNIT-III PROJECTION OF SOLIDS	7+12					
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes when the solid is simply suspended by rotating object method.						
LINET IN DECISION OF SECTIONED SOLIDS AND DEVELOPMENT OF	7.12					
UNIT - IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES						
Sectioning of simple solids like prisms, pyramids, cylinder, and cone in a simple vertical	CO4					

position when the cutting plane is inclined to one of the principal planes and perpendicular to the other - obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids - Prisms, pyramids cylinders and cones - Graphically finding the shortest distance connecting two points.

UNIT - V IS	SOMETRIC AND PERSPECTIVE PROJECTIONS	7+12
of simple solids solid objects in	cometric projection - isometric scale -Isometric projections and isometric views s and truncated solids - Prisms, pyramids, cylinders, cones- combination of two n simple vertical positions. Perspective projection of simple solids - Prisms, cylinders by visual ray method.	COS

Total Periods: 90

Text Books:

- 1. Natarajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, Twenty ninth edition 2017
- 2. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2011.
- 3. S. Ramachandran and K. Pandian, "Engineering Graphics" Airwalk Publications; 8th edition 2014

References:

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019.
- 2. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2018.
- 3. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore 2018
- 4. Luzzader, Warren.J and Duff, John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 5. N S Parthasarathy and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
- 6. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.

Course Outcomes (CO) Upon completion of the course, students will be able to CO1 Understand the fundamentals and standards of engineering graphics. CO2 Perform freehand sketching of basic geometrical constructions and multiple views of objects. CO3 Understand the concept of orthographic projections of lines and plane surfaces. CO4 Draw projections of the section of solids and development of surfaces. CO5 Visualize and to project isometric and perspective sections of simple solids.

Course Outcomes		Program Outcomes													Program Specific Outcomes		
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	-	3	3	3	-	-	-	-	3	3	3	-	2	-	2		
CO2	-	3	3	3	-	-	-	-	3	3	3	-	2	-	2		

CO3	ı	3	3	3	ı	i	ı	i	3	3	3	ı	2	-	2	
CO4	-	3	3	3	-	-	-	-	3	3	3	-	2	-	2	
CO5	-	3	3	3	-	-	-	-	3	3	3	-	2	-	2	

	HERITAGE OF TAMILS L T	P	
	(Common to all branches of B.E. / B. Tech Programmes) 1 0	0	1
	T		
UNIT - I	LANGUAGE AND LITERATURE		3
Classical Li Sangam Lit Buddhism &	Families in India - Dravidian Languages - Tamil as a Classical Language terature in Tamil - Secular Nature of Sangam Literature - Distributive Justice in terature - Management Principles in Thirukural - Tamil Epics and Impact of Jainism in Tamil Land - Bakthi Literature Azhwars and Nayanmars - Forms or y - Development of Modern literature in Tamil - Contribution of Bharathiya hidhasan.	f f	CO
UNIT II	HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE		3
car making Kanyakuma	to modern sculpture – Bronze icons - Tribes and their handicrafts – Art of temples - Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue ari, Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and m - Role of Temples in Social and Economic Life of Tamils.	t _	CO
UNIT– III	FOLK AND MARTIAL ARTS	$\overline{\top}$	3
	u, Karagattam, VilluPattu, KaniyanKoothu, Oyillattam, Leather puppetry n, Valari, Tiger dance - Sports and Games of Tamils.	,	CO
	THINAI CONCEPT OF TAMILS		
IINIT - IV			3
Flora and F Literature -	Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Ports of Sangam Age-Export and Import during Sangam Age-Overseas Conquest		
Flora and F Literature -A Cities and F of Cholas.	Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient		3 CO 3
Flora and F Literature - A Cities and F of Cholas. UNIT - V Contribution the other pa	Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Ports of Sangam Age-Export and Import during Sangam Age-Overseas Conquest CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT	r	CO

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்)
- 2. கணினித் தமிழ் முனைவர் இல.சுந்தரம் (விகடன்பிரசுரம்)
- 3. கீழடி –வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL-(in

- print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D.Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K. Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, TamilNadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by:RMRL)—Reference Book.

GE4151	தமிழர் மரபு	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	1	0	0	1
அலகு I	மொழி மற்றும் இலக்கியம்				3
செம்மொழி சமயச்சார்டி திருக்குறளி தமிழகத்தில் ஆழ்வார்கள் நவீன இல	பாழிக் குடும்பங்கள் – திராவிட மொழிகள் – தமி l – தமிழ் செவ்விலக்கியங்கள்- சங்க இலக்கிய பற்ற தன்மை - சங்க இலக்கியத்தில் பகிர்தல் அ lல் மேலாண்மைக் கருத்துக்கள் – தமிழ்க் காப்பிய ல் சமண பௌத்த சமயங்களின் தாக்கம் – பக்தி இலக் ர மற்றும் நாயன்மார்கள் - சிற்றிலக்கியங்கள் – த க்கியத்தின் வளர்ச்சி – தமிழ் இலக்கிய வளர்ச் மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு.	த்த்பு மும் பங்க கிரை நமிர்	நின் ந் – கள், பம், தில்	C	201
அலகு II	மரபு – பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள வரை- சிற்பக்கலை	iπ			3
பழங்குடியி பொம்மைச நாட்டுப்புற இசை கரு	தல் நவீன சிற்பங்கள் வரை – ஐம்பொன் சின னர் மற்றும் அவர்கள் தயாரிக்கும் கைவினைப் பொடு கள் - தேர் செய்யும் கலை - சுடுமண் சிற்பங் த் தெய்வங்கள்- குமரி முனையில் திருவள்ளுவர் சி விகள் - மிருதங்கம், பறை, வீணை, யாழ், நாதஎ ன் சமூக பொருளாதார வாழ்வில் கோவில்களின் பங்கு	நட் ச சிசை லவ	கள், T - ல -	C	202
அலகு III	நாட்டுப் புறக்கலைகள் மற்றும் வீர விளையாட்டு	கஎ்	T		3
தெருக்கூத்த ஒயிலாட்டம்		ጬ	ந்து,		203
ຄເຄນ# IV	தமிழர்களின் திணைக் கோட்பாடுகள்				3
தமிழகத்தி சங்க இலக்	ு தமிழிரகள் கிலிணிக் கோட்பாடுகள் ன் தாவரங்களும், விலங்குகளும் – தொல்காப்பியம் ம கியத்தில் அகம் மற்றும் புறக் கோட்பாடுகள் – தமிழ அறக்கோட்பாடு – சங்ககாலத்தில் தமிழச	ழர்க	கள்	C	CO4

எழுத்தறிவும், கல்வியும் – சங்ககால நகரங்களும் துறைமுகங்களும் – சங்ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல் கடந்த நாடுகளில் சோழர்களின் வெற்றி.							
77	வலா 🔻 இந்திய தேசிய இயக்கம் மற்றும் இந்திய						
அலகு V	பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு						
இந்திய வி(தெலைப்போரில் தமிழர்களின் பங்கு – இந்தியாவின் பிறப்						
பகுதிகளில்	தமிழ்ப் பண்பாட்டின் தாக்கம் – சுயமரியாதை இயக்கம் –	CO5					
இந்திய மர	பகுதிகளில் தமிழ்ப் பண்பாட்டின் தாக்கம் – சுயமரியாதை இயக்கம் – இந்திய மருத்துவத்தில், சித்த மருத்துவத்தின் பங்கு – கல்வெட்டுகள்,						
	துப்படிகள்- தமிழ் புத்தகங்களின் அச்சுவரலாறு.						
		•					

TEXT-CUM-REFERENCE BOOKS

Total Periods:

1. தமிழக வரலாறு - மக்களும் பண்பாடும் - கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்)

15

- 2. கணினித் தமிழ் முனைவர் இல.சுந்தரம் (விகடன்பிரசுரம்)
- 3. கீழடி –வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL-(in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D.Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K. Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, TamilNadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by:RMRL)—Reference Book.

PRACTICALS

GE41	O7 DVTHON DDOCD A MAINC I A DOD A TODY	T T D
	07 PYTHON PROGRAMMING LABORATORY Common for all branches of B.E./B.Tech Programmes	L T P C 0 0 4 2
	Common for an orangees of D.E./D. Tech Programmes	0 0 4 2
Object	lyon	
Objecti		
*	To write, test and debug simple Python programs. To implement Python programs with conditionals and loops.	
	Use functions for structuring Python programs.	
	Represent compound data using Python lists, tuples and dictionaries.	
	Read and write data from/to files in Python.	
•	Read and write data from to mes in 1 ython.	
LIST (OF EXPERIMENTS	
1.	Write an algorithm and draw flow chart illustrating mail merge concept.	
	Write an algorithm, draw flowchart and write pseudo code for a real life or	
	scientific or technical problems.	
	Scientific problem-solving using decision making and looping.	CO1
	Armstrong number, palindrome of a number, Perfect number.	
4.	Simple programming for one dimensional and two-dimensional arrays.	
	 Transpose, addition, multiplication, scalar, determinant of a matrix 	
5.	Program to explore string functions and recursive functions.	
	Utilizing_Functions in Python	
	a. Find mean, median, mode for the given set of numbers in a list.	
	b. Write a function dups to find all duplicates in the list.	
	c. Write a function unique to find all the unique elements of a list.	CO2
	d. Write function to compute gcd, lcm of two numbers.	
7.	Demonstrate the use of Dictionaries and tuples with sample programs.	
	Implement Searching Operations: Linear and Binary Search.	
	To sort the 'n' numbers using: Selection, Merge sort and Insertion Sort.	
10.	Find the most frequent words in a text of file using command line arguments.	
	Find the most frequent words in a text of file using command line arguments. Demonstrate Exceptions in Python.	CO3
11.	Demonstrate Exceptions in Python.	CO3
11. 12.	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame.	
11. 12.	Demonstrate Exceptions in Python.	CO3
11. 12. Fotal P	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame. Periods:	1
11. 12. Fotal P	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame. Periods:	60
11. 12. Fotal P	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame. Periods: nces	60
11. 12. Fotal P Refere 1.	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame. Periods: nces Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford U	60 niversity
11. 12. Fotal P Referen 1. 2.	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame. Periods: Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford U Press, 2019 Allen B.Downey,—Think Python: How to Think Like a Computer Scientist , Secon Updated for Python 3, Shroff/ O'Reilly Publishers, 2016.	niversity ad Edition,
11. 12. Fotal P Referen 1. 2. 3.	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame. Periods: Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford U Press, 2019 Allen B.Downey,—Think Python: How to Think Like a Computer Scientist Second Updated for Python 3, Shroff/ O'Reilly Publishers, 2016. Shroff—Learning Python: Powerful Object-Oriented Programming; Fifth edition, 20	niversity ad Edition, 013.
11. 12. Fotal P Referen 1. 2. 3.	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame. Periods: Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford UPress, 2019 Allen B.Downey,—Think Python: How to Think Like a Computer Scientistll, Secon Updated for Python 3, Shroff/ O'Reilly Publishers, 2016. Shroff—Learning Python: Powerful Object-Oriented Programming; Fifth edition, 20 David M.Baezly—Python Essential Referencell. Addison-Wesley Profession	niversity ad Edition, 013.
11. 12. Total P Referential 1. 2. 3. 4.	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame. Periods: Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford U Press, 2019 Allen B.Downey,—Think Python: How to Think Like a Computer Scientistll, Secon Updated for Python 3, Shroff/ O'Reilly Publishers, 2016. Shroff—Learning Python: Powerful Object-Oriented Programming; Fifth edition, 20 David M.Baezly—Python Essential Referencell. Addison-Wesley Profession edition, 2009.	niversity ad Edition, 013.
11. 12. Total P Referential 1. 2. 3. 4.	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame. Periods: Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford U Press, 2019 Allen B.Downey,—Think Python: How to Think Like a Computer Scientist, Secon Updated for Python 3, Shroff/ O'Reilly Publishers, 2016. Shroff—Learning Python: Powerful Object-Oriented Programming; Fifth edition, 20 David M.Baezly—Python Essential Reference. Addison-Wesley Profession edition, 2009. David M.Baezly—Python Cookbook O'Reilly Media; Third edition (June1, 2013)	niversity ad Edition, 013.
11. 12. Total P Reference 1. 2. 3. 4.	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame. Periods: Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford U Press, 2019 Allen B.Downey,—Think Python: How to Think Like a Computer Scientistll, Secon Updated for Python 3, Shroff/ O'Reilly Publishers, 2016. Shroff—Learning Python: Powerful Object-Oriented Programming; Fifth edition, 20 David M.Baezly—Python Essential Referencell. Addison-Wesley Profession edition, 2009.	niversity ad Edition, 013.
11. 12. Total P Referen 1. 2. 3. 4. 5. 6.	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame. Periods: Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford U Press, 2019 Allen B.Downey,—Think Python: How to Think Like a Computer Scientistl, Secon Updated for Python 3, Shroff/ O'Reilly Publishers, 2016. Shroff—Learning Python: Powerful Object-Oriented Programming; Fifth edition, 20 David M.Baezly—Python Essential Referencel. Addison-Wesley Profession edition, 2009. David M.Baezly—Python Cookbookl O'Reilly Media; Third edition (June1, 2013) http://www.edx.org	niversity ad Edition, 013.
11. 12. Total P Referent 1. 2. 3. 4. 5. 6.	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame. Periods: Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford U Press, 2019 Allen B.Downey,—Think Python: How to Think Like a Computer Scientistll, Secon Updated for Python 3, Shroff/ O'Reilly Publishers, 2016. Shroff—Learning Python: Powerful Object-Oriented Programming; Fifth edition, 20 David M.Baezly—Python Essential Referencell. Addison-Wesley Profession edition, 2009. David M.Baezly—Python Cookbookll O'Reilly Media; Third edition (June1, 2013) http://www.edx.org	niversity ad Edition, 013.
11. 12. Total P Reference 1. 2. 3. 4. 5. 6. Course Upon c	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame. Periods: Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford U Press, 2019 Allen B.Downey,—Think Python: How to Think Like a Computer Scientist, Secon Updated for Python 3, Shroff/ O'Reilly Publishers, 2016. Shroff—Learning Python: Powerful Object-Oriented Programming; Fifth edition, 20 David M.Baezly—Python Essential Reference, Addison-Wesley Profession edition, 2009. David M.Baezly—Python Cookbook O'Reilly Media; Third edition (June1, 2013) http://www.edx.org	niversity ad Edition, 013. hal; Fourth
11. 12. Total P Referent 1. 2. 3. 4. 5. 6.	Demonstrate Exceptions in Python. Applications: Implementing GUI using turtle, pygame. Periods: Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford U Press, 2019 Allen B.Downey,—Think Python: How to Think Like a Computer Scientistll, Secon Updated for Python 3, Shroff/ O'Reilly Publishers, 2016. Shroff—Learning Python: Powerful Object-Oriented Programming; Fifth edition, 20 David M.Baezly—Python Essential Referencell. Addison-Wesley Profession edition, 2009. David M.Baezly—Python Cookbookll O'Reilly Media; Third edition (June1, 2013) http://www.edx.org	niversity ad Edition, 013. hal; Fourth

	data.
CO3	Read and write data from/to files in Python and applications of python.

Course		Program Outcomes												Program Specific Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	1	1	1	1	1	-	-	-	2	-	2	2	2	2	1			
CO2	1	1	1	1	1	-	-	-	2	-	1	2	2	2	1			
CO3	1	1	1	1	1	-	-	-	2	-	1	2	2	2	1			

BS4108	PHYSICS AND CHEMISTRY LABORATORY	L	T	P	C
	Common for all branches of B.E./B.Tech Programmes	0	0	4	2

Objectives

The students will be trained to perform experiments to study the following.

- The Properties of Matter
- ❖ The Optical properties, Characteristics of Lasers & Optical Fibre
- ❖ Electrical & Thermal properties of Materials
- ❖ Enable the students to enhance accuracy in experimental measurements.
- ❖ To make the student to acquire practical skills in the determination of water quality parameters through volumetric analysis
- ❖ Instrumental method of analysis such as potentiometry, conductometry and pHmetry

LIST OF EXPERIMENTS – PHYSICS

(A minimum of 5 experiments to be performed from the given list)

- Determination of Young's modulus of the material of the given beam by Non-uniform Bending method.
 Determination of Young's modulus of the material of the given beam by uniform Bending method.
 Determination of rigidity modulus of the material of the given wire using torsion pendulum.
 Determination of wavelength of mercury spectra using Spectrometer and grating.
 Determination of dispersive power of prism using Spectrometer.
 (a) Determination of wavelength and particle size using a laser.
 (b) Determination of Numerical and acceptance angle of an optical fibre.
 Determination of energy band gap of the semiconductor.
 - 7. Determination of energy band gap of the semiconductor.8. Determination of coefficient of thermal conductivity of the given bad conductor using Lee's disc.
- 9. Determination of Hysteresis loss in ferromagnetic materials.

DEMONSTRATION EXPERIMENT

1. Determination of thickness of a thin sheet/wire–Air wedge method CO1

LIST OF EXPERIMENTS – CHEMISTRY

(A minimum of 6 experiments to be performed from the given list)

Determination of chloride content of water sample by argentometric method.
 Estimation of copper content of the given solution by Iodometry.
 Determination of strength of given hydrochloric acid using pH meter.

CO4

- 4. Determination of strength of acids in a mixture of acids using conductivity meter.
- 5. Estimation of iron content of the given solution using potentiometer.
- 6. Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer.

7.	Conductometric titration of strong acid vs strong base.	
8.	Estimation of HCl using Na ₂ CO ₃ as primary standard and determination of	
	alkalinity in Water sample.	CO5
9.	Determination of total, temporary & permanent hardness of water by EDTA	
	method.	
	. Determination of DO content of water sample by Winkler'smethod.	
DEM	ONSTRATION EXPERIMENTS	
1.	Estimation of iron content of the water sample using spectro photometer (1,10-Phenanthroline/thiocyanate method).	CO3
2.	Estimation of sodium and potassium present in water using flame photometer.	CO5
	Periods:	60
Cours	e Outcomes (CO)	
	completion of the course, students will be able to	
CO1	Understand the concept about the basic properties of matter like stress, strain and type	es of moduli.
	Understand the concept of optics like reflection, refraction, diffraction by using	
	grating.	
CO2	Understand the thermal properties of solids, specific heat and some models for	specific heat
	calculation.	
	Understand the working principle of laser components and working of different laser	system.
	Understand the phenomenon of light, applications of fibre optics.	
CO3	Understand the concept of determining the pH value by using pH meter.	
	Understand the concept about the amount of chloride present in the given sample of v	water.
CO4	Understand the concept of determining the emf values by using potentiometer	
	Understand the concept about the measurement of conductance of strong acid and st	rong base by
	using conductivity meter.	
CO5	Understand the amount of dissolved oxygen present in the water.	
	Understand the concept of estimation of hardness of water by EDTA method.	
	Understand the concept of estimation of alkalinity in water sample.	
	- · · · · · · · · · · · · · · · · · · ·	

Course Outcomes	Program Outcomes													Program Specific Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	3	1	2	2	2	1	1	1	3	2	2	3	2	2	2			
CO2	3	1	2	1	1	1	1	1	2	1	1	2	2	2	2			
CO3	3	1	2	1	2	2	2	1	2	1	1	1	2	1	1			
CO4	3	2	1	1	2	1	1	1	2	1	1	2	2	1	2			
CO5	3	2	1	1	1	2	2	1	2	1	2	1	2	2	1			

SEMESTER – II

HS4201	PROFESSION Common to all branches of	NAL ENGLISH of B.E. / B. Tech Prov	grammes)	L 3	T 0	P 0	C 3
(1	Johnson to an oranches C	1 D.D. / D. 15011110	5141111103)	J	U	U	
Objectives							
· ·	ers in meaningful languag	ge activities to improv	ve their LSRW s	kills			
	ners' awareness of genera	-					
 To develop analy 	ytical thinking skills for p	roblem solving in co	mmunicative con	ntexts	3		
 To help learners 	understand the purpose, a	audience, contexts of	different types of	of wri	ting		
 To demonstrate 	an understanding of job a	pplications and interv	views for interns	hip aı	nd		
placements							
UNIT - I MAKIN	G COMPARISONS						9
	Listening: Advertisemen	ts Product Descrip	tions – Audio	vide	20 -	_ _	•
Listening and filling a	Graphic Organiser – Ch a product, Persuasive	oosing a product or	r service by con	npari	ison;		
	nuals, brochures; Writin						CO1
	Essay - Writing defi						
Vocabulary – Contextual	•	, 	- L	1			
UNIT II EXPRE	SSING CASUAL RELA	ATIONS IN SPEAK	ING AND WR	ITIN	G		9
	longer technical talks and		-		_		
	from podcasts - Listen	<u> </u>	-				
	ing – Describing and di	_					
-	Reading – Reading longe				-		CO ₂
	aint; Writing – Purpose s						
	passive, Infinitive and Ge	runds; Vocabulary –	- Word Formatio	n (N	oun-	•	
Verb-Adj-Adv).							
UNIT-III PROBLI	EM SOLVING						9
· · · · · · · · · · · · · · · · · · ·	Watching movie scenes	/ documentaries depi	icting a technica	l prob	olem	1	
	Speaking – Group Discu						
strategies, Reading - Ca	ase Studies, excerpts fro	m literary texts, nev	ws reports etc; '	Writii	ng -		CO3
Letter to the Editor, Ch	ecklists, Problem solutio	n essay – Argumen	tative Essay; G1	amm	ar –	- `	JUS
	conditional sentences;	Vocabulary - Com	pound Words,	Sent	ence	;	
Completion.							
UNIT - IV REPOR'	TING OF EVENTS AN	D DECEADOII					9
	mprehension based on ne		mantarias nara	nhrac	ina		9
	ing – Interviewing, pres						
	Newspaper articles; Wri						CO4
1 .	Accident Report, Survey	•		_			
	ary – Conjunctions – use	-	I	J	-		
, , ,		_ + +					
UNIT - V PRESEN	TING IDEAS OR INFO	DRMATION COGI	ENTLY				9
Listening – Listening to	technical talks, Presenta	ations, Formal job in	nterviews, analy	sis of	f the	;	
interview performance; S			-				
	ing presentations with			_		, _	CO5
				_	1	/ I 🔍	-
Statement of Purpose (SOP), an excerpt of in					′	
Statement of Purpose (SOP), an excerpt of in Cover letter & Resume					;	

- 1. English for Engineers & Technologists (2020 edition) Orient Blackswan Private Ltd. Department of English, Anna University.
- 2. English for Science & Technology Cambridge University Press 2021. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.
- 3. Raman. Meenakshi, Sharma. Sangeeta (2022). Technical Communication. Oxford University Press. New Delhi.

References:

- 1. Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, New Delhi.
- 2. Learning to Communicate Dr. V. Chellammal. Allied Publishers, New Delhi, 2003
- 3. Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.
- 4. Developing Communication Skills by Krishna Mohan, Meera Bannerji- Macmillan India Ltd. 1990, Delhi.
- 5. Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford University Press. New Delhi.

Course Outcomes (CO)

Upon c	Upon completion of the course, students will be able							
CO1	To compare and contrast products and ideas in technical texts.							
CO2	To identify cause and effects in events, industrial processes through technical texts.							
CO3	To analyse problems in order to arrive at feasible solutions and communicate them orally and in							
	the written format.							
CO4	To report events and the processes of technical and industrial nature.							
CO5	To present opinions in a planned and logical manner, and draft effective resumes in context of							
	job search.							

Course Outcomes		Program Outcomes												Program Specific Outcomes			
0 4000	a	b	c	d	e	f	g	h	i	j	k	l	1	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	3		
CO1	-	-	1	1	-	1	1	-	1	2	2	2	1	2	-		
CO2	-	-	1	1	-	1	1	-	1	2	2	2	2	2	-		
CO3	-	-	2	1	-	-	1	-	1	3	2	2	2	2	2		
CO4	-	-	2	1	-	2	2	1	2	3	2	3	3	2	2		
CO5	-	-	1	2	-	2	2	1	1	3	2	3	1	1	1		

MA4202	STATISTICS AND NUMERICAL METHODS	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	3	1	0	4
Objectives					

- ❖ This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- ❖ To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- ❖ To introduce the basic concepts of solving algebraic and transcendental equations.
- ❖ To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- ❖ To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT - I	TESTING OF HYPOTHESIS	9+3
	butions – Tests for single mean, proportion and difference of means (Large and small	
-	ts for single variance and equality of variances – Chi-square test for goodness of fit –	CO1
Independence of	f attributes.	
		
UNIT II	DESIGN OF EXPERIMENTS	9+3
	wo-way classifications – Completely randomized design – Randomized block design – $sign - 2^2$ factorial design.	CO2
UNIT-III	SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS	9+3
	gebraic and transcendental equations by Newton Raphson method -Solution of	
•	of equations – Gauss elimination method – Pivoting – Gauss Jordan method –	CO3
Iterative metho	ods of Gauss Jacobi and Gauss Seidel – Eigen value of a matrix by Power method.	
		T
UNIT - IV	INTERPOLATION AND NUMERICAL CALCULUS	9+3
-	- Lagrange's, Newton's forward and backward Interpolations -	
* *	n of derivatives using interpolation polynomials – Numerical single and	CO4
double integra	tions using Trapezoidal and Simpson's 1/3 rules.	
**************************************	NAME OF THE PROPERTY OF THE PR	T 0 0
UNIT - V	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS	9+3
	ethods: Taylor's series method - Euler's method - Modified Euler's method -	
	Runge-Kutta method for solving first order differential equations - Multi step	CO5
	ms- Bash forth predictor corrector method for solving first order differential	
equations.		
Total Periods		60

- 1. Grewal. B.S. and Grewal. J.S., "Numerical Methods in Engineering and Science", 10th Edition, Khanna Publishers, New Delhi, 2015.
- 2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.
- 3. Kandasamy P., ThilagavathiK and Gunavathi K., "Statistical and numerical methods", S. Chand & Company Ltd. Sultan Chand & Company, 2001.

References:

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.

- 3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 2006.
- 4. Gupta S.C. and Kapoor V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 12th Edition, 2020.
- 5. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics", Tata McGraw Hill Edition, 4th Edition, 2012.
- 6. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", 9th Edition, Pearson Education, Asia, 2010.

Course	e Outcomes (CO)							
Upon o	Upon completion of the course, students will be able to							
CO1	Apply the concept of testing of hypothesis for small and large samples in real life problems.							
CO2	Apply the basic concepts of classifications of design of experiments in the field of agriculture.							
CO3	Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.							
CO4	Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.							
CO5	Solve the ordinary differential equations with initial conditions by using certain techniques with engineering applications.							

Course Outcomes		Program Outcomes												Program Specific Outcomes			
0 0.000	a	b	c	d	e	f	g	h	i	j	k	l	1		3		
CO1	2	3	3	3	2	3	2	-	2	-	2	2	3	2	1		
CO2	2	3	3	3	3	2	2	-	2	-	2	2	2	1	1		
CO3	2	3	2	2	1	-	-	-	-	-	-	2	3	1	2		
CO4	3	3	3	2	2	1	-	-	-	-	-	2	2	1	2		
CO5	3	3	2	1	2	1	_	-	-	-	-	2	3	2	1		

PH4252	PHYSICS FOR ELECTRONICS ENGINEERING	L	T	P	C
	(Common to ECE and EEE)	3	0	0	3

- Understand the transport properties of conducting materials and their modelling using classical and quantum theories,
- Acquire knowledge in semiconductors and their applications in various devices
- Grasp the principles of magnetic and dielectric materials and their applications
- Understand the functioning of optical materials for optoelectronics
- Understand the basics of quantum structures, properties of nano materials and their applications.

UNIT - I	CONDUCTING MATERIALS	9			
Classical free	electron theory - Expression for electrical conductivity -Thermal conductivity,				
expression -	Wiedemann-Franz law - Success and failures - electrons in metals - Particle in a				
three-dimensional box - degenerate states - Fermi-Dirac statistics - Density of energy states - C					
Electron in p	eriodic potential: Bloch theorem - metals and insulators - Energy bands in solids				
- tight binding	g approximation – Electron effective mass - concept of hole.				

UNIT II Intrinsic Sem	PHYSICS OF SEMICONDUCTOR DEVICES	9
- Carrier co concentration relations - dri avalanche bre	iconductors - Energy band diagram - direct and indirect band gap semiconductors neentration in intrinsic semiconductors - extrinsic semiconductors - carrier in n- type & p-type semiconductors - carrier transport: velocity-electric field ft and diffusion transport - Einstein's relation - Hall effect and devices - Zener and akdown in p-n junction diode - Zener diode as voltage regulator - Ohmic contacts - Schottky diode - MOS Capacitor.	CO2
UNIT– III	MAGNETIC AND DIELECTRIC MATERIALS	9
Origin of mag magnetic mat Hysteresis (ba Dielectric mag	gnetic moment - Bohr magneton - Microscopic and macroscopic classification of erials: diamagnetic, paramagnetic and ferromagnetic materials - Domain theory - ased on domain theory) - soft and hard magnetic materials - Ferrites - applications. aterials: Polarization processes - internal field - Clausius-Mosotti relation - dielectric breakdown.	CO3
UNIT - IV	OPTICAL MATERIALS	9
Classification Absorption, e only) - photo	of optical materials - carrier generation and recombination processes - mission and scattering of light in metals, insulators and semiconductors (concepts current in p-n junction diode - solar cell - photo detectors - LED - Organic LED - intum confined Stark effect - quantum dot laser, quantum well laser.	CO4
UNIT - V	NANO ELECTRONIC DEVICES	9
Introduction - confinement quantum dot structures - Transistor - m	electron density in bulk material - size dependence of Fermi energy - quantum - quantum structures - Density of states in quantum well, quantum wire and structures - resonant tunneling - quantum interference effects - mesoscopic Coulomb blockade effects - Single electron phenomena and Single electron agnetic semiconductors - spintronics, Spintronic Devices: Spin Valve, Spin FETubes: Types ,Preparation-CVD, Properties and applications.	CO5
Total Periods:		45
Total I crious		TJ
Toyt Dool-		
 Donal Umes Adapt India F 	d Neaman, Dhrubes Biswas, Semiconductor Physics and Devices (SIE) 4 th Edition, h K Mishra & Jasprit Singh, "Semiconductor Device Physics and Design", Springer, ation by Balasubramanian. R, Callister "Material Science and Engineering", Wiley Pvt. Ltd., 2 nd Edition, 2014.	
2. Umesi 3. Adapt India F References: 1. Traug 2. Budin Prenti 3. Roger	h K Mishra & Jasprit Singh, "Semiconductor Device Physics and Design", Springer, ation by Balasubramanian. R, Callister "Material Science and Engineering", Wiley	2008
1. Donal 2. Umes 3. Adapt India F References: 1. Traug 2. Budin Prenti 3. Roger CRC I	h K Mishra & Jasprit Singh, "Semiconductor Device Physics and Design", Springer, ation by Balasubramanian. R, Callister "Material Science and Engineering", Wiley Pyt. Ltd., 2 nd Edition, 2014. Ott Fischer, "Materials Science for Engineering Students", I Edition, Elsevier, 2009 ski. K.G. & Budinski, M.K. "Engineering Materials Properties and Selection", ce Hall, 2009. S. B., Adams. J & Pennathur. S "Nanotechnology: Understanding Small Systems". Press, 2014 mes (CO)	2008
1. Donal 2. Umes 3. Adapt India F References: 1. Traug 2. Budin Prenti 3. Roger CRC I	h K Mishra & Jasprit Singh, "Semiconductor Device Physics and Design", Springer, ation by Balasubramanian. R, Callister "Material Science and Engineering", Wiley Pyt. Ltd., 2 nd Edition, 2014. Ott Fischer, "Materials Science for Engineering Students", I Edition, Elsevier, 2009 ski. K.G. & Budinski, M.K. "Engineering Materials Properties and Selection", ce Hall, 2009. S. B., Adams. J & Pennathur. S "Nanotechnology: Understanding Small Systems". Press, 2014 mes (CO) ion of the course, students will be able to	2008
1. Donal 2. Umes 3. Adapt India F References: 1. Traug 2. Budin Prenti 3. Roger CRC I Course Outco Upon complet CO1 Gair	h K Mishra & Jasprit Singh, "Semiconductor Device Physics and Design", Springer, ation by Balasubramanian. R, Callister "Material Science and Engineering", Wiley Pyt. Ltd., 2 nd Edition, 2014. Ott Fischer, "Materials Science for Engineering Students", I Edition, Elsevier, 2009 ski. K.G. & Budinski, M.K. "Engineering Materials Properties and Selection", ce Hall, 2009. S. B., Adams. J & Pennathur. S "Nanotechnology: Understanding Small Systems". Press, 2014 mes (CO)	2008
1. Donal 2. Umes 3. Adapt India F References: 1. Traug 2. Budin Prenti 3. Roger CRC I Course Outco Upon complet CO1 Gair struc CO2 Gair	n K Mishra &Jasprit Singh, "Semiconductor Device Physics and Design", Springer, ation by Balasubramanian. R, Callister "Material Science and Engineering", Wiley Pyt. Ltd., 2 nd Edition, 2014. Ott Fischer, "Materials Science for Engineering Students", I Edition, Elsevier, 2009 ski. K.G. & Budinski, M.K. "Engineering Materials Properties and Selection", ce Hall, 2009. S. B., Adams. J & Pennathur. S "Nanotechnology: Understanding Small Systems". Press, 2014 mes (CO) ion of the course, students will be able to a knowledge on classical and quantum free electron theories and formation of energy	2008

CO5 Acquire knowledge about the nano structures and its applications.

Course Outcomes	Program Outcomes								Program Specific Outcomes						
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	3	2	2	1	3	2	1	2	2	2	2
CO2	3	3	3	2	3	2	2	1	2	2	1	2	3	3	2
CO3	3	3	2	2	2	1	2	1	2	1	1	2	3	3	2
CO4	3	3	2	2	2	1	1	1	1	1	1	3	3	3	2
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	3	3

GE4204	ENVIRONMENTAL SCIENCE AND ENGINEERING	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	3	0	0	3

Objectives

- ❖ To study the interrelationship between living organism and environment.
- ❖ To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- ❖ To find and implement scientific, technological, economic and political solutions to environmental problems.
- ❖ To learn the integrated themes and biodiversity, natural resources, pollution control and waste management.
- ❖ To apply the dynamic processes and understand the features of the earth's interior and surface

UNIT - I ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY	9
Definition, scope and importance of environment – Need for public awareness – Role of Individual in Environmental protection – Concept of an ecosystem – Structure and function of and ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Foodchains, food webs and ecological pyramids – Ecological succession – Types, characteristic features, structure and function of forest, grassland, desert and aquatic (ponds, lakes, rivers,	CO1
UNIT II ENVIRONMENTAL POLLUTION	9
Definition – Causes, effects and control measures of: (a)Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards –	CO2

local polluted site—Urban/Rural/Industrial/Agricultural.	
1	
UNIT-III NATURAL RESOURCES	9
Forest resources: Uses and over-exploitation – Deforestation – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overutilization of surface and groundwater, floods, drought, conflicts over water–Dams: benefits and problems – Mineral resources: Uses and exploitation – Environmental effects of extracting and using mineral resources – Food resources: World food problems – Changes caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer– pesticide problems, water logging, salinity — Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles–Field study of local area to document environmental assets – River/Forest/Grassland/Hill/Mountain-Case studies.	CO3
TINITE IN COCIAL ICCUES AND THE ENVIRONMENT	Ι ο
UNIT - IV SOCIAL ISSUES AND THE ENVIRONMENT	9
From unsustainable to sustainable development – Urban problems related to energy–Water conservation, rain water harvesting, watershed management– Resettlement and rehabilitation of people; its problems and concerns–Role of non-governmental organization– Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust — Wasteland reclamation – Consumerism and waste products – Principles of Green Chemistry– Environment protection act– Air(Prevention and Control of Pollution) Act–Water(Prevention and control of Pollution) Act – Wildlife protection Act–Forest conservation Act –Enforcement machinery involved in environmental legislation–Central and state pollution control boards–National Green Tribunal – Public awareness- Case studies.	CO4
UNIT - V HUMAN POPULATION AND THE ENVIRONMENT	9
Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health–Human rights–Value education –HIV/AIDS – COVID19–Women and child welfare – Role of information technology in environment and Human health–Case studies	CO5
	4.5
Total Periods:	45
Text Books: 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (20) 2. Gilbert M. Masters, Introduction to Environmental Engineering and Science', 2nd of Pearson Education, (2004).	

- 3. Dr. A. Sheik Mideen and S.Izzat Fathima, Environmental Science and Engineering, Airwalk Publications, Chennai, (2018).

References:

- 1. Dharmendra S.Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi,(2007).
- 2. Erach Bharucha, Textbook of Environmental Studies, Universities Press(I) Pvt, Ltd, Hydrabad, (2015).
- 3. G.Tyler Miller, Scott E. Spoolman, Environmental Science, Cengage Learning India Pvt. Ltd, Delhi,(2014).
- 4. R.Rajagopalan, Environmental Studies-From Crisisto Cure', Oxford University Press, (2005).
- 5. Anubha Kaushik, C.P. Kaushik, Perspectives in Environmental Studies, New Age International Pvt. Ltd, New Delhi, (2004).

6.	Frank R. Spellman, Handbook of Environmental Engineering, CRC Press, (2015).
Course	Outcomes (CO)
Upon c	ompletion of the course, students will be able
CO1	To obtain knowledge about environment, ecosystems and biodiversity.
CO2	To take measures to control environmental pollution.
CO3	To gain knowledge about natural resources and energy sources.
CO4	To find and implement scientific, technological, economic and political solutions to
	environmental problems.
CO5	To understand the impact of environment on human population.

Course Outcomes	Program Outcomes										Program Specific Outcomes				
o ute office	a	b	С	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	2	2	3	3	3	3	3	2	2	2	3	2	1	2
CO2	3	2	3	3	2	3	3	3	3	2	2	3	2	2	2
CO3	3	3	2	2	3	3	2	2	1	2	1	3	2	2	2
CO4	3	3	3	3	1	2	3	3	2	2	2	2	2	1	2
CO5	3	2	3	2	3	3	3	2	2	2	2	3	3	2	3

BE4205	BASIC CIVIL AND MECHANICAL ENGINEERING	L	T	P	C
		3	0	0	3
Objectives					
The ol	pjective of this course is to introduce basic knowledge on Civil Engin	neeri	ng l	Mate	rials,
Survey	ring, Foundations, Civil Engineering Structures, IC Engine, Working Pr	rinci	ple	of P	ower
Plant,	Accessories of Power Plant, Refrigeration and Air Conditioning System		-		
UNIT - I	SCOPE OF CIVIL AND MECHANICAL ENGINEERING				6
Overview of	Civil Engineering - Civil Engineering contributions to the welfare of S	ocie	ty –		
Specialized s	ubdisciplines in Civil Engineering - Structural, Construction, Geote	echn	ical,		
Environmenta	l, Transportation and Water Resources Engineering				Ω1
Overview of	Mechanical Engineering – Mechanical Engineering contributions to the	e we	lfare	, •	01
of Society -S	Specialized subdisciplines in Mechanical Engineering Production, Aut	omo	bile	,	
Energy Engine	eering – Inter disciplinary concepts in Civil and Mechanical Engineering.				
UNIT II	SURVEYING AND CIVIL ENGINEERING MATERIALS				9
Surveying:	Objects-classification-principles-measurementsofdistances-angles-	leve	lling	;	
determination	of areas—contours- examples.				02
Civil Engi	neering Materials: Bricks-stones-sand-cement-concrete-steel-timber	-mc	derr		U2
materials					
UNIT- III	BUILDING COMPONENTS AND STRUCTURES				12
Foundations:	Types of foundations-Bearing capacity and settlement-Requirement	of	good		
foundations.			_		02
Civil Engine	ering Structures: Brick masonry – stonemasonry – beams – columns –	lint	els -	- •	O 3
roofing floori	ng – plastering – floor area, carpet area and floor space index - Types of	Br	idges	3	

and Dams - water supply- sources and quality of water-Rain water harvesting- Intro	duction to
highway and railway.	

UNIT - IV INTERNAL COMBUSTION ENGINES AND POWER PLANTS	12
Classification of Power Plants - Internal combustion engines as automobile power plant	_
Working principle of Petrol and Diesel Engines - Four stroke and two stroke cycles -	-
Comparison of four stroke and two stroke engines – Working principle of steam, Gas, Diesel	, CO4
Hydro - electric and Nuclear Power plants working principle of Boilers, Turbines	,
Reciprocating Pumps (single acting and double acting)and Centrifugal Pumps	

UNIT - V	REFRIGERATION AND AIR CONDITIONING SYSTEM	6
0.	of Refrigeration and Air Conditioning. Principle of vapour compression and tem – Layout of typical domestic refrigerator –Window and Split type room Air	

1. Shanmugam G and Palanichamy M S, "Basic Civil and Mechanical Engineering", Tata McGraw Hill Publishing Co., New Delhi,1996.

References:

- 1. Palanikumar.K. Basic Mechanical Engineering, ARS Publications, 2010.
- 2. Ramamrutham.S, "Basic Civil Engineering", Dhanpat Rai Publishing Co.(P)Ltd,1999.
- 3. SeetharamanS., "Basic Civil Engineering", Anuradha Agencies, 2005.
- 4. Shantha Kumar SRJ., "Basic Mechanical Engineering", Hi-tech Publications, Mayiladuthurai, 2000
- 5. Venugopal K and Prahu Raja V, "Basic Mechanical Engineering", Anuradha Publishers, Kumbakonam, 2000.

Course Outcomes (CO)

Upon completion of the course, students will be able

- P	5111p1011011 01 0110 0001150, 5000001155 11111 50 0510
CO1	To impart basic knowledge on Civil and Mechanical Engineering.
CO2	To familiarize the materials and measurements used in Civil Engineering.
CO3	To provide the exposure on the fundamental elements of civil engineering structures.
CO4	To enable the students to distinguish the components and working principle of power plant, IC
	engines
CO5	To provide the exposure on the fundamental elements of R & AC system.

Course Outcomes					Prog	gram	Outc	omes					Program Specific Outcomes		
0 400011108	a	b	c	d	e	f	g	h	i	j	k	l	1 2 3		3
CO1	3	3	3	2	3	3	3	-	3	2	2	3	3	-	3
CO2	3	2	3	3	3	3	2	-	2	1	1	3	3	-	3
CO3	3	2	3	3	2	3	2	-	3	2	1	3	3	-	3
CO4	3	2	3	2	2	3	2	-	3	2	2	3	3	-	3
CO5	3	2	3	2	2	3	2	-	2	2	1	3	3	-	3

EE4201	PRINCIPLES OF ELECTRICAL, ELECTRONICS AND COMMUNICATION ENGINEERING	L	Т	P	С
	COMMUNICATION ENGINEERING	3	0	0	3
Objectives					
To undTo studTo undTo stud	erstand the basic concepts of electric circuits and wiring practices. It is about the three phase system and magnetic circuits erstand the working principle of electronic devices. It is the working of current controlled and voltage controlled devices. It is a system of the basic concepts of communication systems.				
UNIT - I	BASIC ELECTRIC CIRCUITS AND DOMESTIC WIRING				9
Kirchhoff's la circuits: Phase	uit elements (R, L and C)-Dependent and independent sources - Ohr ws –Mesh and Nodal Analysis with independent sources - Single por – RMS and Average values- Types of wiring- Domestic wiring - tive devices and Earthing.	hase	e AC		CO1
UNIT II	THREE PHASE CIRCUITS AND MAGNETIC CIRCUITS				9
Evolution of connection –B Definitions-M	Three phase circuits from single phase circuits – Star connection alanced and Unbalanced Loads- Power in three-phase circuits -Magnetic MF, Flux, Reluctance, Magnetic field intensity, Flux density, Fringing, nces-simple problems.	c cire	cuits	- _	CO2
UNIT- III	DACICS OF ELECTRONICS				9
P-N junction d densities, trans	BASICS OF ELECTRONICS iode - VI Characteristics, static and dynamic resistance, Diffusion and dristion & diffusion capacitance - Zener diode - VI Characteristics, Zakdown, Zener Voltage Regulator. Diode Rectifier & Filter circuits – LC	Zenei	and		203
UNIT - IV	CURRENT CONTROLLED AND VOLTAGE CONTROLLED DE	77/16	TEC		9
Current contro	olled devices: Construction, operation and characteristics of BJT, U. lled devices: Construction, operation and characteristics of JFET and MC	JT,	SCR	. C	204
UNIT - V	FUNDAMENTAL OF COMMUNICATION ENGINEERING				9
Introduction – of amplitude a Pulse Code	Elements of communication systems – Modulation and Demodulation: nd frequency modulation. Digital communication - Nyquist Sampling Modulation, Delta Modulation, BPSK, QPSK(Qualitative Agn systems: Radio Antenna, TV, Satellite and optical fibre(Block	Theo	orem ach)	., - C	205
Total Periods:					45
_ 0001 1 011045				I	
Education 2. Del Tor 2015.	DP and I.J Nagrath, "Basic Electrical and Electronics Engineering fron, 2014. ro, "Electrical Engineering Fundamentals", Second Edition, Pearson Educated, "Electrical Circuit theory and technology", Routledge; 5 th Edition, 20	catio			
2. Albert	s L. Floyd, 'Electronic Devices', 10 th Edition, Pearson Education, 2018. Malvino, David Bates, 'Electronic Principles, McGraw Hill Education; 7 th DP and I.J Nagrath, "Basic Electrical Engineering", McGraw Hill, 2010.	Edit	ion, 2	2017	

- Muhammad H.Rashid, "Spice for Circuits and electronics", 4th Edition, Cengage 2019.
 V.K. Mehta and Rohit Mehta, 'Principles of Power System', S.Chand Publishers, Reprint Edition
- 6. Taub & Schiling "Principles of Communication Systems" Tata McGraw Hill 4th Edition 2017

Course	Course Outcomes (CO)							
Upon c	ompletion of the course, students will be able							
CO1	To understand the concepts related with electrical circuits and wiring practices.							
CO2	To study the different three phase connections and the concepts of magnetic circuits.							
CO3	To understand the working principle of electronic devices such as diode and zener diode.							
CO4	To understand the characteristics and working of current controlled and voltage controlled							
	devices.							
CO5	To understand the basic concepts of communication systems							

Course Outcomes					Prog	gram	ram Outcomes					$S_{]}$	ogra: pecifi itcom	c	
	a	b	c	d	e	f	g	h	i	j	k	l	1 2		3
CO1	3	3	3	2	3	3	2	1	3	2	2	3	3	2	1
CO2	3	3	3	2	2	1	3	1	1	2	2	2	3	2	1
CO3	3	3	3	2	2	1	2	1	1	1	2	3	3	2	1
CO4	3	3	3	2	1	2	2	1	1	1	1	2	3	2	1
CO5	3	2	1	2	1	1	2	1	1	1	1	2	3	2	1

GE4251	TAMILS AND TECHNOLOGY	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	1	0	0	1
UNIT - I	WEAVING AND CERAMIC TECHNOLOGY				3
Weaving Inc	dustry during Sangam Age – Ceramic technology – Black and Red Ware	Pott	eries	$ _{C}$	01
$(BRW) - G_1$	raffiti on Potteries.				<u> </u>
UNIT II	DESIGN AND CONSTRUCTION TECHNOLOGY				3
Construction of Cholas a Meenakshi	ge - Building materials and Hero stones of Sangam age — Details on sin Silappathikaram - Sculptures and Temples of Mamallapuram - Great and other worship places - Temples of Nayaka Period - Type study (Temple) - Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Sat Madras during British Period.	Ten Mac	iples durai	C	202
UNIT- III	MANUFACTURING TECHNOLOGY				3
gold Coins Glass beads	Building - Metallurgical studies - Iron industry - Iron smelting, steel -Coas source of history - Minting of Coins — Beads making-industries Stone - Terracotta beads -Shell beads/ bone beats - Archeological evidences - Goded in Silappathikaram.	be	ads -	$ _{\mathbf{C}}$:O3
UNIT - IV	AGRICULTURE AND IRRIGATION TECHNOLOGY				3
	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Wells designed for cattle use - Agriculture and Agro Processing - Knowl			C	: O4

	es – Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific	
Society.		
UNIT - V	SCIENTIFIC TAMIL & TAMIL COMPUTING	3
Developmen	t of Scientific Tamil - Tamil computing - Digitalization of Tamil Books - t of Tamil Software - Tamil Virtual Academy - Tamil Digital Library - Online naries - Sorkuvai Project.	CO5
Total Period	ls:	15

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்)
- 2. கணினித் தமிழ் முனைவர் இல.சுந்தரம் (விகடன்பிரசுரம்)
- 3. கீழடி –வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL-(in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D.Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K. Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, TamilNadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by:RMRL)—Reference Book.

GE4251	தமிழரும் தொழிநுட்பமும்	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	1	0	0	1
அலகு I	நெசவு மற்றும் பானைத் தொழில்நுட்பம்				3
	த்தில் நெசவுத் தொழில் - பானைத் தொழிநுட்பம் - ண்டங்கள் – பாண்டங்களில் கீறல் குறியீடுகள்.	கரு	μЦ	C	01
				1	
அலகு II	வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்				3
கட்டுமான அமைப்பு	காலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்க த்தில் வீட்டுப் பொருட்களில் வடிவமைப்பு - சங்ககான பொருட்களும் நடுகல்லும் – சிலப்பதிகாரத்தில் பற்றியவிவரங்கள்–மாமல்லபுரச் சிற்பங் ளும் – சோழர்காலத்துப் பெருங்கோயில்கள் மற்றும் பி	லத்§ மே (கே	டை நம்,	C	O2

கட்டமைப் மற்றும் தி	லங்கள் – நாயக்கர் காலக் கோயில்கள் – மாதிரி புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் ிருமலை நாயக்கர் மஹால் - செட்டிநாட்டு வீடுகள் – காலத்தில் சென்னையில் இந்தோ-சாரோசெனிக் கட்டிடக்	
அலகு III	உற்பத்தித்தொழில்நுட்பம்	3
இரும்பை வ தங்க நான தொழிற்சா மணிகள்	டும் கலை - உலோகவியல் – இரும்புத் தொழிற்சாலை – உருக்குதல், எஃகு – வரலாற்று சான்றுகளாக செம்பு மற்றும் ஏயங்கள் - நாணயங்கள் அச்சடித்தல் – மணி உருவாக்கும் எலைகள்- கல்மணிகள், கண்ணாடி மணிகள்- சுடுமண் – சங்கு மணிகள்- எலும்புத்துண்டுகள் – தொல்லியல் – சிலப்பதிகாரத்தில் மணிகளின் வகைகள்.	CO3
அலகு IV	வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில்நுட்பம்	3
முக்கியத்த வடிவமைச் வேளாண்க மீன்வளம்	ரரி, குளங்கள், மதகு – சோழர்காலக் குமிழித் தூம்பின் தவம் – கால்நடை பராமரிப்பு – கால்நடைகளுக்காக கப்பட்ட கிணறுகள் – வேளாண்மை மற்றும் நமயைச் சார்த்த செயல்பாடுகள் – கடல்சார் அறிவு – – முத்து மற்றும் முத்துக்குளித்தல் – பெருங்கடல் குறித்த அறிவு – அறிவுசார் சமூகம்.	CO4
OLOVE V		3
அறிவியல் மின் பதிப் இணையக்	அறிவியல் தமிழ் மற்றும் கணித்தமிழ் தமிழின் வளர்ச்சி – கணித்தமிழ் வளர்ச்சி – தமிழ் நூல்களை பு செய்தல் – தமிழ் மென்பொருட்கள் உருவாக்கம் – தமிழ் கல்விக்கழகம் – தமிழ் மின் நூலகம் –இணையத்தில் தமிழ் ள் –சொற்குவைத் திட்டம்.	CO5
Total Periods	:	15
TEXT-CUM-	REFERENCE BOOKS	

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்)
- 2. கணினித் தமிழ் முனைவர் இல.சுந்தரம் (விகடன்பிரசுரம்)
- 3. கீழடி –வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL-(in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D.Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)

- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai'(Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K. Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, TamilNadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by:RMRL)—Reference Book.

PRACTICALS

	GE4207	ENGINEERING PRACTICES LABORATORY	L	P	T	C
		(Common for all branches of B.E. / B. Tech Programmes)	0	0	4	2
OB	JECTIVE	S				
		ovide exposure to the students with hands on experience on various bases in Civil, Mechanical, Electrical and Electronics Engineering	sic	eng	ineer	ring
LIS	T OF EX	PERIMENTS				
		GROUP A (CIVIL & MECHANICAL)				
I	CIVIL E	NGINEERING PRACTICE 13				
	Buildings					
	(a)	Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.	ĺ			
	Plumbing					
	(a)	Study of pipeline joints, its location and functions: valves, taps, couplings unions, reducers, elbows in household fittings.	S,			
Ī		of pipe connections requirements for pumps and turbines.				
		ation of plumbing line sketches for water supply and sewage)Hands-on-exercise:				
	Ba	sic pipe connections – Mixed pipe material connection – Pipe connections different joining components.	wit	th	C	D1
		nstration of plumbing requirements of high-rise buildings.				
	-	y using Power Tools only:				
		of the joints in roofs, doors, windows and furniture.				
	. ,	-on-exercise:				
	wood	work, joints by sawing, planning and cutting.				
II		IICAL ENGINEERING PRACTICE 18				
	Welding:					
	· · ·	ation of butt joints, lap joints and T- joints by Shielded metal arc				
	Basic Ma	(b)Gas welding practice				
		e Turning and Taper turning				
		g Practice				
	* *	etal Work:			C) 2
	(a) Formin	ng & Bending:				
	(b) Model	making – Trays and funnels.				
	(c) Differe	ent type of joints.				
		assembly practice:				
		of centrifugal pump				
	-	of air conditioner				
		ration on:	السما			
	(a)		endi	ıng.		
	(b)	Example –Exercise – Production of hexagonal headed bolt. Foundry operations like mould preparation for gear and step cone pulley.				
	(b) (c)	Fitting – Exercises – Preparation of square fitting and V – fitting models.				
	(0)	Training Literature of square fitting and verifiting models.				
		GROUP B (ELECTRICAL & ELECTRONICS)			<u> </u>	
		\				

III EI	LECTRICAL ENGINEERING PRACTICE Residential house wiring using switches, fuse, indicator, lamp and energy me	_	
2. 3. 4.	Fluorescent lamp wiring. Stair case wiring Measurement of electrical quantities – voltage, current, power & power factors.		CO3
	RLC circuit.		
5. 6.	Measurement of energy using single phase energy meter. Measurement of resistance to earth of an electrical equipment.		CO4
IV ELEC	CTRONICS ENGINEERING PRACTICE 10	6	
1.	Study of electronic components and equipment's – Resistor, colour cod measurement of AC signal parameter (peak-peak, rms period, frequency) us CR.	ling	
2. 3. 4.	Study of logic gates AND, OR, EX-OR and NOT. Generation of Clock Signal. Soldering practice – Components Devices and Circuits – Using general purp	ose	CO5
	PCB. Measurement of ripple factor of HWR and FWR.		
	TOTAL: 6	60 PE	RIODS
LIST OF	EQUIPMENT FOR A BATCH OF 30 STUDENTS		
S.No.	Description of Equipment	_	antity quired
	CIVIL		
1.	Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings.	15	sets
2.	Carpentry vice (fitted to work bench)	15	Nos
3.	Standard woodworking tools 15 Sets.	15	Sets.
4.	Models of industrial trusses, door joints, furniture joints	5	each
5.	Power Tools: (a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw	2	Nos
5.	 (a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine 	2	Nos
5.	 (a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw 		Nos
	(a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw MECHANICAL	5 N	
1.	(a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw MECHANICAL Arc welding transformer with cables and holders.	5 N	Nos
1. 2.	(a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw MECHANICAL Arc welding transformer with cables and holders. Welding booth with exhaust facility.	5 N 5 N 5 S	Nos Nos
1. 2. 3.	(a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw MECHANICAL Arc welding transformer with cables and holders. Welding booth with exhaust facility. Welding accessories like welding shield, chipping hammer, wire brush, etc.	5 N 5 N 5 S	Nos Nos Sets
1. 2. 3. 4.	(a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw MECHANICAL Arc welding transformer with cables and holders. Welding booth with exhaust facility. Welding accessories like welding shield, chipping hammer, wire brush, etc. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit.	5 N 5 N 5 S 2 N	Nos Nos Sets
1. 2. 3. 4. 5.	(a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw MECHANICAL Arc welding transformer with cables and holders. Welding booth with exhaust facility. Welding accessories like welding shield, chipping hammer, wire brush, etc. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. Centre lathe.	5 N 5 N 5 S 2 N 2 N	Nos Nos Sets Nos

9.	Study-purpose items: centrifugal pump, air-conditioner.	1 each
	ELECTRICAL	
1.	Assorted electrical components for house wiring.	15 Sets
2.	Electrical measuring instruments.	10 Sets
3.	Study purpose items: Iron box, fan and regulator, emergency lamp.	1 each
4.	Megger (250V/500V).	1 No.
5.	Power Tools: (a) Range Finder (b) Digital Live-wire detector	2 Nos
	ELECTRONICS	
1.	Soldering guns 10 Nos.	10 Nos.
2.	Assorted electronic components for making circuits 50 Nos.	50 Nos.
3.	Small PCBs.	10 Nos.
4.	Multimeters	10 Nos.
5.	Study purpose items: Telephone, FM radio, low-voltage power supply	1 each
	E OUTCOMES upletion of the course, students will be able to	
CO1	Fabricate carpentry components and pipe connections including plumbing we equipment's to join the structures.	orks.Use weldi
CO2	Carry out the basic machining operations Make the models using sheet metal	works
CO3	Carry out basic home electrical works and appliances.	
CO4	Measure the electrical quantities	
CO5	Elaborate on the components, gates, soldering practices	

Course Outcomes	Program Outcomes							$S_{]}$	Program Specific Outcomes						
	a	b	с	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	1	3	-	-	3	-	-	-	-	-	3	3	2	1
CO2	3	2	3	-	-	3	-	-	-	-	-	3	3	2	1
CO3	3	1	2	-	-	2	-	-	-	-	-	3	3	2	1
CO4	3	2	3	3	1	3	1	1	1	1	2	3	3	3	1
CO5	3	2	3	3	1	2	1	1	1	1	2	3	3	3	1

EE4211	PRINCIPLES OF ELECTRICAL AND ELECTRONIC DEVICES LABORATORY	L	Т	P	C
		0	0	4	2

- ❖ To provide practical knowledge of fundamental concepts of electrical and electronics engineering through relevant experiments.
- ❖ To impart hands on experience in measurement of electric and magnetic circuit parameters.
- To train the students in performing the verification of ohm's law and Kirchhoff's laws.
- ❖ To analyse various connections of balanced and unbalanced loads.
- ❖ To study the characteristics of electronic semiconductor devices.

LIST OF EXPERIMENTS

- 1. Measurement of equivalent Resistance in an electric circuit
- 2. Verification of ohm's law.
- 3. Verification of Kirchhoff's laws.
- 4. Measurement of magnetic flux in magnetic circuits.
- 5. Star and delta connections with balanced and unbalanced loads.
- 6. V-I characteristics of PN junction and Zener Diode.
- 7. V-I characteristics of BJT (CE, CB, CC Configuration).
- 8. V-I characteristics of FET.
- 9. V-I characteristics of UJT and its application.

Total Periods 60

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

- 1. Dual,(0-30V) variability Power Supply- 10 Nos
- 2. CRO-10 Nos-30MHz
- 3. Function Generator 10 Nos- 1 MHz
- 4. Digital Multimeter -10 Nos
- 5. Bread board 10 Nos
- 6. Digital Trainer Kit
- 7. Watt meter-2Nos.
- 8. Ammeter (0-10A)-10 Nos
- 9. Voltmeter (0-300V)-10Nos
- 10. Fluxmeter-2 Nos
- 11. Load Resistor Box-1Nos.

Consumables Sufficient Quantity

- 1. Resistor
- 2. BJT
- 3. UJT
- 4. Diodes
- 5. Zener Diode.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Manipulate simple electric and magnetic circuits.
CO2	Understand the basic ohm's and kirchhoff's law realization.
CO3	Design and Analyse the basic circuit components and connect them to make a real electrical
	circuit.
CO4	Design and construct basic load connections of electrical networks
CO5	Study and analyse the characteristics of various electronic semiconductor devices.

Course	Program Outcomes											Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	3	1	1	1	2	1	2	2	3	2	1

CO2	3	3	3	3	3	2	1	1	2	1	1	3	3	2	1
CO3	3	3	3	3	3	1	2	1	2	1	2	2	3	2	1
CO4	3	3	3	3	3	1	1	1	2	1	2	2	3	2	1
CO5	3	3	3	3	3	2	1	1	2	1	1	3	3	2	1

SEMESTER – III

MA4352		T P	_
	(Common to MECH, EEE & ECE) 3 1	1 0) 4
Objectives			
Objectives			
• This	course is designed to cover topics such as Complex Analysis, Ordinary Di	iffere	ntial
Equat	ions, Z- Transforms and Laplace Transform.		
• To do	violen on understanding of the standard techniques analytic function and its	mon	nina
	evelop an understanding of the standard techniques analytic function and its	шар	ping
prope			
	miliarize the students with complex integration and contour integration technique used in real integrals.	ues w	hich
	equaint the students with differential equations which are significantly earing problems.	used	d in
• To int	roduce the effective mathematical tools for the solutions of partial differential	eauat	tions
	nodel several physical processes and to develop Z-transform techniques for disc	-	
		CICIC	11111
syster	ns		
• To ap	oply Laplace transforms for solving the problems that occur in various bra	anche	s o
engine	eering disciplines.		
UNIT - I	ANALYTIC FUNCTIONS		9+
	ANALYTIC FUNCTIONS ctions – Necessary and sufficient conditions for analyticity in Cartesian and po	olar	9+
Analytic fund	ANALYTIC FUNCTIONS ctions – Necessary and sufficient conditions for analyticity in Cartesian and po- - Properties – Harmonic conjugates – Construction of analytic function		I
Analytic function	ctions – Necessary and sufficient conditions for analyticity in Cartesian and po		I
Analytic function function for the coordinates Conformal m	etions – Necessary and sufficient conditions for analyticity in Cartesian and positions – Harmonic conjugates – Construction of analytic function appling – Mapping by functions $w = Z + C$, CZ , $1/Z$ - Bilinear transformation		CO
Analytic function function for the coordinates Conformal multiple (UNIT - II	ctions – Necessary and sufficient conditions for analyticity in Cartesian and po- - Properties – Harmonic conjugates – Construction of analytic function happing – Mapping by functions $w = Z + C$, CZ , $1/Z$ - Bilinear transformation COMPLEX INTEGRATION	n –	CO
coordinates Conformal m UNIT - II Cauchy's int Singularities	ctions – Necessary and sufficient conditions for analyticity in Cartesian and post-properties – Harmonic conjugates – Construction of analytic function apping – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION Regral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Residues – Residue theorem – Application of residue theorem for evaluate	es – tion	CO 9+
Analytic function of the coordinates Conformal material	ctions – Necessary and sufficient conditions for analyticity in Cartesian and pos- - Properties – Harmonic conjugates – Construction of analytic function happing – Mapping by functions $w = Z + C$, CZ , $1/Z$ - Bilinear transformation COMPLEX INTEGRATION	es – tion	CO 9+
Analytic function of the coordinates Conformal material of the coordinates UNIT - II Cauchy's integrated integral integral	ctions – Necessary and sufficient conditions for analyticity in Cartesian and post-properties – Harmonic conjugates – Construction of analytic function apping – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION Regral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Residues – Residue theorem – Application of residue theorem for evaluate	es – tion	CO 9+
Analytic function of the coordinates Conformal municipal conformation of the coordinates	ctions – Necessary and sufficient conditions for analyticity in Cartesian and post-properties – Harmonic conjugates – Construction of analytic function apping – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION Regral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Residues – Residue theorem – Application of residue theorem for evaluated as – Use of circular contour and semi-circular contour(excluding poles on	es – tion	9+ CO
Analytic function of the coordinates Conformal munities of real integral line)	ctions – Necessary and sufficient conditions for analyticity in Cartesian and post-properties – Harmonic conjugates – Construction of analytic function apping – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION Regral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Residues – Residue theorem – Application of residue theorem for evaluate	es – tion the	9+ CC
Analytic function of the coordinates Conformal multiple of the coordinates of the coordin	ctions – Necessary and sufficient conditions for analyticity in Cartesian and pos- Properties – Harmonic conjugates – Construction of analytic function apping – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION Regral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Residues – Residue theorem – Application of residue theorem for evaluated als – Use of circular contour and semi-circular contour(excluding poles on COMPLEX INTEGRATION) ORDINARY DIFFERENTIAL EQUATIONS	es – tion the	9+ CC
Analytic function of the coordinates Conformal multiple of the coordinates of real integral line) UNIT - III Higher order parameters—I	ctions – Necessary and sufficient conditions for analyticity in Cartesian and por- Properties – Harmonic conjugates – Construction of analytic function apping – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION regral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Residues – Residue theorem – Application of residue theorem for evaluated as – Use of circular contour and semi-circular contour(excluding poles on COMPLEX INTEGRATION Series – Use of circular contour and semi-circular contour(excluding poles on COMPLEX INTEGRATION Series – We have a supplied to the contour and semi-circular contour (excluding poles on COMPLEX INTEGRATION Series – Method of variation of the contour series – Method of variation series – Method of variation of the contour series – Method of variation series – Method of variation series – Method of variati	es – tion the	9+ CO
Analytic function of the coordinates Conformal multiple of the coordinates of the coordinate of the coordinat	ctions – Necessary and sufficient conditions for analyticity in Cartesian and portugates – Harmonic conjugates – Construction of analytic function papping – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION	es – tion the	9+ CC
Analytic function of the coordinates Conformal multiple of the coordinates of the coordinates of the coordinates of the coordinates of the coordinate of the coordinate	ctions – Necessary and sufficient conditions for analyticity in Cartesian and portange – Properties – Harmonic conjugates – Construction of analytic function papping – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION Regral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Residues – Residue theorem – Application of residue theorem for evaluated as – Use of circular contour and semi-circular contour(excluding poles on Homogenous equation of Euler's and Legendre's type—System of simultaneon tial equations with constant coefficients. Z – TRANSFORMS AND DIFFERENCE EQUATIONS	es – tion the	9+ CC
Analytic function of coordinates Conformal m UNIT - II Cauchy's integral integral line) UNIT - III Higher order order order different	ctions – Necessary and sufficient conditions for analyticity in Cartesian and portange – Properties – Harmonic conjugates – Construction of analytic function papping – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION Regral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Residues – Residue theorem – Application of residue theorem for evaluated as – Use of circular contour and semi-circular contour(excluding poles on Homogenous equation of Euler's and Legendre's type—System of simultaneous equations with constant coefficients – Method of variation equations with constant coefficients. Z – TRANSFORMS AND DIFFERENCE EQUATIONS Elementary properties – Inverse Z-transform (using partial fraction as	es – tion the n of eous	9+ CC
Analytic function of the coordinates Conformal management of the coordinates Conformal management of the coordinates of the coordinate of the coordi	ctions – Necessary and sufficient conditions for analyticity in Cartesian and portangular properties – Harmonic conjugates – Construction of analytic function apping – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION Regral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Residues – Residue theorem – Application of residue theorem for evaluated as – Use of circular contour and semi-circular contour(excluding poles on Homogenous equation of Euler's and Legendre's type—System of simultaneon tail equations with constant coefficients. CTRANSFORMS AND DIFFERENCE EQUATIONS See — Elementary properties – Inverse Z-transform (using partial fraction as initial and final value theorems – Convolution theorem – Formation	es – tion the n of eous	9+ CC
Analytic function of the coordinates Conformal management of the coordinates Conformal management of the coordinates of the coordinate of the coordi	ctions – Necessary and sufficient conditions for analyticity in Cartesian and portange – Properties – Harmonic conjugates – Construction of analytic function papping – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION Regral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Residues – Residue theorem – Application of residue theorem for evaluated as – Use of circular contour and semi-circular contour(excluding poles on Homogenous equation of Euler's and Legendre's type—System of simultaneous equations with constant coefficients – Method of variation equations with constant coefficients. Z – TRANSFORMS AND DIFFERENCE EQUATIONS Elementary properties – Inverse Z-transform (using partial fraction as	es – tion the n of eous	9+ CC
Analytic function of the coordinates Conformal management of the coordinates of real integrated line) UNIT - III Higher order parameters—I inear difference of the coordinates of the	ctions – Necessary and sufficient conditions for analyticity in Cartesian and portion – Properties – Harmonic conjugates – Construction of analytic function papping – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION	es – tion the n of eous	9+ CC 9+ CC 9+
Analytic function of coordinates Conformal management of the conformal management of the conformal management of the conformation of the conformat	ctions – Necessary and sufficient conditions for analyticity in Cartesian and por Properties – Harmonic conjugates – Construction of analytic function happing – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION Legral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Residues – Residue theorem – Application of residue theorem for evaluated as – Use of circular contour and semi-circular contour(excluding poles on long to the contour of the contour of the contour of the contour equation of the contour of the contour equation of the contour contour of the contour of the contour equation of the contour of	es – tion the and of	9+ CO 9+ CO
Analytic functions of coordinates Conformal management of the coordinates Conformal management of the coordinates Conformal management of the coordinates Country of the coordinates Coord	ctions – Necessary and sufficient conditions for analyticity in Cartesian and pote – Properties – Harmonic conjugates – Construction of analytic function happing – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION Regral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Residues – Residue theorem – Application of residue theorem for evaluated as – Use of circular contour and semi-circular contour(excluding poles on long of the contour of t	es — tion the and of	9+ CO 9+ CO 9+ CO 9+
Analytic function of the coordinates Conformal management of the coordinates Conformal management of the coordinates of real integrated line) UNIT - III Higher order coordinates—Inear difference of the coordinates of the	ctions – Necessary and sufficient conditions for analyticity in Cartesian and por Properties – Harmonic conjugates – Construction of analytic function happing – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation COMPLEX INTEGRATION Legral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Residues – Residue theorem – Application of residue theorem for evaluated as – Use of circular contour and semi-circular contour(excluding poles on long to the contour of the contour of the contour of the contour equation of the contour of the contour equation of the contour contour of the contour of the contour equation of the contour of	es — tion the and of ting m —	9+ CC 9+ CC 9+

Total Periods:	60

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, New Delhi, 43rdEdition, 2014.
- 2. Kreyszig Erwin,"Advanced Engineering Mathematics", John Wiley and Sons, 10thEdition, New Delhi, 2016. Strang G, Linear algebra for everyone, Wellesley Cambridge press, first edition, 2020

Reference Books:

- 1. G Bali N., Goyal M. and Watkins C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- 2. Jain R.K. and Iyengar S.R.K., Advanced Engineering Mathematics, Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. O_Neil,P.V.—Advanced Engineering Mathematics, Cengage Learning India Pvt.,Ltd, New Delhi,2007.
- 4. Sastry,S.S, "EngineeringMathematics",Vol.I&II,PHILearningPvt.Ltd,4thEdition, New Delhi, 2014
- 5. Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012

Course Outcomes (CO)

Upon completion of the course, students will be able to

Upon c	ompletion of the course, students will be able to
CO1	Understand Analytic functions, conformal mapping &Bilinear transformation.
CO2	Evaluate real integration by Complex integration techniques.
CO3	Apply various techniques in solving ordinary differential equations.
CO4	Use the effective mathematical tools for the solutions of partial differential equations by
	using Z-transform techniques for discrete time systems.
CO5	Apply Laplace transform and inverse transform of simple functions, properties, various
	related theorems in solving differential equations with constant coefficients.

Course Outcomes		Program Outcomes													Program Specific Outcomes			
0 400 01110	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	3	2	2	2	2	1	1	-	-	-	-	1	2	2	3			
CO2	3	3	3	2	2	2	1	-	-	-	-	1	3	3	2			
CO3	3	3	3	2	3	3	2	-	-	1	1	3	3	2	2			
CO4	3	1	1	1	2	1	1	1	2	2	1	-	2	1	1			
CO5	3	3	3	2	2	2	1	-	-	-	-	1	2	1	1			

EE4301	ELECTRIC CIRCUIT ANALYSIS	L	T	P	C
		3	1	0	4

Objectives

• To determine the response of electric circuits using basic analysis methods.

- To impart knowledge on solving circuit equations using network theorems.
- To analyse the transient behaviour of electric circuits with different types of source.
- To understand the concepts of resonance and coupled circuits.
- To compute and analyse the two-port network and its parameters.

UNIT - I	ANALYSIS OF ELECTRIC CIRCUITS	12
Mesh Analysis	- Analysis with independent and dependent voltage sources, Super mesh	
Analysis. Node	Analysis - Analysis with independent and dependent current sources, Super	CO1
nodal Analysis.		
UNIT - II	NETWORK THEOREMS FOR DC AND AC CIRCUITS	12
Network reduct	ion: voltage and current division, source transformation, star delta conversion.	
Applications of	Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum	CO2
	heorem, Reciprocity theorem.	002
-		
		1
UNIT - III	TRANSIENT RESPONSE ANALYSIS	12
_	nse: Natural response & Forced response of RL, RC and RLC circuits using	CO3
Laplace transfor	m for DC input and AC sinusoidal input.	COS
UNIT - IV	RESONANCE AND COUPLED CIRCUITS	12
Series and para	llel resonance: Variation of impedance with frequency - Variation in current	
through and vo	ltage across L and C with frequency - Bandwidth - Q factor - Selectivity.	CO4
Mutual coupled	d circuits: Self and mutual inductance - Coefficient of coupling - Dot	CO4
Convention in c	oupled circuits.	
UNIT - V	TWO PORT NETWORK AND NETWORK FUNCTIONS	12
Two Port Net	works, terminal pairs, relationship of two port variables, impedance(Z)	
parameters, ad	mittance(Y) parameters, transmission parameters (ABCD) and hybrid	CO5
_	interconnections of two port networks.	
	•	
Total Periods:		60
	<u>'</u>	
/D / D 1		

- 1. William H. Hayt Jr, Jack E. Kemmerly, Jamie D. Phillips and Steven M. Durbin, "Engineering Circuits Analysis", 9th Edition, McGraw Hill Education (India) Private Limited, 2020.
- 2. Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth Edition, McGraw Hill, 2020.

References:

- 1. Sudhakar. A, Shyammohan. S.P "Circuits and Networks-Analysis and Synthesis". Tata McGraw Hill publishers, 2018.
- 2. M. E. Van Valkenburg, "Network Analysis", Prentice Hall, 2020.
- 3. D. Roy Choudhury, "Networks and Systems", New Age International Publications, 2018.
- 4. M Nahvi I J A Edminster "Electric Circuits"; Schaum's Outline series , Tata Mcgraw Hill companies, 4th Edition, 2019.
- 5. David A Bell, "Electric Circuits", Oxford University Press, 2019.
- 6. NPTEL Video Lecture Notes on "Basic Electrical Circuits" by Prof. Nagendra Krishnapura, IIT Madras.

Course Outcomes (CO)

Upon c	completion of the course, students will be able to
CO1	Able to determine the response of electric circuits using basic analysis methods and network
	topology
CO2	Able to compute the response of electric circuits using network theorem in real time
	applications.
CO3	Able to apply laplace transform techniques for solving problems and discuss the complete
	response of circuits.
CO4	Able to design and analyse resonance and coupled circuits.
CO5	Able to evaluate and analyse two port networks and its parameters.

Course Outcomes	Program Outcomes									Program Specific Outcomes					
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	3	1	1	1	1	1	1	1	3	3	2
CO2	3	3	3	3	3	1	1	1	1	1	1	1	3	3	2
CO3	3	3	3	3	3	1	1	1	1	1	1	1	3	3	2
CO4	3	3	3	3	3	1	1	1	1	1	1	1	3	3	2
CO5	3	3	3	3	3	1	1	1	1	1	1	1	3	3	2

EE4302	ELECTRICAL MACHINES - I	L	T	P	C
		3	0	0	3

- Working principles of electrical machines using the concepts of electro mechanical energy conversion principles and derive expressions for generated voltage and torque developed in all Electrical Machines.
- Working principles of DC machines as Generator types, determination of their no-load/load characteristics, starting methods of speed control of motors.
- Various losses taking place in D.C. Motor and to study the different testing methods to arrive at their performance.
- Constructional details, the principle of operation, prediction of performance, the methods of testing the transformers and three phase transformer connections.

UNIT – I	ELECTROMECHANICAL ENERGY CONVERSION	9
energy balance excited magnetic	etromechanical energy conversion forces and torque in magnetic field systems- in magnetic circuits- magnetic force- co-energy in singly excited and multi- c field system -mmf of distributed windings – Winding Inductances- magnetic g machines- magnetic saturation and leakage fluxes.	CO1
UNIT – II	DC GENERATORS	9
waveshape of ir turns, compensa OCC and load	ration, constructional details, armature windings and its types, EMF equation, aduced emf, armature reaction, demagnetizing and cross magnetizing Amperenting winding, commutation, methods of improving commutation, interpoles, characteristics of different types of DC Generators. Parallel operation of DC alizing connections- applications of DC Generators.	CO2
UNIT – III	DC MOTORS	9
Principle of ope	eration, significance of back emf, torque equations and power developed by	CO3

armature, speed control of DC motors, starting methods of DC motors, load characteristics of
DC motors, losses and efficiency in DC machine, condition for maximum efficiency. Testing
of DC Machines: Brake test, Swinburne's test, Hopkinson's test, Field test, Retardation test,
Separation of core losses-applications of DC motors.

UNIT – IV	SINGLE PHASE TRANSFORMER	9
test, open circu efficiency, back	d principle of operation, equivalent circuit, phasor diagrams, testing - polarity it and short circuit tests, voltage regulation, losses and efficiency, all day to back test, separation of core losses, parallel operation of single-phase plications of single-phase transformer.	COA

UNIT – V	AUTO TRANSFORMER AND THREE PHASE TRANSFORMER	9
applications of a	I working of auto transformer, comparison with two winding transformers, utotransformer. Three Phase Transformer- Construction, types of connections ative features, Scott connection, applications of Scott connection.	

Total Periods:	45
----------------	----

- 1. Fitzgerald.A.E., Charles Kingsely Jr, Stephen D. Umans, 'Electric Machinery', Sixth edition, McGraw Hill Books Company, 2003.
- 2. Stephen J. Chapman, 'Electric Machinery Fundamentals' 4thedition, McGraw Hill Education Pvt. Ltd, 2010.

References:

- 1. B.R.Gupta, 'Fundamental of Electric Machines' New age International Publishers, 3rdEdition, Reprint 2015.
- 2. S.K. Bhattacharya, 'Electrical Machines' McGraw Hill Education, New Delhi, 3rdEdition, 2009.
- 3. Vincent Del Toro, 'Basic Electric Machines' Pearson India Education, 2016.
- 4. Surinder Pal Bali, 'Electrical Technology Machines & Measurements, Vol.II, Pearson, 2013.
- 5. Nagrath.I.J. and Kothari.D.P., Electric Machines', McGraw-Hill Education, 5th Edition, 2017.
- 6. NPTEL Video Lecture Notes on "Electrical Machines-I" by Prof. Tapas Kumar Bhattacharya, IIT Kharagpur

Course Outcomes (CO)

Upon completion of the course, students will be

C POLL C	ompletion of the course, students will se
CO1	Able to understand the basics of energy conversion in electromagnetic fields.
CO2	Able to understand the construction, operating principle and performance analysis of DC
	generators.
CO3	Able to understand the construction and winding structure of the DC motors.
CO4	Able to understand the construction, operating principle and performance analysis of single
	phase transformers
CO5	Able to understand the operation and performance analysis of autotransformer, three phase
	transformers.

Course Outcomes					Pro	gram	Outc	omes					S	rogra pecif utcon	ic
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	2	2	1	1	1	1	1	1	1	2	1	1	3	2	1

CO2	3	2	1	1	1	1	1	1	1	2	1	2	3	2	1	
CO3	2	2	1	1	1	1	1	1	1	1	1	2	3	2	1	
CO4	2	1	1	1	1	1	1	1	1	1	1	2	3	2	1	
CO5	2	2	1	1	1	1	1	1	1	1	1	2	3	2	1	

EE4303	ANALOG CIRCUITS	L	T	P	C
		3	0	0	3

- To familiarize the operation and applications of amplifiers using BJT.
- To learn the required functionality of oscillators, positive and negative feedback systems
- To understand signal analysis using Op-amp based circuits.
- To impart knowledge on applications of Op-amp
- To know about special ICs and applications.

UNIT - I	AMPLIFIERS	9
	model – Analysis of CE, CB, CC amplifiers- Gain and frequency response-	
_	lifier – Common mode and Difference mode analysis.	CO ₁
UNIT - II	FEEDBACK AMPLIFIERS AND OSCILLATORS	9
Advantages of a	negative feedback - voltage / current, series, Shunt feedback -positive	
_	ition for oscillations, phase shift - Wien bridge, Hartley, and Colpitts	CO2
UNIT - III	CHARACTERISTICS OF OPAMP	9
	characteristics, DC characteristics, AC characteristics, differential amplifier; use of OP-AMP; Voltage-shunt feedback and inverting amplifier - Voltage	
	and Non-Inverting Amplifier - Basic applications of op-amp –, summer,	CO3
	I Integrator-V/I & I/V converters.	
differentiator and	i integrator- v/1 & 1/ v converters.	
UNIT - IV	APPLICATIONS OF OPAMP	9
Amplifiers - Ana multi vibrators,	amplifier and its applications for transducer Bridge, Log and Antilog alog multiplier & Divider, first and second order active filters, comparators, waveform generators, clippers, clampers, peak detector, S/H circuit, D/A ladder and weighted resistor types), A/D converters using OP-AMPs.	CO ₂
		•
UNIT - V	SPECIAL ICs AND APPLICATIONS	9
controlled oscill	t, characteristics of 555 Timer and its PWM application - IC-566 voltage ator IC - IC voltage regulators –LM78XX, LM79XX; Fixed voltage dication as Linear power supply - LM317, 723 Variability voltage regulators	COS
Total Periods:		45
Toyt Rooks:		

Text Books:

- 1. David A. Bell, "Electronic devices and circuits", Oxford University higher education, 5th edition 2008.
- 2. D. Roy Choudhary, Sheil B. Jani, 'Linear Integrated Circuits', New Age, Fourth Edition, 2018.

References:

- 1. David A. Bell, 'Op-amp & Linear ICs', Oxford, Third Edition, 2011
- 2. Donald A Neamen, "Electronic Circuit Analysis and Design" Tata McGraw Hill, 3rd Edition, 2003.
- 3. Robert L. Boylestad, "Electronic devices and circuit theory", 11th edition, Pearson prentice Hall 2013.
- 4. Fiore, "Opamps & Linear Integrated Circuits Concepts & applications", Cengage, 2010.
- 5. Floyd, Buchla, "Fundamentals of Analog Circuits, Pearson, 2013.
- 6. NPTEL Video Lecture Notes on "Analog Electronic Circuits" by Prof. Pradip Mandal, IIT Kharagpur.

Course Outcomes (CO)

Upon completion of the Course, the students will be able to

Opon c	completion of the Course, the students will be able to
CO1	Analyze the performance of various configurations of BJT based amplifier
CO2	Explain the operation of various feedback amplifiers and oscillators
CO3	Analyze the characteristics and basic applications (inverting/non-inverting amplifier, summer, differentiator, integrator, V/I and I/V converter) of Op-Amp
CO4	Explain circuit and applications of op-amp based instrumentation amplifier, log/antilog amplifier, analog multiplier /divider, active filters, comparators, waveform generators, A/D and D/A converters
CO5	Explain functional blocks, characteristics and applications of timer, fixed and variable voltage regulator.

Course Outcomes		Program Outcomes													Program Specific Outcomes			
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	3	3	3	3	3	2	2	1	1	1	1	2	2	3	1			
CO2	3	3	3	3	3	2	2	1	1	1	1	2	2	3	1			
CO3	3	3	3	3	3	2	2	1	1	1	1	2	2	3	1			
CO4	3	3	3	3	3	2	2	1	1	1	1	2	2	3	1			
CO5	3	3	3	3	3	3	2	1	1	1	1	2	2	3	1			

EE4304	DIGITAL ELECTRONICS	L	T	P	C
		3	0	0	3

Objectives

- To introduce the fundamentals of combinational and sequential digital circuits.
- To study various number systems and to simplify the mathematical expressions using Boolean functions word problems.
- To study implementation of combinational circuits using Gates` and MSI Devices.
- To study the design of various synchronous and asynchronous circuits
- To introduce digital simulation techniques for development of application oriented logic circuit.

UNIT - I	NUMBER SYSTEMS AND BOOLEAN ALGEBRA	9
Fundamentals	of Number systems, error detection, corrections & codes conversions, Boolean	CO1

_	De Morgan's theorem, switching functions and minimization using K-maps & Quine by method.	
UNIT - II		9
Combination representation combination	ional logic - representation of logic functions-SOP and POS forms, K-map tions- minimization using K maps - simplification and implementation of onal logic - multiplexers and demultiplexers - code converters, adders, s. Encoders and Decoders.	CO2
UNIT - II	I SYNCHRONOUS SEQUENTIAL CIRCUITS	9
counters - of synchr	l logic- SR, JK, D and T flip flops - level triggering and edge triggering - asynchronous and synchronous type - Modulo counters - Shift registers - design onous sequential circuits — Moore and Melay models- Counters, state diagram; etion; state assignment.	CO3
TINITED TO		
UNIT - I	ASYNCHRONOUS SEQUENTIAL CIRCUITS AND PROGRAMMABLE LOGIC DEVICES	9
&errors in	nous sequential logic circuits-Transition table, flow table-race conditions, hazards a digital circuits; analysis of asynchronous sequential logic circuits-introduction to table Logic Devices: PROM – PLA –PAL,CPLD-FPGA	CO4
UNIT - V	VHDL	9
RTL Des Packages	ign – combinational logic – Sequential circuit – Operators – Introduction to –Subprograms – Test bench. (Simulation /Tutorial Examples: adders, counters, FSM, Multiplexers /Demultiplexers).	CO5
Total Per	iods:	45
		45
		-
1. Morr 2. Dona Reference 1. Thom 2. Tocc Asia, 3. Dona McG	is Mano.M, 'Digital Logic and Computer Design', Prentice Hall of India, 3rdEdition, Id D. Givone, 'Digital Principles and Design', Tata McGraw Hill,1st Edition, 2003 es: nas L Floyd, 'Digital fundamentals', Pearson Education Limited, 11 th Edition, 2018 if R.J., Neal S. Widmer, 'Digital Systems: Principles and Applications', Pearson Educ 12 th Edition, 2017. Ild P Leach, Albert Paul Malvino, Goutam Sha, 'Digital Principles and Applications', raw Hill, 7 th Edition, 2010. EL Video Lecture Notes on "Digital Circuits and Systems" by Prof. S. Srinivasan, IIT	2005. ation
1. Morr 2. Dona Reference 1. Thom 2. Tocc Asia, 3. Dona McG 4. NPT Madu	ks: is Mano.M, 'Digital Logic and Computer Design', Prentice Hall of India, 3rdEdition, Id D. Givone, 'Digital Principles and Design', Tata McGraw Hill,1st Edition, 2003 es: nas L Floyd, 'Digital fundamentals', Pearson Education Limited, 11 th Edition, 2018 is R.J., Neal S. Widmer, 'Digital Systems: Principles and Applications', Pearson Educ 12 th Edition, 2017. Ild P Leach, Albert Paul Malvino, Goutam Sha, 'Digital Principles and Applications', raw Hill, 7 th Edition, 2010. EL Video Lecture Notes on "Digital Circuits and Systems" by Prof. S. Srinivasan, IIT as. utcomes (CO)	2005. ation Tata
1. Morr 2. Dona Reference 1. Thom 2. Tocc Asia, 3. Dona McG 4. NPT Madu	ks: is Mano.M, 'Digital Logic and Computer Design', Prentice Hall of India, 3rdEdition, Id D. Givone, 'Digital Principles and Design', Tata McGraw Hill,1st Edition, 2003 es: nas L Floyd, 'Digital fundamentals', Pearson Education Limited, 11 th Edition, 2018 is R.J., Neal S. Widmer, 'Digital Systems: Principles and Applications', Pearson Educ 12 th Edition, 2017. Idd P Leach, Albert Paul Malvino, Goutam Sha, 'Digital Principles and Applications', raw Hill, 7 th Edition, 2010. EL Video Lecture Notes on "Digital Circuits and Systems" by Prof. S. Srinivasan, IIT as. utcomes (CO) npletion of the Course, the students will be able to Explain various number systems and Apply K-maps and Quine McCluskey methinplify the given Boolean expressions	2005. ation Tata
1. Morr 2. Dona Reference 1. Thom 2. Tocc Asia, 3. Dona McG 4. NPT Madr Course O Upon con CO1 E S CO2 E	is Mano.M, 'Digital Logic and Computer Design', Prentice Hall of India, 3rdEdition, Id D. Givone, 'Digital Principles and Design', Tata McGraw Hill,1st Edition, 2003 es: nas L Floyd, 'Digital fundamentals', Pearson Education Limited, 11 th Edition, 2018 if R.J., Neal S. Widmer, 'Digital Systems: Principles and Applications', Pearson Educ 12 th Edition, 2017. Idd P Leach, Albert Paul Malvino, Goutam Sha, 'Digital Principles and Applications', raw Hill, 7 th Edition, 2010. EL Video Lecture Notes on "Digital Circuits and Systems" by Prof. S. Srinivasan, IIT as. utcomes (CO) npletion of the Course, the students will be able to explain various number systems and Apply K-maps and Quine McCluskey methinplify the given Boolean expressions explain the implementation of combinational circuit such as multiplexers and nultiplexers - code converters, adders, subtractors, Encoders and Decoders	2005. ation Tata
1. Morr 2. Dona Reference 1. Thom 2. Tocc Asia, 3. Dona McG 4. NPT Madn Course Oupon con CO1 Est CO2 En CO3 I	is Mano.M, 'Digital Logic and Computer Design', Prentice Hall of India, 3rdEdition, Id D. Givone, 'Digital Principles and Design', Tata McGraw Hill,1st Edition, 2003 es: nas L Floyd, 'Digital fundamentals', Pearson Education Limited, 11 th Edition, 2018 i R.J., Neal S. Widmer, 'Digital Systems: Principles and Applications', Pearson Educ 12 th Edition, 2017. Idd P Leach, Albert Paul Malvino, Goutam Sha, 'Digital Principles and Applications', raw Hill, 7 th Edition, 2010. EL Video Lecture Notes on "Digital Circuits and Systems" by Prof. S. Srinivasan, IIT as. Putcomes (CO) Inpletion of the Course, the students will be able to Explain various number systems and Apply K-maps and Quine McCluskey metrimplify the given Boolean expressions explain the implementation of combinational circuit such as multiplexers as	ation Tata

Course Outcomes					Pro	gram	Out	comes	6				Program Specific Outcomes		
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	3	2	2	1	1	1	1	2	2	3	1
CO2	3	3	3	3	3	2	2	1	1	1	1	2	2	3	1
CO3	3	3	3	3	3	2	2	1	1	1	1	2	2	3	1
CO4	3	3	3	3	3	2	2	1	1	1	1	2	2	3	1
CO5	3	3	3	3	3	3	2	1	1	1	1	2	2	3	1

PRACTICALS

EE4311	ELECTRICAL AND ELECTRONIC CIRCUITS LABORATORY	L	T	P	C
		0	0	4	2

Objectives

- To gain practical experience on verification of theorems in an electric circuit.
- To simulate various electric circuits using MATLAB for verification of theorems.
- To simulate frequency response of RLC electric circuit.
- To understand the operation and application of rectifier circuits.
- To construct application circuits like amplifiers and oscillators.

LIST OF EXPERIMENTS

- 1. Simulation and experimental verification of electrical circuit problems using Thevenin's theorem.
- 2. Simulation and experimental verification of electrical circuit problems using Norton's theorem.
- 3. Simulation and experimental verification of electrical circuit problems using Superposition theorem.
- 4. Simulation and experimental verification of Maximum Power transfer Theorem.
- 5. Simulation and Experimental validation of frequency response of RLC electric circuit.
- 6. Characteristics of Single phase half wave and full wave rectifiers with inductive and capacitive filters.
- 7. Frequency response of CE Amplifier.
- 8. Design of Oscillator RC and LC oscillators.
- 9. Design of Differential amplifiers using FET
- 10. Measurement of frequency and phase angle using CRO.

Total Periods: 60

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

- 1. Regulated Power Supply: 0 15 V D.C 8 Nos / Distributed Power Source.
- 2. Function Generator (1 MHz) 8 Nos.
- 3. Oscilloscope (20 MHz) 8 Nos.
- 4. Digital Storage Oscilloscope (20 MHz) 1 No.
- 5. 10 Nos. of PC with Circuit Simulation Software (min 10 Users) (e-Sim /Scilab/ Pspice / MATLAB /other Equivalent software Package) and Printer (1 No.)
- 6. AC/DC Voltmeters (10 Nos.), Ammeters (10 Nos.) and Multi-meters (10 Nos.)
- 7. Decade Resistance Box, Decade Inductance Box, Decade Capacitance Box 3 Nos each.
- 8. Circuit Connection Boards 10 Nos. Necessary Quantities of Resistors, Inductors, Capacitors of various capacities (Quarter Watt to 10 Watt)

Course Outcomes (CO)

Upon completion of the course, students will be

_	1 /
CO1	Able to identify network theorems and their application to network reduction techniques.
CO2	Able to simulate electric circuits by applying network theorems using MATLAB.
CO3	Able to measure frequency and phase angle using CRO.
CO4	Able to understand the operation and application of rectifier circuits.
CO5	Able to understand the operation of amplifier, oscillator and differential amplifier.

Course	Program Outcomes	Program Specific
Outcomes	Program Outcomes	Outcomes

	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	2	2	2	1	1	1	1	3	1	1	1	1	3	2	1
CO2	3	2	2	1	1	1	1	3	1	2	1	2	3	2	1
CO3	2	2	1	1	1	1	1	3	1	1	1	2	3	2	1
CO4	2	1	2	2	1	1	1	3	1	1	1	2	3	2	1
CO5	2	2	2	1	1	1	1	3	1	1	1	2	3	2	1

EE4312	ELECTRICAL MACHINES LABORATORY - I	L	T	P	C
		0	0	4	2

- To expose the students to determine the characteristics of DC machines and transformers by performing experiments on these machines.
- To provide hands on experience to evaluate the performance parameters of DC machines and transformer by conducting suitable tests

LIST OF EXPERIMENTS

- 1. Open circuit and load characteristics of DC shunt generator- calculation of critical resistance and critical speed.
- 2. Load characteristics of DC compound generator with differential and cumulative connections.
- 3. Load test on DC shunt motor.
- 4. Load test on DC compound motor.
- 5. Load test on DC series motor.
- 6. Swinburne's test and speed control of DC shunt motor.
- 7. Hopkinson's test on DC motor generator set.
- 8. Load test on single-phase transformer and three phase transformers.
- 9. Open circuit and short circuit tests on single phase transformer.
- 10. Sumpner's test on single phase transformers.
- 11. Separation of no-load losses in single phase transformer.
- 12. Study of starters and 3-phase transformers connections.

Total Periods: 60

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

- 1. DC Shunt Motor with Loading Arrangement 3 nos
- 2. DC Shunt Motor Coupled with Three phase Alternator 1 No.
- 3. Single Phase Transformer 4 nos
- 4. DC Series Motor with Loading Arrangement − 1 No.
- 5. DC compound Motor with Loading Arrangement − 1 No.
- 6. DC Shunt Motor Coupled With DC Compound Generator 2 nos
- 7. DC Shunt Motor Coupled With DC Shunt Motor 1 No.
- 8. Tachometer -Digital/Analog 8 nos
- 9. Single Phase Auto Transformer 2 nos
- 10. Three Phase Auto Transformer − 1 No.
- 11. Single Phase Resistive Loading Bank 2 nos
- 12. Three Phase Resistive Loading Bank -2 Nos.

Course Outcomes (CO)

Upon c	Upon completion of the course, students will be able to								
CO1	Understand the procedure to conduct direct test on DC machines and able to find its								
COI	performance characteristics.								
CO2	Understand the procedure to conduct indirect test on DC machines and able to find its								
	performance characteristics.								
CO3	Understand the procedure to conduct direct test on transformer and to find its performance								
CO3	characteristics.								
CO4	Understand the procedure to conduct indirect test on transformer and able to find its								
CO4	performance characteristics.								
CO5	Understand the procedure to conduct speed control of a DC motor and able to find its								
CO3	performance characteristics.								

Course Outcomes		Program Outcomes											S	rogra pecif utcon	ic
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	2	2	1	1	1	1	1	3	1	1	1	1	3	2	1
CO2	3	2	1	1	1	1	1	3	1	2	1	2	3	2	1
CO3	2	2	1	1	1	1	1	3	1	1	1	2	3	2	1
CO4	2	1	1	1	1	1	1	3	1	1	1	2	3	2	1
CO5	2	2	1	1	1	1	1	3	1	1	1	2	3	2	1

EE4313	LINEAR AND DIGITAL CIRCUITS LABORATORY	L	T	P	C
		0	0	4	2

- To learn design, testing and characterizing of circuit behavior with combinational logic gate ICs.
- To learn design, testing and characterizing of circuit behavior with register/ counter and sequential logic ICs.
- To learn design, testing and characterizing of circuit behavior with OP AMP ICs.
- To learn design, testing and characterizing of circuit behavior with analog Ics like 555 timer VCO and regulators.
- To learn design, testing and characterizing of circuit behavior with digital Ics like decoders, multiplexers.

LIST OF EXPERIMENTS

- 1. Implementation of Boolean Functions, Adder/ Subtractor circuits.
- 2. Code converters: Excess-3 to BCD and Binary to Gray code converter and vice-versa
- 3. Encoders and Decoders
- 4. Counters: Design and implementation of 3-bit modulo counters as synchronous and Asynchronous types using FF IC's and specific counter IC.
- 5. Shift Registers: Design and implementation of 4-bit shift registers in SISO, SIPO, PISO, PIPO modes using suitable IC's
- 6. Implementation of multiplexer and demultiplexer.
- 7. Applications of Op-Amp: Inverting, non-inverting amplifier.
- 8. IC 555 Timer applications Astable and Monostable operation.
- 9. Design of Linear Voltage regulator.

10. Design of Integrator, Differentiator, Clipper and Clamper.	
Total Periods:	60

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1. Dual (0-30V) variability Power Supply- 10 Nos
- 2. CRO-10 Nos-30MHz
- 3. Function Generator 10 Nos- 1 MHz
- 4. Digital Multimeter -10 Nos
- 5. IC Tester (Analog)- 2 Nos
- 6. Bread board 10 Nos
- 7. Digital Trainer Kit

Consumables Sufficient Quantity

- 1. IC 741/ IC NE555
- 2. Digital IC types
- 3. LM317
- 4. Diodes IN4001, BY126
- 5. DIB, DCB
- 6. Capacitor
- 7. Resistors 1/4 Watt Assorted
- 8. Single Strand Wire
- 9. Potentiometer 10K
- 10. Step Down Transformer 230V to 12V

Course Outcomes (CO)

At the	e end of the course, the student should have the:
CO1	Ability to understand and implement Boolean Functions.
CO2	Ability to understand the importance of code conversion.
CO3	Ability to Design and implement circuits with digital ICs like decoders, multiplexers, register.
CO4	Ability to acquire knowledge on Application of Op-Amp.
CO5	Ability to Design and implement counters using analog ICs like timers, VCOs and digital ICs
	like Flip-flops and counters.

Course		Program Outcomes a b c d e f g h i j k l										Program Specific Outcomes				
Outcomes	a											1	2	3		
CO1	-	-	-	3	-	-	-	-	-	-	3	-	2	1	1	
CO2	-	-	3	3	-	-	-	-	-	-	3	-	2	1	1	
CO3	-	3	2	3	3	-	-	-	1	-	3	1	2	1	1	
CO4	-	3	3	3	3	-	-	-	1	-	3	1	2	1	1	
CO5	-	-	-	1	-	-	-	-	1	-	-	1	-	_	-	

SEMESTER – IV

MA4401	PROBABILITY AND STATISTICS L	P	T	C
	3	1	0	4
Objectives				
This coprobleTo intr	ourse aims at providing the required skill to apply the statistical tools in engings. Foduce the basic concepts of probability and random variables. Foduce the basic concepts of two dimensional random variables.	neer	ing	
• To pro engine	vide necessary basic concepts of probability and random processes for appli		ns ir	1
TO IIII	oddee the basic concepts and important roles in the statistical quanty contro	1.		
UNIT – I	PROBABILITY AND RANDOM VARIABLES		9-	+3
	continuous random variables – Moments – Moment generating functionsson, Geometric, Uniform, Exponential and Normal distributions.	ıs –	CO)1
UNIT – II	TWO - DIMENSIONAL RANDOM VARIABLES		9-	+3
Joint distribut	ions – Marginal and conditional distributions – Covariance – Correlation on – Transformation of random variables.	and	CO	
IINIT III	RANDOM PROCESSES		0	+3
Classification	 Stationary process – Markov process – Poisson process – Discrete param Chapman Kolmogorov equations (Statement only) – Limiting distribution 		C	
UNIT – IV	NON-PARAMETRIC TESTS		Q.	+3
Introduction –	The Sign test – The Signed – Rank test – Rank – sum tests – The U test – based on Runs – Test of randomness – The Kolmogorov Test.	The	CO	
UNIT – V	STATISTICAL QUALITY CONTROL		9.	+3
Control charts	for measurements (X and R charts) – Control charts for attributes (p, c and rance limits - Acceptance sampling.	d np	CO	
Total Periods	•		60	
Total I crious	<u>·</u>		00	
Engine 2. Milton 4th Ed 3. Ibe, O.	on, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics", Pearson Education, Asia, 8th Edition, 2015. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata Moition, 2007. C., "Fundamentals of Applied Probability and Random Processes", Elsevier t, 2007	Grav	v Hi	
Reference Bo	oks:			
1. Devore.	J.L., "Probability and Statistics for Engineering and the Sciences", Cengagoni, 8th Edition, 2014.	e Lea	arnin	ıg,
2. Hsu, "So	Processes", Tata McGraw Hill Edition, New Delhi, 2004.	riable	es a	nd

- Stochastic Processes", McGraw Hill Education India, 4th Edition, New Delhi, 2010.
- 4. Ross, S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 3rd Edition, Elsevier, 2004.
- 5. Spiegel. M.R., Schiller. J. and Srinivasan, R.A., "Schaum's Outline of Theory and Problems of Probability and Statistics", Tata McGraw Hill Edition, 2004.
- 6. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", Pearson Education, Asia, 8th Edition, 2007.

Course Outcomes (CO) Upon completion of the course, students will be able to CO1 Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon. CO2 Understand the basic concepts of one and two dimensional random variables and apply in engineering applications. CO3 Apply the concept of random processes in engineering disciplines CO4 Apply the basic concepts of statistical quality control. CO5 Have the notion of sampling distributions and statistical techniques used in engineering and management problems.

Course		Program Outcomes									Program Specific Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	-	-	-	-	-	2	3	ı	1	3	1	1
CO2	3	2	2	-	_	-	-	-	1	2	-	1	3	2	1
CO3	3	3	3	-	-	-	-	-	2	2	ı	1	3	2	2
CO4	3	2	2	-	-	-	-	-	2	1	1	2	2	2	1
CO5	3	3	2	-	-	-	-	-	2	2	ı	2	3	1	2

EE4401	ELECTRICAL MACHINES - II	L	T	P	C
		2	1	0	3

Objectives

To impart knowledge on the following topics

- Construction and performance of salient and non–salient type synchronous generators.
- Principle of operation and performance of synchronous motor.
- Construction, principle of operation and performance of induction machines.
- Starting and speed control of three-phase induction motors.
- Construction, principle of operation and Performance of single phase induction motors and special machines.

UNIT – I	SYNCHRONOUS GENERATOR	9
	etails: Types of rotors - winding factors - EMF equation - Synchronous	~ ~ 1
reactance-Armat	ure reaction - Phasor diagrams of non-salient pole synchronous generator	CO1
connected to inf	inite bus. Synchronizing and parallel operation – Synchronizing torque -	

Change of excitation and mechanical input. Voltage regulation: EMF, MMF, ZPF and A.S.A methods. Steady state power - angle characteristics. Two reaction theory - slip test- short circuit transients - Capability Curves	
UNIT – II SYNCHRONOUS MOTOR	9
Principle of operation - Torque equation - Operation on infinite bus bars - V and Inverted V curves - Power input and power developed equations - Starting methods - Current loci for constant power input, constant excitation and constant power developed. Hunting — natural frequency of oscillations—damper windings. Synchronous condenser.	CO2
UNIT – III THREE PHASE INDUCTION MOTOR	9
Constructional details: Types of rotors-Principle of operation - Slip—cogging and crawling - Equivalent circuit - Torque-Slip characteristics - Condition for maximum torque. Losses and efficiency. Load test - No load and blocked rotor tests - Circle diagram —Separation of losses. Double cage induction motors. Induction generators. Synchronous induction motor.	CO3
UNIT – IV STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION MOTOR	9
Need for starting - Types of starters: DOL, Rotor resistance, Autotransformer and Star-delta starters - Speed control - Voltage control, Frequency control and pole changing—Cascaded connection - V/f control — Slip power recovery scheme. Braking of three phase induction motor: Plugging, dynamic braking and regenerative braking.	COA
UNIT – V SINGLE PHASE INDUCTION MOTORS	9
Constructional details of single phase induction motor - Double field revolving theory and operation - Equivalent circuit - No load and blocked rotor test - Performance analysis. Starting methods of single-phase induction motors: Capacitor-start capacitor run Induction motor - Shaded pole induction motor.	COS
Total Periods:	45
Text Books: 1. Fitzgerald. A.E., Charles KingselyJr, Stephen D.Umans, 'Electric Machinery', Sixth McGraw Hill Books Company, 2003. 2. Nagrath, I.J. and Kothari.D.P., Electric Machines', McGraw-Hill Education, 2004	edition
 Stephen J. Chapman, 'Electric Machinery Fundamentals'4th edition, McGraw Hill Ed Pvt. Ltd, 2010. B.L.Theraja and A.K.Theraja, 'A Textbook of Electrical Technology Vol II AC a Machines. B.R. Gupta, 'Fundamental of Electric Machines' New Age International Publishers,3rdl Reprint 2015. S.K. Bhattacharya, 'Electrical Machines' McGraw - Hill Education, New Delhi, 3rd I 2009 Bimbhra P S, "Electrical Machinery", Khanna Publishers, New Delhi, 2011 NPTEL Video Lecture Notes on "Electrical Machines" by Prof. Tapas Kumar Bhattacha Kharagpur. 	nd DC Edition Edition
Course Outcomes (CO) Upon completion of the course, students will be able to CO1 Draw the constructional details and explain the performance of salient and non – salient	ent type

	synchronous generators.
CO2	Draw and explain the Principle of operation and performance of synchronous motor.
CO3	Draw and describe the construction, principle of operation and performance of three phase
	induction machines.
CO4	Describe the starting and speed control of three-phase induction motors.
CO5	Explain the construction, principle of operation and performance of single phase induction
	motors and special machines.

Course Outcomes		Program Outcomes												Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	2	2	1	1	1	1	1	1	1	2	1	1	3	2	2		
CO2	3	2	1	1	1	1	1	1	1	2	1	2	3	2	2		
CO3	2	2	1	1	1	1	1	1	1	1	1	2	3	2	2		
CO4	2	1	1	1	1	1	1	1	1	1	1	2	3	2	2		
CO5	2	2	1	1	1	1	1	1	1	1	1	2	3	2	2		

EE4402	CONTROL SYSTEMS	L	T	P	C
		2	1	0	3

- To understand the use of transfer function models for analysis physical systems and introduce the control system components.
- To provide adequate knowledge in the time response of systems and steady state error analysis.
- To accord basic knowledge in obtaining the open loop and closed–loop frequency responses of systems.
- To introduce stability analysis and design of compensators
- To introduce state variable representation of physical systems

10 1110	rouse state variable representation of physical systems					
UNIT – I	SYSTEMS AND REPRESENTATION	9				
Basic elements in control systems: Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs.						
UNIT – II	TIME RESPONSE	9				
response – E	se: Time domain specifications – Types of test input – I and II order system rror coefficients – Generalized error series – Steady state error – Root locus Effects of P, PI, PID modes of feedback control –Time response analysis.	CO2				
UNIT – III	FREQUENCY RESPONSE	9				
	sponse: Bode plot – Polar plot – Determination of closed loop response from ponse - Correlation between frequency domain and time domain specifications	CO3				
UNIT – IV	STABILITY AND COMPENSATOR DESIGN	9				
	es equation – Routh Hurwitz criterion – Nyquist stability criterion - Performance ect of Lag, lead and lag-lead compensation on frequency response - Design of	CO4				

Lag, lead and	lag- lead compensator using bode plots.	
UNIT – V	STATE VARIABLE ANALYSIS	9
-	ate variables – State models for linear and time invariant systems – Solution of put equation in controllable canonical form – Concepts of controllability and	
Total Period	s:	45
Text Books:		
•	ath, I.J. and Gopal, M., "Control Systems Engineering", New Age Intern	ationa

- Publishers, 2017.
- 2. Katsuhiko Ogata, "Modern Control Engineering", Pearson, 2015.

References:

- 1. Richard C. Dorf and Bishop, R.H., "Modern Control Systems", Pearson Education, 2009.
- 2. John J.D., Azzo Constantine, H. and Houpis Sttuart, N Sheldon, "Linear Control System Analysis and Design with MATLAB", CRC Taylor& Francis Reprint2009.
- 3. Benjamin C. Kuo, "Automatic Control Systems", Wiley, 2014.
- 4. M.Gopal, "Control System: Principle and design", McGraw Hill Education, 2012.
- 5. NPTEL Video Lecture Notes on "Control Engineering "by Prof. S. D. Agashe, IIT Bombay.

Course Outcomes (CO) Upon completion of the course, students should have the CO₁ Ability to develop various representations of system and to reduce the complex systems into simpler system in transfer function. CO2 Ability to do time domain analysis of various models of linear system and understand the use of controllers in closed loop system CO₃ Ability to do frequency domain analysis of various models of linear system CO4 Infer the stability of systems and ability to design appropriate compensator for the given specifications CO₅ Ability to represent the system in state variable forms.

Course Outcomes		Program Outcomes											Program Specific Outcomes		
Outcomes	a b c d e f g h i j k l									1	2	3			
CO1	3	3	3	3	3	2	2	1	2	2	3	2	3	3	1
CO2	3	3	3	3	3	2	2	1	2	2	3	2	3	3	1
CO3	3	3	3	3	3	2	2	1	2	2	3	2	3	3	1
CO4	3	3	3	3	3	2	2	1	2	2	3	2	3	3	1
CO5	3	3	3	3	3	2	2	1	2	2	3	2	3	3	1

EE4403	MEASUREMENTS AND INSTRUMENTATION	L	T	P	C
		3	0	0	3

OBJECTIVES

- To educate the fundamental concepts and characteristics of measurement and errors.
- To impart the knowledge on the functional aspects of measuring instruments.

- To infer the importance of various bridge circuits used with measuring instruments.
- To educate the fundamental working of sensors and transducers and their applications.
- To impart the knowledge on fundamentals of digital instrumentation.

	<u> </u>	
UNIT - I	CONCEPTS OF MEASUREMENTS	9
Instruments: cla	ssification, applications - Elements of a generalized measurement system -	
Static and dyn	amic characteristics - Errors in measurement -Statistical evaluation of	CO1
measurement da	ta - Instrument standards.	
UNIT - II	MEASUREMENT OF PARAMETERS IN ELECTRICAL SYSTEMS	9
Classification o	f instruments - moving coil and moving iron meters - Induction type,	
dynamometer ty	pe watt meters - Energy meter - Megger - Instrument transformers (CT &	CO2
PT) – Frequency	Meter (Resonance Type)	
UNIT - III	AC/DC BRIDGES AND INSTRUMENTATION AMPLIFIERS	9
Wheatstone brid	ge, Kelvin double bridge - Maxwell, Hay, Wien and Schering bridges - Errors	CO3
and compensation	on in A.C. bridges - Instrumentation Amplifiers.	COS
UNIT - IV	TRANSDUCERS FOR MEASUREMENT OF NON - ELECTRICA	L 9
	PARAMETERS	
Classification of	f transducers - Measurement of pressure, temperature, displacement, flow,	COA
angular velocity	 Digital transducers – Smart Sensors. 	CO4
UNIT - V	DIGITAL INSTRUMENTATION	9
A/D converters:	types and characteristics - Digital multimeter - Digital Frequency - D/A	CO5
converters: types	s and characteristics- DSO- Data Loggers	003
Total Periods:		45

Text Books:

- 1. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2015.
- 2. Doebelin E.O. and Manik D.N., Measurement Systems Applications and Design, Special Indian Edition, McGraw Hill Education Pvt. Ltd., Reprint 2019.

References:

- 1. H.S. Kalsi, 'Electronic Instrumentation', McGraw Hill, III Edition 2017.
- 2. D.V.S. Murthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2015.
- 3. David Bell, 'Electronic Instrumentation & Measurements', Oxford University Press, 2013.
- 4. J. B. Gupta, 'A Course in Electronic and Electrical Measurements', S. K. Kataria& Sons, Delhi, 2013.
- 5. NPTEL Video Lecture Notes on "Electrical Measurement and Electronic Instruments" by Prof. Avishek Chatterjee, IIT Kharagpur.

Course Outcomes (CO) Upon completion of the course, students will be able to CO1 Acquire knowledge about measurement and basic functional elements of instrumentation. CO2 Understand the concepts of fundamentals of electrical and electronic measuring instruments. CO3 Understand the concept of measurement by comparison or balance of parameters. CO4 Acquire knowledge on various storage and display devices to represent measured data. CO5 Understand the concepts various transducers and the data acquisition systems.

Course					Prog	gram	Outo	omes					Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	2	2	3	3	2	1	1	1	1	1	1	1	2	2	1	
CO2	2	2	3	3	2	1	2	1	1	1	1	1	2	2	2	

CO3	2	2	2	3	2	1	2	1	1	1	1	1	2	2	2
CO4	2	2	2	3	2	1	1	1	1	1	1	1	2	2	2
CO5	2	2	2	3	2	1	1	1	1	1	1	1	2	2	2

EE4404	MICROPROCESSORS AND MICROCONTROLLERS	L	T	P	C
		3	0	0	3

- To study the addressing modes & instruction set of 8085.
- To develop skills in simple program writing in assembly languages
- To introduce commonly used peripheral/interfacing ICs.
- To study and understand typical applications of micro-processors.
- To study and understand the typical applications of micro-controllers.

UNIT - I	INTRODUCTION TO 8085 ARCHITECTURE	9
Functional block	diagram – Memory interfacing–I/O ports and data transfer concepts – Timing	CO1
Diagram – Interi	upt structure	COI

UNIT - II 8085 INSTRUCTION SET AND PROGRAMMING 9 Instruction format and addressing modes – Assembly language format – Data transfer, data manipulation & control instructions – Programming: Loop structure with counting & Indexing CO2 - Look up table - Subroutine instructions, stack.

UNIT - IIIINTERFACING BASICS AND ICS9Study of Architecture and programming of ICs: 8255 PPI, 8259PIC, 8251USART, 8279Keyboard display controller and 8254 Timer/Counter – Interfacing with 8085 -A/D and D/A converter interfacing.CO3

UNIT - IV	INTRODUC	CTION TO ARM PRO	CESSOR		9
Architecture – A	RM program	mer's model -ARM De	evelopment tools- Memor	y Hierarchy –	
ARM Assembl	y Language	Programming-Simple	Examples-Architectural	Support for	CO4
Operating system	ıs.				

UNIT - V INTRODUCTION TO RISC BASED	E 9)						
PIC 16/18 architecture, Memory organization – Ad	Instruction set -	CO5						
Programming techniques – Timers – I/O ports – Interrupts.								

	45
--	----

Text Books:

- 1. Ramesh S. Gaonkar, 'Microprocessor Architecture Programming and Application', Penram International (P) ltd., Mumbai, 6th Education, 2013
- 2. Muhammad Ali Mazidi & Janice Gilli Mazidi, 'The PIC Micro Controller and Embedded Systems', 2010
- 3. Furber, S., "ARM System on Chip Architecture" Addison Wesley trade Computer Publication, 2000.

References:

1. Krishna Kant, "Microprocessor and Microcontrollers", Eastern Company Edition, Prentice Hall of India, New Delhi, 2nd edition, 2013.

- 2. Soumitra Kumar Mandal, Microprocessor & Microcontroller Architecture, Programming & Interfacing using 8085,8086,8051,McGraw Hill Edu,2013.
- 3. Douglas V. Hall, 'Microprocessor and Interfacing', McGraw Hill Edu, 2016.
- 4. NPTEL Video Lecture Notes on "Microprocessors and Microcontrollers "by Prof. Santanu Chattopadhyay, IIT Kharagpur

Course Outcomes (CO)

Upon completion of the course, students should have the

- CO1 Ability to explain the architecture of Microprocessor, Ability to need & use of Interrupt structure 8085
- CO2 Ability to acquire knowledge in Addressing modes & instruction set of 8085, Ability to write the assembly language program.
- CO3 Ability to understand the importance of Interfacing
- CO4 Ability to explain the architecture of ARM processor.
- CO5 Ability to understand and appreciate advanced architecture evolving microprocessor field

Course		Program Outcomes													pecific nes
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	2	2	1	1	1	1	2	1	1	1	1	3	2	1
CO2	3	3	2	1	3	3	1	2	1	1	3	1	3	3	1
CO3	3	2	2	1	1	1	1	2	1	1	1	1	3	3	1
CO4	3	2	2	1	1	2	1	2	1	1	1	1	3	3	1
CO5	3	3	3	3	3	3	1	2	1	1	3	1	3	2	1

EE4405	GENERATION, TRANSMISSION AND DISTRIBUTION	L	T	P	C
		3	0	0	3

Objectives

- To impart knowledge about the different energy sources of power and Generation
- To study the line parameters and interference with neighbouring circuits
- To analyze and model different components of power system
- To learn different insulators and underground cables
- To compute sag and conductor length for different weather conditions.
- To study the distribution systems and grounding

UNIT - I	ELECTRICAL POWER GENERATION	9					
Conventional ar	nd nonconventional energy sources – comparison - Generation of electrical	CO1					
energy - Selection of sight - hydroelectric - thermal and nuclear power plants - Detailed							
layout - explanation and comparison of hydro electric ,thermal and nuclear power plants							
UNIT - II TRANSMISSION LINE PARAMETERS							
Structure of electric power system - Parameters of single and three phase transmission lines with single and double circuits -Resistance, inductance, and capacitance of solid, stranded, and bundled conductors - Typical configuration, conductor types - Symmetrical and unsymmetrical spacing and transposition – application of self and mutual GMD; skin and proximity effects - Effects of earth on the capacitance of the transmission line							
LINUTE THE MODEL LING AND DEDECORMANICE OF TO ANOMICCION LINES.							

UNIT - III	NIT - III MODELLING AND PERFORMANCE OF TRANSMISSION LINES								
Performance of	Transmission lines – short line, medium line and long line – equivalent	CO ₃							

transmission efficiency and voltage regulation, real and reactive power flow in lines –								
Ferranti effect – Formation of Corona – Critical Voltages								
UNIT - IV MECHANICAL DESIGN OF OH LINES, UNDER GROUND CABLES								
Mechanical des	gn of overhead lines - Line Supports - Tension and Sag Calculation -							
Insulators: Types, voltage distribution in insulator string - Underground cables - Types of								
cables – Construction of single core cable – Insulation Resistance – Capacitance – Dielectric								
stress of Single-core cable – Grading of cables(Qualitative treatment only).								

circuits, phasor diagram, attenuation constant, phase constant, surge impedance -

UNIT - V	DISTRIBUTION SYSTEMS								
Concentrated and	tems – General Aspects – Kelvin's Law – AC and DC distributions – d Distributed loading - Methods of grounding -Techniques of Voltage er factor improvement	CO5							

Text Books:

- 1. D.P.Kothari, I.J. Nagarath, 'Power System Engineering', McGraw-Hill Publishing Company limited, New Delhi, Third Edition, 2019.
- 2. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, Second Edition, 2008.

References:

- 1. B.R.Gupta, 'Power System Analysis and Design' S. Chand, New Delhi, Sixth Edition, 2011.
- 2. Luces M.Fualken berry, Walter Coffer, 'Electrical Power Distribution and Transmission', Pearson Education, 2007.
- 3. Arun Ingole, "Power transmission and distribution" Pearson Education, first edition, 2018
- 4. C.L. Wadhwa, 'Electrical Power Systems', New Academic Science Ltd, seventh edition 2018.
- 5. V.K.Mehta, Rohit Mehta, 'Principles of power system', S. Chand & Company Ltd, New Delhi, 2013
- 6. NPTEL Video Lecture Notes on "Power System Generation, Transmission and Distribution" by Prof. D.P. Kothari, IIT Delhi.

Course Outcomes (CO)

Upon completion of the course, students will be able to

CO1	Explore the different types of energy sources and its generation layout									
CO2	Understand the structure of electric power system and to solve the expressions for									
	transmission line parameters.									
CO3	Obtain the equivalent circuit based on distance and operating voltage for determining voltage regulation and efficiency and also to know the methods of improvement of voltage profile along with real and reactive power flow in transmission lines with the help of power circle diagrams.									
CO4	Develop the mechanical design of transmission lines with sag and tension calculation for different weather conditions. Know the types of insulator and cables and to analyze the voltage distribution and grading of cables.									
CO5	Explore about distribution systems. Grounding									

Course	Program Outcomes												Program Specific Outcomes		
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	2	2	1	1	1	1	1	1	1	1	1	3	1	2

CO2	3	2	2	2	1	1	1	1	1	1	1	1	3	1	2
CO3	3	2	3	2	1	1	1	1	1	1	1	1	3	1	2
CO4	3	2	3	2	1	1	1	1	1	1	1	1	3	1	2
CO5	3	2	3	2	1	1	1	1	2	2	1	1	3	1	3

PRACTICALS

EE4411	ELECTRICAL MACHINES LABORATORY - II	L	T	P	C
		0	0	4	2

Objectives

• To expose the students to the operation of synchronous machines and induction motors and give them experimental skill.

LIST OF EXPERIMENTS

- 1. Regulation of three phase alternator by EMF and MMF methods.
- 2. Regulation of three phase alternator by ZPF and ASA methods.
- 3. Regulation of three phase salient pole alternator by slip test.
- 4. Measurements of negative sequence and zero sequence impedance of alternators.
- 5. V and Inverted V curves of Three Phase Synchronous Motor.
- 6. Load test on three-phase induction motor.
- 7. No load and blocked rotor tests on three-phase induction motor (Determination of equivalent circuit parameters).
- 8. Separation of No-load losses of three-phase induction motor.
- 9. Load test on single-phase induction motor.
- 10. No load and blocked rotor test on single-phase induction motor.
- 11. Study of Induction Motor Starters

Total Periods: 60

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

- 1. Synchronous motor 3HP 1 No.
- 2. DC Shunt motor Coupled with Three phase Alternator 4 Nos.
- 3. DC Shunt motor Coupled with Three phase Slip Ring Induction motor 1 No.
- 4. Three phase Induction motor with Loading arrangement -2 Nos.
- 5. Single phase Induction motor with Loading arrangement -2 Nos.
- 6. Tachometer Digital/Analog 8 Nos.
- 7. Single Phase Auto Transformer 2 Nos.
- 8. Three Phase Auto Transformer 2 Nos.
- 9. Single Phase Resistive Loading bank 2 Nos.
- 10. Three Phase Resistive Loading bank 2 Nos.
- 11. Capacitor Bank 1 No.

Course Outcomes (CO)

Upon completion of the course, students will be able to

- CO1 Understand the procedure to conduct EMF, MMF, ZPF and ASA test on AC generator and able to find its performance characteristics.
- CO2 Understand the procedure to conduct direct test on AC generator and able to find its performance characteristics.
- CO3 Understand the procedure to conduct direct test on induction machines and able to find its performance characteristics.
- CO4 Understand the procedure to conduct indirect test on induction machines and able to find its performance characteristics.
- CO5 Understand the procedure to conduct no load test on synchronous motor and able to plot its excitation characteristics.

Course	Program Outcomes	Program	l
Outcomes	110gram Outcomes	Specific	

													0	nes		
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	2	2	1	1	1	1	1	3	1	1	1	1	3	2	1	
CO2	3	2	1	1	1	1	1	3	1	2	1	2	3	2	1	
CO3	2	2	1	1	1	1	1	3	1	1	1	2	3	2	1	
CO4	2	1	1	1	1	1	1	3	1	1	1	2	3	2	1	
CO5	2	2	1	1	1	1	1	3	1	1	1	2	3	2	1	

EE4412	MICROPROCESSORS AND MICROCONTROLLERS LABORATORY	L	Т	P	С
		0	0	4	2

- To perform simple arithmetic operations using assembly language program and study the addressing modes & instruction set of 8085
- To develop skills in simple program writing in assembly languages
- To write an assembly language program to convert Analog input to Digital output and Digital input to Analog output.
- To perform interfacing experiments with µP8085

LIST OF EXPERIMENTS

PROGRAMMING EXERCISES / EXPERIMENTS WITH µP8085:

- 1. Simple arithmetic operations: addition / subtraction / multiplication / division.
- 2. Programming with control instructions:
 - (i) Ascending / Descending order, Maximum / Minimum of numbers
 - (ii) Programs using Rotate instructions
 - (iii) Hex / ASCII / BCD code conversions.
- 3. Interfacing using A/D converter
- 4. Interfacing using D/A converter
- 5. Traffic light controller.
- 6. I/O Port / Serial communication
- 7. Programming Practices with Simulators/Emulators/open source
- 8. Read a key, interface display
- 9. Application hardware development with processors
- 10. Study of ARM processor.

Total Periods: 60

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S.No	Description of Equipment	Quantity required
1	8085 Microprocessor Trainer with Power Supply	15
2	8251 Interface boards	5
3	8279 Keyboard / Display Interface boards	5
4	ADC and DAC cards	5
5	Traffic Light Control Systems	5

Course Outcomes (CO)

Upon completion of the course, students should have the

CO1 Ability to perform basic programming using 8085

CO2	Ability to perform interfacing of various peripheral ICs using 8085
CO3	Ability to program basic interfacing applications.
CO4	Ability to use basic Simulators/Emulators/open source related to 8085.
CO5	Ability to design and develop a simple application using ARM processor.

Course		Program Outcomes													Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	3	2	1	1	1	1	1	1	1	1	1	3	2	2	1			
CO2	3	2	2	2	2	2	2	1	1	1	1	3	2	3	1			
CO3	3	2	3	2	2	1	2	1	1	1	1	3	2	3	1			
CO4	3	2	2	2	3	2	1	1	1	1	1	3	2	3	1			
CO5	3	2	3	3	3	3	3	3	3	3	3	3	3	3	1			

HS4310	PROFESSIONAL SKILLS LAB	L	T	P	C
		0	0	2	1

- Enhance the employability and career skills of students
- Orient the students towards grooming as a professional
- Make them employable graduates
- Develop their confidence and help them attend interviews successfully

LIST OF EXPERIMENTS

UNIT 1

Introduction to soft skills-Hard skills & Soft skills-employability and career skills-grooming as a professional with values-making an oral presentation-planning and preparing a model presentation — organizing the presentation to suit the audience and context; connecting with the audience with the presentation; projecting a positive image while speaking; emphasis on effective body language — general awareness of current affairs.

UNIT 2

Self-Introduction – organizing the material – introducing oneself to the audience introducing the topic answering questions individual presentation practice – making a power point presentation – structure and format; covering elements of an effective presentation; body language dynamics—making an oral presentation-planning and preparing a model presentation – organizing the presentation to suit the audience and context; connecting with the audience with the presentation; projecting a positive image while speaking;emphasis on effective body language

UNIT 3

Introduction to group discussion – participating in group discussions – understanding group dynamics – brain storming the topic – questioning and clarifying – GD strategies – structure and dynamics of a GD; techniques of effective presentation in group discussion; preparing for group discussion;

accepting others views /ideas; arguing against others views or ideas etc.

UNIT 4

Basics of public speaking; preparing for a speech; features of a good speech; speaking with a microphone. (Famous speeches maybe played as model speeches for learning the art of public speaking). Interview etiquette-dress code-body language-attending interviews-telephone/skype interview-one to one & a panel interview job interviews purpose and process; how to prepare for an interview; language and style to be used in an interview types of interview questions and how to answer them.

UNIT 5

Recognizing differences between groups and teams- managing time- managing stress- networking professionally- respecting social protocols- understanding career management- developing a long-term career plan making career change.

Total Periods:	30	-
		Ξ

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

One Server

30 Desktop Computers

One Hand Mike

One LCD Projector

TEXT BOOKS

- 1. Butterfield, Jeff Soft Skills for Everyone. Cengage Learning: New Delhi,2015
- 2. E. Suresh Kumar et al, Communication for Professional Success. Orient Blackswan: Hyderabad, 2015
- 3. Raman, Meenakshi and Sangeetha Sharma. Professional Communication. Oxford University Press: Oxford 2014
- 4. S. Hariharan et al. Soft Skills. MJP Publishers: Chennai, 2010
- 5. Interact English Lab Manual for Undergraduate Students, Orient BlackSwan: Hyderabad, 2016.

Course Outcomes (CO)

Upon completion of the course, students will be able to

CO1	Develop adequate Soft Skills required for the workplace,
CO2	Make effective presentations
CO3	Participate confidently in Group discussions
CO4	Attend job interviews and be successful in them
CO5	Hone their communications skills for their career

	Course Outcomes	Program Outcomes	Program Specific Outcomes	
--	--------------------	------------------	---------------------------------	--

	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	-	2	-	2	1	-	-	-	2	3	-	-	1	2	2	
CO2	-	2	-	2	1	ı	1	-	2	3	1	-	1	2	2	
CO3	-	-	-	-	-	-	-	-	2	2	-	-	1	1	2	
CO4	-	-	-	1	1	1	-	-	2	2	-	2	3	3	3	
CO5	-	2	1	1	2	1	2	-	2	3	-	2	3	3	3	

$\boldsymbol{SEMESTER-V}$

CS4551	FUNDAMENTALS OF DATA STRUCTURES USING C	L	Т	P	C
		3	0	0	3
Objectives					
• T • T • T	o learn the basics of C programming language. o learn the concepts of advanced features of C Programming language. o explore the applications of linear and non-linear data structures. o learn to represent data using graph data structure. o learn the basic sorting and searching algorithms.				
UNIT - I	C PROGRAMMING BASICS				9
Structure of in C – Mana	a C program – Constants, Variables – Data Types – Expressions using oging Input and Output operations – Looping statements. Arrays – Initiali–Single and Multi-Dimensional arrays. Strings- String operations.	-		CO	
UNIT - II	FUNCTIONS, POINTERS, STRUCTURES AND UNIONS				9
Initialization	Pass by value – Pass by reference – Recursion – Pointers - Defi – Pointers arithmetic. Structures and unions - definition – Structure nion - File Handling, Pre-processor directives.			CO)2
UNIT - III	LINEAR DATA STRUCTURES				9
Abstract Dat	ra Types (ADTs) – List ADT - Stacks and Queues – Linked lists – Linmentation of Stacks and Queue – Applications of Stack and Queue.	ked	list-	CO	
UNIT - IV	NON-LINEAR DATA STRUCTURES				9
Trees – Bin Application	ary Trees – Binary tree representation and traversals –Binary Search of Trees.	Tree	es –	CO)4
UNIT - V	SEARCHING AND SORTING ALGORITHMS				9
Linear Searc	ch – Binary Search. Bubble Sort, Insertion sort – Merge sort – Quic Complexity. Hash tables – Overflow handling.	k so	rt –	CO	
Total Period	ls:			45	
	na Thareja,"Programming in C",Second Edition,Oxford University Press Allen Weiss, —Data Structures and Algorithm Analysis in C, Second E			ears	
Educ	ation, 1997.				
Pears 2. Robe	d V. Aho, John E. Hopcroft and Jeffrey D. Ullman, —Data Structures as on Education, 1983. Art Kruse, C.L.Tondo, Bruce Leung, Shashi Mogalla, — Data Structuren in C, Second Edition, Pearson Education, 2007.				
3. Jean-	Paul Tremblay and Paul G. Sorenson, —An Introduction to Data ications, Second Edition, Tata McGraw-Hill, 1991.	Struc	cture	s w	it

Course	Outcomes (CO)
Upon co	ompletion of the course, students should have the
CO1	To learn the basics of C programming language.
CO2	To learn the concepts of advanced features of C Programming language.
CO3	To explore the applications of linear and non-linear data structures.
CO4	To learn to represent data using graph data structure.
CO5	To learn the basic sorting and searching algorithms

Course					Prog	gram	Outc	omes					Program Specific Outcomes				
Outcomes	a b C d e f g h i j k l												1	2	3		
CO1	2	2	1	1	0	1	0	0	2	1	1	2	2	2	1		
CO2	3	3	3	1	0	0	0	1	1	1	1	2	2	2	1		
CO3	2	3	3	2	1	1	1	0	2	1	2	2	2	2	2		
CO4	2	3	3	3	0	1	0	1	1	1	2	2	2	2	2		
CO5	3	3	3	2	1	1	1	0	2	1	2	2	3	2	2		

EE4501	POWER ELECTRONICS	L	T	P	C
		3	0	0	3

- To impart knowledge on different types of power semiconductor devices and their switching characteristics.
- To understand the operation, characteristics and performance parameters of uncontrolled and controlled rectifiers.
- To learn the Operation, switching techniques and basics topologies of DC-DC switching regulators.
- To Compute and analyse the different modulation techniques of pulse width modulated inverters and to understand harmonic reduction methods.
- To understand the operation of AC to AC converter.

POWER SEMI-CONDUCTOR DEVICES Study of switching devices - SCR, TRIAC, GTO, BJT, MOSFET, IGBT and IGCT. Static characteristics: SCR, MOSFET and IGBT. Triggering and commutation circuit for SCR. **CO1** Introduction to Driver and snubber circuits. PHASE-CONTROLLED CONVERTERS Controlled converters: 2-pulse, 3-pulse and 6-pulse converters – performance parameters. CO₂ Effect of source inductance. Dual converters. Applications-light dimmer, Excitation system. UNIT - III DC TO DC CONVERTERS Step-down and step-up chopper: control strategy. Introduction to types of choppers: A, B, C, D and E -Switched mode regulators- Buck, Boost, Buck- Boost regulator. Introduction to **CO3** Resonant Converters. Applications-Battery operated vehicles and Solar PV systems. UNIT - IV | INVERTERS Single phase and three phase voltage source inverters (both120⁰ mode and 180⁰ mode): **CO4** Voltage& harmonic control- PWM techniques: Multiple PWM, Sinusoidal PWM, modified

sinusoidal PWM. Introduction to space vector modulation. Current source inverter - Applications-Induction heating, UPS.

UNIT - V AC TO AC CONVERTERS

0

Single phase and Three phase AC voltage controllers: Control strategy- Power Factor Control – Multistage sequence control. -single phase and three phase cyclo-converters. Introduction to Matrix converters. Applications – Welding.

CO5

Total Periods: 45

Text Books:

- 1. M.H. Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson Education, third Edition, New Delhi, 2019.
- 2. Ned Mohan, Tore M. Undeland, William. P. Robbins, 'Power Electronics: Converters, Applications and Design, Wiley, Third edition, 2007

References:

- 1. Joseph Vithayathil,' Power Electronics, Principles and Applications', McGraw Hill Series, 6th Reprint, 2019.
- 2. Philip T. Krein, "Elements of Power Electronics" Oxford University Press, 2019 Edition.
- 3. P.S.Bimbra "Power Electronics" Khanna Publishers, Third Edition, 2019.
- 4. M.D. Singh and K.B. Khanchandani, "Power Electronics," McGraw Hill India, 2017.
- 5. NPTEL Video Lecture Notes on "Power Electronics" by Prof. D.Prasad, Prof. N.K. De, Dr. D.Kastha, Prof. Sabyasachi Sengupta, IIT Kharagpur.

Course Outcomes (CO)

Upon completion of the course, students should have the

CO1 Ability to understand the operation of semiconductor devices and its dynamic characteristics.

CO2 Ability to analyse and choose the Uncontrolled and controlled converters for real time applications.

CO3 Ability to analyse the operation of DC- DC converter and its applications.

CO4 Able to Understand various PWM techniques and apply voltage control and harmonic elimination methods to inverter circuits.

CO5 Able to Understand the operation of AC voltage controllers and its applications.

Course					Prog	gram	Outo	omes					Program Specific Outcomes				
Outcomes	a	b	C	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	3	3	3	3	2	1	1	1	1	1	1	1	3	3	1		
CO2	3	3	3	3	2	1	1	1	1	1	1	1	3	3	1		
CO3	3	3	3	3	2	1	1	1	1	1	1	1	3	3	1		
CO4	3	3	3	3	2	1	1	1	1	1	1	1	3	3	1		
CO5	3	3	3	3	2	1	1	1	1	1	1	1	3	3	1		

EE4502	POWER SYSTEM ANALYSIS	L	T	P	C
		2	1	0	3

- To impart knowledge on the need for "power system analysis" and model various power system components.
- To formulate the power balance equations and to conduct the power flow analysis by Gauss Seidel and Newton-Raphson methods.
- To model and carry out short circuit studies of power system for symmetrical faults and to determine the fault levels of different buses.
- To learn about the symmetrical components and their application to carry out short circuit studies of power system for unsymmetrical faults and to determine the fault levels of different buses.
- To model and analyze the stability of the power system due to balanced faults by equal area criteria and explicit integration methods.

UNIT – I POWER SYSTEM OVERVIEW

9

Need for system planning and operational studies - Power scenario in India - Power system components - Representation - Single line diagram - per unit quantities - p.u. impedance diagram p.u. reactance diagram - Network graph, Bus incidence matrix, Primitive network-Bus admittance matrix from primitive parameters - Representation of off-nominal transformer - Formation of bus admittance matrix of large power network.

CO₁

UNIT – II POWER FLOW ANALYSIS

9

Significance of Power Flow Analysis in planning and operation- Formulation of Power Flow problem in rectangular and polar coordinates - Bus classification - Power flow solution using Gauss-Seidel method - Handling of Voltage controlled buses - Power Flow Solution by Newton-Raphson method.

CO2

UNIT – III SYMMETRICAL FAULT ANALYSIS

9

Importance of short circuit studies-Assumptions in short circuit analysis - Symmetrical short circuit analysis using Thevenin's theorem - Bus Impedance matrix by building algorithm (without mutual coupling) - Symmetrical fault analysis through bus impedance matrix - Post fault bus voltages – Fault level - Current limiting reactors.

CO₃

UNIT – IV UNSYMMETRICAL FAULT ANALYSIS

9

Symmetrical components - Sequence impedances - Sequence circuits of synchronous machine, transformer and transmission line-Sequence networks - Analysis of unsymmetrical faults: single-line to-ground, line-to-line and double-line-to-ground using Thevenin's theorem and Z-Bus - computation of post fault currents in symmetrical component and phasor domains.

CO4

UNIT – V STABILITY ANALYSIS

9

Importance of stability studies-Classification of power system stability: rotor angle stability and voltage stability –Single Machine Infinite Bus (SMIB) system: Development of swing equation - Equal area criterion - Critical clearing angle and time - solution of the swing equation.

CO5

Total Periods:

45

Text Books:

- 1. John J. Grainger, William D. Stevenson, Jr, 'Power System Analysis', McGraw Hill Education (India) Private Limited, New Delhi, 2017.
- 2. Hadi Saadat, 'Power System Analysis', 3rd edition, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2011.

References:

- 1. Pai M A and Chatterjee, 'Computer Techniques in Power System Analysis', Tata McGraw-Hill Publishing Company Ltd., New Delhi, Third Edition, 2017.
- 2. J.Duncan Glover, Mulukutla S.Sarma, Thomas J. Overbye, 'Power System Analysis & Design', Cengage Learning, Sixth Edition, 2017.
- 3. Gupta B.R., 'Power System Analysis and Design', Seventh Edition, S. Chand Publishing, 1998.
- 4. Kundur P., 'Power System Stability and Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2006.
- 5. Kothari D.P. and Nagrath I.J., 'Power System Engineering', Tata McGraw-Hill Education, Third Edition, 2019.
- 6. NPTEL Video Lecture Notes on "Power System Analysis" by Prof. Debapriya Das, IIT Bombay.

Course Outcomes (CO)

Upon completion of the course, students will be able

- CO1 To understand the modelling of the power system components and network modelling for the power system studies.
- CO2 To understand the formulation of the power flow equation and its solutions using numerical methods.
- CO3 To understand the basics of the symmetrical fault and its analysis using Thevenin's method and bus impedance matrix.
- CO4 To understand the basics of the unsymmetrical faults, symmetrical components and its analysis using Thevenin's method and bus impedance matrix.
- CO5 To understand the various stability problems in power systems and its solutions using equal area criterion and by using numerical methods.

Course Outcomes					Prog	gram	Outo	omes					Program Specific Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	3	3	3	3	1	1	1	1	1	2	1	2	3	1	1		
CO2	3	3	3	3	3	1	1	1	1	2	1	2	3	3	1		
CO3	3	3	3	3	3	2	1	2	2	2	1	2	3	3	1		
CO4	3	3	3	3	2	2	1	2	2	2	2	2	3	2	1		
CO5	3	3	3	3	3	2	1	1	2	2	2	2	3	3	1		

PRACTICALS

CS4561	DATA STRUCTURES USING C LABORATORY	L	T	P	C
		0	0	4	2

OBJECTIVES

- To familiarize with C programming constructs.
- To implement linear data structures.
- To implement non-linear data structures.
- To understand the different operations of search trees.
- To get familiarized to sorting and searching algorithms.

LIST OF EXPERIMENTS

1. Basic C Programs – looping and data manipulations.	GO1
2. Programs using strings – string function implementation.	CO1
3. Programs using structures.	
4. Implementation of singly linked list.	G0.2
5. Array implementation of stacks.	CO2
6. Array implementation of queue.	
7. Implementation of File Handling.	
8. Implementation of Tree Traversals	CO3
9. Implementation of Binary Search trees.	CO4
10. Implementation of Linear search	
11. Implementation Bubble sort and Merge Sort	CO5
12. Implementation of Hashing	
Total Periods	60

REFERENCES

1. Mark Allen Weiss, —Data Structures and Algorithm Analysis in C, Second Edition, Pearson Education, 1997.

COURSE OUTCOMES(CO)

On completion of this course, the students will be able to:

- CO1 Write basic and advanced programs in C.
- CO2 Implement functions and recursive functions in C.
- CO3 Develop applications in C using file processing.
- CO4 Implement data structures using C.
- CO5 Choose appropriate sorting algorithm for an application and implement it in a modularized way.

MAPPING OF COS WITH POS AND PSOS

Course					Pr	ogra	ım Oı	ıtcome	es				Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3	
CO1	3	3	3	1	1	1	-	2	2	2	-	2	3	3	2	
CO2	3	3	3	1	1	-	-	2	2	2	-	2	3	3	2	
CO3	2	3	3	1	1	-	-	2	2	2	-	2	3	3	2	

CO4	2	3	3	1	1	-	-	2	2	2	-	2	3	3	2
CO5	2	3	3	1	1	1	-	2	2	2	1	2	3	3	2

EE4511	CONTROL AND INSTRUMENTATION LABORATORY	L	T	P	C
		0	0	4	2

• To provide knowledge on analysis and design of control system along with basics of instrumentation.

LIST OF EXPERIMENTS

CONTROL SYSTEMS:

- 1. P, PI and PID controllers
- 2. Simulation of Stability Analysis
- 3. Modelling of Systems Machines, Sensors and Transducers
- 4. Design of Lag, Lead and Lag-Lead Compensators
- 5. Position Control Systems
- 6. Synchro-Transmitter- Receiver and Characteristics
- 7. Simulation of Control Systems by Mathematical development tools.

INSTRUMENTATION:

- 8. Bridge Networks –AC and DC Bridges
- 9. Dynamics of Sensors/Transducers (a) Temperature (b) pressure (c) Displacement
 - (d) Optical
- (e) Strain (f) Flow
- 10. Power and Energy Measurement
- 11. Signal Conditioning (a) Instrumentation Amplifier
 - (b) Analog Digital and Digital –Analog converters (ADC and DACs)

12. Process Simulation

Total Periods: 60

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CONTROL SYSTEMS:

- 1. PID controller simulation and learner kit 1 No.
- 2. Digital storage Oscilloscope for capturing transience- 1 No.
- 3 Personal Computer with control system simulation packages 10 Nos
- 4. DC motor –Generator test set-up for evaluation of motor parameters
- 5. CRO 30MHz 1 No.
- 6. Function Generator 2MHz 1No.
- 7. Position Control Systems Kit (with manual) 1 No.
- 8. Tacho Generator Coupling set
- 9. AC Synchro transmitter& receiver 1No.
- 10. Sufficient number of Digital multi meters, speed and torque sensors

INSTRUMENTATION:

- 11. R, L, C Bridge kit (with manual)
- 12. a)Electric heater 1No.

Thermometer – 1No.

Thermistor (silicon type)

RTD nickel type -1No.

b) 30 psi Pressure chamber (complete set) – 1No.

Current generator (0 - 20 mA)

Air foot pump -1 No. (with necessary connecting tubes)

c) LVDT20mm core length movability type – 1No.

CRO 30MHz – 1No.

- d) Optical sensor -1 No. Light source
- e) Strain Gauge Kit with Handy lever beam 1No.

100gm weights – 10 nos

f) Flow measurement Trainer kit $-1\ \text{No.}$

(1/2 HP Motor, Water tank, Digital Milliammeter, complete set)

13. Single phase Auto transformer – 1No.

Watt-hour meter (energy meter) -1No.

Ammeter Voltmeter

Rheostat

Stop watch Connecting wires (3/20)

- 14. IC Transistor kit − 1No.
- 15. Instrumentation Amplifier kit-1 No.
- 16. Analog Digital and Digital Analog converters (ADC and DACs)- 1 No.

Course Outcomes (CO)

Upon completion of the course, students should have the

	<u> </u>
CO1	Ability to understand control theory and apply them to electrical engineering problems
CO2	Ability to analyze the various types of converters
CO3	Ability to design compensators. Ability to understand the basic concepts of bridge networks.
CO4	Ability to the basics of signal conditioning circuits.
CO5	Ability to study the simulation packages.

Course		Program Outcomes									Program Specific Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	3	2	2	1	2	2	3	2	3	3	1
CO2	3	3	3	3	3	2	2	1	2	2	3	2	3	3	1
CO3	3	3	3	3	3	2	2	1	2	2	3	2	3	3	1
CO4	3	3	3	3	3	2	2	1	2	2	3	2	3	3	1
CO5	3	3	3	3	3	2	2	1	2	2	3	2	3	3	1

EE4512	POWER ELECTRONICS AND DRIVES LABORATORY	L	T	P	C
		0	0	4	2

Objectives

- To study the VI characteristics of SCR, TRIAC, MOSFET and IGBT.
- To analyse the performance of semi converter, full converter, step up, step down choppers by simulation and experimentation.
- To study the behaviour of voltage waveforms of PWM inverter applying various modulation techniques
- To design and analyse the performance of SMPS
- To study the performance of AC voltage controller by simulation and Experimentation.

LIST OF EXPERIMENTS

- 1. Gate Pulse Generation using R, RC and UJT.
- 2. Characteristics of SCR and TRIAC
- 3. Characteristics of MOSFET and IGBT
- 4. AC to DC half-controlled converter

- 5. AC to DC fully controlled Converter
- 6. Step down and step up MOSFET based choppers
- 7. IGBT based single phase PWM inverter
- 8. IGBT based three phase PWM inverter
- 9. AC Voltage controller
- 10. Switched mode power converter.
- 11. Simulation of PE circuits (1Φ & 3Φ semi converters, 1Φ & 3Φ full converters, DC-DC converters, AC voltage controllers)

Total Periods: 60

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

- 1. Device characteristics (for SCR, MOSFET, TRIAC, GTO, IGCT and IGBT kit with built-in / discrete power supply and meters) 2 each
- 2. SinglephaseSCRbasedhalfcontrolledconverterandfullycontrolledconverteralong with built-in/separate/firing circuit/module and meter 2 each
- 3. MOSFET based step up and step-down choppers (Built in/ Discrete) 1each
- 4. IGBT based single phase PWM inverter module/Discrete Component − 2
- 5. IGBT based three phase PWM inverter module/Discrete Component 2
- 6. Switched mode power converter module/Discrete Component –2
- 7. SCR &TRIAC based 1 phase AC controller along with lamp or rheostat load -2
- 8. Cyclo converter kit with firing module –1
- 9. Dual regulated DC power supply with common ground
- 10. Cathode ray Oscilloscope-10
- 11. Isolation Transformer 5
- 12. Single phase Auto transformer–3
- 13. Components (Inductance, Capacitance) 3 set for each
- 14. Multimeter 5
- 15. LCR meter 3
- 16. Rheostats of various ranges 2 sets of 10 value
- 17. Work table 10
- 18. DC and AC meters of required ranges 20
- 19. Component data sheets to be provided

Course Outcomes (CO)

Upon completion of the course, students will be

CO1	Able to Determine the characteristics of SCR, IGBT, TRIAC, MOSFET and IGBT
CO2	Able to Find the transfer characteristics of full converter, semi converter, step up and step-
	down choppers by simulation and experimentation.
CO3	Able to Analyse the voltage waveforms for PWM inverter using various modulation
	techniques.
CO4	Able to Design and experimentally verify the performance of basic DC/DC converter
	topologies used for SMPS
CO5	Able to Understand the performance of AC voltage controllers by simulation and
	experimentation

Course		Program Outcomes									Program Specific Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	3	2	2	1	1	1	1	2	3	2	2
CO2	3	3	3	3	3	2	2	1	1	1	1	2	3	2	2

CO3	3	3	3	3	3	2	1	1	1	1	1	2	3	2	2	
CO4	3	3	3	3	3	2	1	1	1	1	1	2	3	2	2	
CO5	3	3	3	3	3	2	1	1	1	1	1	2	3	2	2	

SEMESTER- VI

CS4651	OBJECT ORIENTED PROGRAMMING L T P	C
	3 0 0	3
Objectives		
To unTo knTo deTo de	iderstand Object Oriented Programming concepts and basic Java Features now the principles of packages, inheritance and interfaces	
UNIT – I	INTRODUCTION TO OOP AND JAVA FUNDAMENTALS	9
Inheritance-F Java Source Defining cla	nted Programming - Abstraction — objects and classes - Encapsulation-Polymorphism- OOP in Java — Characteristics of Java — The Java Environment - File- Structure — Compilation Fundamental Programming Structures in Java—sses in Java—constructors, methods-accessspecifiers-static members-Comments, Variables, Operators, Control Flow, Arrays, Packages - JavaDoc comments	CO1
UNIT – II	INHERITANCE AND INTERFACES	9
Inheritance—S Object class- interface, imp	Super classes-sub classes—Protected members—constructors in sub classes -the abstract classes and methods-final methods and classes—Interfaces—defining an plementing interface, differences between classes and interfaces and extending Object cloning-inner classes, Array Lists—Strings.	CO2
IINIT III	EVCEDTION HANDI INC AND I/O	0
creating own	exception hierarchy- throwing and catching exceptions—built-in exceptions, exceptions, Stack Trace Elements. Input/Output Basics—Streams — Byte streams r streams—Reading and Writing Console—Reading and Writing Files.	co ₃
UNIT – IV	MULTITHREADING AND GENERIC PROGRAMMING	9
Differences threads, sync groups. Gen	between multi-threading and multitasking, thread life cycle, creating chronizing threads, Inter-thread communication, daemon threads, thread eric Programming–Generic classes– generic methods– Bounded Types – and Limitations.	CO4
UNIT – V	EVENT DRIVEN PROGRAMMING	9
Graphics profonts, and immouse events Components	ogramming - Frame - Components - working with 2D shapes - Using color, hages - Basics of event handling - event handlers - adapter classes - actions - s - AWT event hierarchy - Introduction to Swing - layout management - Swing - Text Fields, Text Areas - Buttons- Check Boxes - Radio Buttons-Lists- ll bars-Windows-Menus-Dialog Boxes	COS
Total Period	ls:	45
2. Cay	ert Schildt, "Java The complete reference", 8 Edition, McGraw Hill Education, 2 S. Horstmann, Gary cornell, "Core Java Volume – I Fundamentals", 9th ice Hall, 2013.	011. Edition

References:

- 1. Paul Deitel, Harvey Deitel, "Java SE8 for programmers", 3rd Edition, Pearson, 2015.
- 2. Steven Holzner, "Java2 Black book", Dream tech press, 2011.
- 3. Timothy Budd, "Understanding Object –oriented programming with Java"

Course Outcomes (CO)

Upon completion of the course, students will be able

- CO1 To know the basic concepts of Object Oriented Programming
 CO2 To learn to develop application with the concepts inheritance, interfaces and Strings
- CO3 To implement Exception handling and I/O for reading and writing console
- CO4 To apply programming concepts to develop Java applications with threads and generics classes

CO5 To Develop interactive Java programs using swings, Graphics programming and AWT.

Course					Pro	gram	Outc	omes	<u>U</u> ,		1			ram Sp Outcom	
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	2	2	3	2	2	1	1	-	2	1	2	2	1	2
CO2	3	2	2	3	2	2	-	-	1	1	1	1	2	3	2
CO3	3	2	2	3	2	1	1	1	-	2	1	2	2	2	2
CO4	3	2	2	3	2	2	1	-	1	1	1	1	2	3	3
CO5	3	3	1	3	3	3	3	-	-	-	-	-	3	2	2

EE4601	POWER ELECTRONIC DRIVES AND CONTROL	L	T	P	C
		3	0	0	3

Objectives

- Steady state operation and transient dynamics of a motor load system.
- Analyze the operation of the converter/chopper fed dc drive, both qualitatively and quantitatively.
- Analyze the operation and performance of induction motor drives.
- Analyze the operation and performance of synchronous motor drives.
- Design the current and speed controllers for a closed loop solid state DC motor drive.

UNIT - I	DRIVE FUNDAMENTALS	9
	Equations governing motor load dynamics – steady state stability – multi cs: acceleration, deceleration, starting & stopping – typical load torque election of motor.	CO1
UNIT - II	CONVERTER / CHOPPER FED DC MOTOR DRIVE	9
drive – continuou	vsis of the single and three phase converter fed separately excited DC motor is conduction – Time ratio and current limit control – 4 quadrant operation of the fed drive - Applications	CO2
UNIT - III	INDUCTION MOTOR DRIVES	9
Stator voltage co	ontrol-V/f control- Rotor Resistance control-qualitative treatment of slip	CO3

power recovery di	ives-closed loop control-vector control- Applications.	
UNIT - IV	SYNCHRONOUS MOTOR DRIVES	9
	elf-control of synchronous motor: Margin angle control and power factor ase voltage/current source fed synchronous motor- Applications.	CO4
UNIT - V	DESIGN OF CONTROLLERS FOR DRIVES	9
speed feedback-a	for DC motor / load and converter – closed loop control with Current and rmature voltage control and field weakening mode – Design of controllers; and speed controller- converter selection and characteristics.	CO5
Total Periods:		45
T4 D1		

Text Books:

- 1. Gopal K. Dubey, Fundamentals of Electrical Drives, Narosa Publishing House, Second edition 2001.
- 2. R. Krishnan, Electric Motor Drives- Modeling, Analysis, and Control, Prentice-Hall of India Private Limited, New Delhi, 2003.

References:

- 1. Vedam Subramanyam, "Electric Drives Concepts and Applications", 2e, McGraw Hill, 2016
- 2. Shaahin Felizadeh, "Electric Machines and Drives", CRC Press (Taylor and Francis Group), 2013.
- 3. N.K. De., P.K. SEN "Electric drives" PHI, 2012.
- 4. Bimal K. Bose, "Modern Power Electronics and AC Drives, Pearson Education (Singapore) Ltd., New Delhi, 2003.
- 5. NPTEL Video Lecture Notes on "Fundamentals of Electric Drives" by Prof. Shyama Prasad Das, IIT Kanpur.

Course Outcomes (CO)

Upon completion of the course, students will be able to

- CO1 Analyze the speed control mechanisms of electrical machines to justify the selection of drives for their effective usage
- CO2 | Evaluate the performance of converter and chopper fed DC motor drive
- CO3 Understand the power electronic converters used for induction motor speed control.
- CO4 Understand the power electronic converters used for synchronous motor speed control.
- CO5 Design controllers for electric drives

Course Outcomes					Pro	ogran	1 Out	come	s				Program Specific Outcomes			
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	3	3	3	3	2	3	1	1	1	1	1	3	3	1	
CO2	3	3	3	3	3	2	3	1	1	1	1	1	3	3	1	
CO3	3	3	3	3	3	2	3	1	1	1	1	1	3	3	1	
CO4	3	3	3	3	3	2	3	1	1	1	1	1	3	3	1	
CO5	3	3	3	3	3	2	3	1	1	1	1	1	3	3	1	

OBJECTIVES	
 Significance of power system operation and control. Real power– frequency interaction and design of power– frequency controller. Reactive power– voltage interaction and the compensators for maintaining the voltage presentation scheduling and economic operation of power system. SCADA and its application for real time operation and control of power systems. 	rofile.
being it and its application for real time operation and control of power systems.	
UNIT – I INTRODUCTION	9
Power scenario in Indian grid — National and Regional load dispatching centres — Requirements of good power system — Necessity of voltage and frequency regulation — System load variation, load curves — Load forecasting — Computational methods in load forecasting — Load shedding and Islanding	CO1
UNIT – II REAL POWER – FREQUENCY CONTROL	9
Basics of speed governing mechanisms and modelling – Load Frequency Control (LFC) of single area system – Static and dynamic analysis – LFC of two area system – Tie line modelling – Block diagram representation of two area system – Static and dynamic analysis – Tie line with frequency bias control – State variable model – Integration of economic dispatch control with LFC.	CO2
UNIT – III REACTIVE POWER – VOLTAGE CONTROL	9
Generation and absorption of reactive power – Basics of reactive power control – Automatic Voltage Regulator (AVR) – Brushless AC excitation system – Block diagram representation of AVR loop static and dynamic analysis – Stability compensation – Voltage drop in transmission line – Methods of reactive power injection – Tap changing transformer, SVC and STATCOM for voltage control, Introduction to Dynamic Voltage Restorer.	
UNIT – IV ECONOMIC OPERATION OF POWER SYSTEM Statement of economic dispatch problem – Input and output characteristics of thermal plant incremental cost curve – Optimal operation of thermal units without and with transmission losses (no derivation of transmission loss coefficients) – Lambda–iteration method – Base point and participation factors method. Statement of Unit Commitment (UC) problem – Constraints on UC problem – Solution of UC problem using priority list – Special aspects of short term and long term hydrothermal scheduling problems.	CO4
UNIT – V COMPUTER AIDED CONTROL OF POWER SYSTEM	9
Need of computer control of power system – Concept of energy control centres and functions – PMU system monitoring, Data acquisition and controls – System hardware configurations – SCADA and EMS functions – State estimation – Measurements and errors – Weighted least square estimation – Various operating states – State transition diagram.	CO
Total Periods:	45
 Olle I. Elgerd, 'Electric Energy Systems theory – An introduction', McGraw Hill Edu Pvt. Ltd., New Delhi, 36th reprint, 2014. Allen J. Wood and Bruce F. Wollen berg, 'Power Generation, Operation and Control Wiley & Sons, Inc., 2016. 	

POWER SYSTEM OPERATION AND CONTROL

EE4602

References:

- 1. Kothari D.P. and Nagrath I.J., 'Power System Engineering', Tata McGraw- Hill Education, Second Edition, Reprint 2018.
- 2. Hadi Saadat, 'Power System Analysis', McGraw Hill Education Pvt. Ltd., New Delhi, 3rd Edition.
- 3. Kundur P., 'Power System Stability and Control, McGraw Hill Education Pvt. Ltd., New Delhi, 12th reprint, 2015.
- 4. Abhijit Chakrabarti and Sunita Halder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third Edition, Reprint 2018.
- 5. NPTEL Video Lecture Notes on "Power System Operation and Control" by Dr. A.M. Kulkarni, IIT Bombay.

Course Outcomes (CO)

Upon completion of the course, students will be able to

- CO1 Understand the day-to-day operation of electric power system.
- **CO2** Acquire knowledge on real power-frequency interaction.
- **CO3** Understand the reactive power-voltage interaction.
- **CO4** Understand the significance of power system operation and control.

CO5 Design SCADA and its application for real time operation.

Course Outcomes	omes														am fic nes
	a	a b c d e f g h i j k l											1	2	3
CO1	3	3	3	3	3	2	3	1	1	1	1	1	3	3	1
CO2	3	3	3	3	3	2	3	1	1	1	1	1	3	3	1
CO3	3	3	3	3	3	2	3	1	1	1	1	1	3	3	1
CO4	3	3	3	3	3	2	3	1	1	1	1	1	3	3	1
CO5	3	3	3	3	3	2	3	1	1	1	1	1	3	3	1

EE4603	EMBEDDED SYSTEMS	L	T	P	C
		3	0	0	3

Objectives

- Building blocks of Embedded System
- Bus communication in processors, Input/output interfacing.
- Development environment of an embedded system
- Basics of real time operating system.
- Real life applications of an embedded system

UNIT - I INTRODUCTION TO EMBEDDED SYSTEMS

9

Introduction to Embedded Systems –Structural units in Embedded processor, selection of processor & memory devices- DMA – Memory management methods- Timer and Counting devices, Watchdog Timer, Real Time Clock, In circuit emulator, Target Hardware Debugging.

CO₁

UNIT - II EMBEDDED NETWORKING

9

Embedded Networking: Introduction, I/O Device Ports & Buses—Serial Bus communication protocols RS232 standard – RS422 – RS 485 - CAN Bus -Serial Peripheral Interface (SPI) – Inter Integrated Circuits (I^2C) –need for device drivers.

CO₂

UNIT -		9
of EDL	ded Product Development Life Cycle- objectives, different phases of EDLC, Modelling C; issues in Hardware-software Co-design, Data Flow Graph, state machine model, tial Program Model, concurrent Model, object oriented Model.	CO3
UNIT -	IV RTOS BASED EMBEDDED SYSTEM DESIGN	9
Introduo Multipr commu	ction to basic concepts of RTOS- Task, process & threads, interrupt routines in RTOS, ocessing and Multitasking, Pre-emptive and non-pre-emptive scheduling, Task nication shared memory, message passing-, Inter process Communication – onization between processes-semaphores, Mailbox, pipes, priority inversion, priority	CO
UNIT -	V EMBEDDED SYSTEM APPLICATION AND DEVELOPMENT	9
Case St	audy of Washing Machine- Automotive Application- Smart card System Application-nachine –Digital camera.	CO
	Total Periods	45
Text Bo	ooks:	
1.	Peckol, "Embedded system Design", John Wiley & Sons, 2010	
2.	Lyla B Das, "Embedded Systems-An Integrated Approach", Pearson, 2013	
Referen		
	Raj Kamal, 'Embedded Systems-Architecture, Programming, Design', Second EdmcGraw Hill, 2013.	dition
	C.R.Sarma, "Embedded Systems Engineering", University Press (India) Pvt. Ltd, 2013.	
	Tammy Noergaard, "Embedded Systems Architecture", Second Edition, Newnes, 2012.	
4.	Han-Way Huang, "Embedded system Design Using C8051", Cengage Learning, 2009.	
5.	Rajib Mall "Real-Time systems Theory and Practice" Pearson Education, 2007.	
	Shibu. K.V, "Introduction to Embedded Systems", Second Edition, McGraw Hill, 2017.	
7.	NPTEL Video Lecture Notes on "Embedded Systems" by Prof. Santanu Chaudhary, IIT	Delhi
Course	Outcomes (CO)	
	ompletion of the course, students should have the	
CO1	Ability to understand the basic blocks of embedded systems.	
CO2	Ability to study about the bus communication in processors.	
CO3	Ability to acquire knowledge about the embedded system design environment.	
~~ .		

			L		\mathcal{C}					_		\mathcal{C}				
:O4	Ability	to unc	lersta	and b	asics	of rea	ıl time	oper	ating	syster	n.					
O5	Ability	to sug	gest	an ei	mbed	ded sy	stem	for a	given	appli	cation	١.				
	urse tcomes					Pro	gram	Outo	comes	5				S	rogra Specif utcon	ïc
		a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
	CO1	2	1	2	1	2	1	1	1	1	1	1	3	1	2	1
	CO2	2	1	1	2	3	1	1	1	1	1	1	3	1	2	1
	CO3	2	1	2	2	3	1	1	1	3	3	3	3	1	2	1
	CO4	2	1	2	3	3	3	2	1	1	1	1	3	2	1	1
	CO5	2	3	3	3	3	3	3	3	3	3	3	3	3	3	2

PRACTICALS

I A 197 XID A 'I'/ XID X/				
LABORATORY				
	0	0	4	2
	E.I.D OTHER TONE	0	0 0	0 0 4

OBJECTIVES

- To be familiar with basic java programming constructs and write simple programs
- To be exposed to concept of Inheritance and interfaces
- To learn to write programs to implement exception Handling mechanisms.
- To be able to understand Multithreading concept.
- To understand and develop GUI Programming using Applets and Swing

LIST OF EXPERIMENTS

Total Periods	60
11. Develop a mini project using all Java concepts.	
10. Develop a Java Application to implement JavaFX Controls, Layouts and Menus	
9. Java Application to implement Generic classes	CO3
8. Java Application to demonstrate File Operations.	
7. Java Application to implement Multi threading.	
6. Java Application to implement Exception Handling.	
5. Implementation of the above program using Interfaces	
4. Java program to demonstrate Abstract Class	- CO2
3. Java Application to implement Inheritance concept	
2. Java Application to implement Stack and Queue data structures using classes.	COI
Java Application to solve problems like Linear and Binary Search	CO1

REFERENCES

1. Herbert Schildt, "Java The complete reference", 8th Edition, McGraw Hill Education, 2011

COURSE OUTCOMES(CO)

On completion of this course, the students will be able to:

- CO1 Develop and implement Java programs for simple applications that make use of classes, and Data structures.
- CO2 Develop and implement Java programs with Inheritance, Interfaces and Exception handling.
- CO3 Develop and implement GUI concepts in Java using Swing and do Mini Project.

MAPPING OF COS WITH POS AND PSOS

Course Outcomes					Pr	ogra	ım Oı	itcome	es				Program Specific Outcomes			
Outcomes	a	b	С	d	e	f	g	h	i	j	k	1	1	2	3	
CO1	2	1	2	1	1	1	1	1	2	2	2	1	2	2	1	
CO2	2	1	1		1	1	1	1	1	1	1	1	2	2	1	
CO3	2	1	2	1	1	1	1	1	2	2	2	1	2	2	1	

EE4611	MINI PROJECT	L	T	P	C
		0	0	4	2

- To develop their own innovative prototype of ideas.
- To train the students in preparing mini project reports and examination.

The students in a group of 5 to 6 works on a topic approved by the Head of the Department and prepares a comprehensive mini project report after completing the work to the satisfaction. The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A mini project report is required at the end of the semester. The mini project work is evaluated based on oral presentation and the mini project report jointly by external and internal examiners constituted by the Head of the Department

TOTAL PERIODS 60

Course Outcomes (CO)

On Completion of the mini project work students will be in a position to take up their final year project work and find solution by formulating proper methodology.

SEMESTER-VII

	PROTECTION AND SWITCHGEAR L T	P	<u>C</u>
	3 0	0	3
Objectives			
	the principles and need for protection schemes by different fault current calcu	lati	ons
	the basic principles, construction and characteristics of different Electron		
relays			5
•	to protect different power equipments like transformer, generator etc.,		
	different aspects of static relays and numerical protection schemes		
• To learn	the principles, construction and problems associated with different types of	of c	ircu
breaker			
		- 1	
JNIT - I	PROTECTION SCHEMES		6
	eed for protective schemes – nature and causes of faults – types of faults–		Ω1
Aethods of neut	lculation — Zones of protection and essential qualities of protection.	C	01
remous of neur	ar grounding.		
NIT - II	ELECTROMAGNETIC RELAYS		9
	ples of relays – Torque equation – R– X diagram – Electromagnetic Relays		
	Directional, Distance, Differential, Negative sequence and Under frequency	C	02
elays			
JNIT - III	APPARATUS PROTECTION		9
* *	Current transformers and Potential transformers in protection schemes –	C	03
sources of error.	Protection of transformer, generator, motor, bus bars and transmission line.		
UNIT - IV	STATIC RELAYS AND NUMERICAL PROTECTION		9
	STATIC RELAYS AND NUMERICAL PROTECTION Phase, Amplitude Comparators – Synthesis of various relays using Static		9
Static relays – l	STATIC RELAYS AND NUMERICAL PROTECTION Phase, Amplitude Comparators – Synthesis of various relays using Static Block diagram of Numerical relays – Over current protection, transformer	C	9
tatic relays – I omparators – E	Phase, Amplitude Comparators – Synthesis of various relays using Static	C	
tatic relays — I omparators — E ifferential prote	Phase, Amplitude Comparators – Synthesis of various relays using Static Block diagram of Numerical relays – Over current protection, transformer ction, distance protection of transmission lines.	C	04
tatic relays — I omparators — E lifferential prote	Phase, Amplitude Comparators – Synthesis of various relays using Static Block diagram of Numerical relays – Over current protection, transformer ction, distance protection of transmission lines. CIRCUIT BREAKERS	C	04
Static relays — I comparators — E lifferential prote J NIT - V Physics of arcin	Phase, Amplitude Comparators – Synthesis of various relays using Static Block diagram of Numerical relays – Over current protection, transformer ction, distance protection of transmission lines. CIRCUIT BREAKERS g phenomenon and arc interruption – DC and AC circuit breaking – re–	C	04
Static relays — I comparators — E differential prote UNIT - V Physics of arcin striking voltage	Phase, Amplitude Comparators – Synthesis of various relays using Static Block diagram of Numerical relays – Over current protection, transformer ction, distance protection of transmission lines. CIRCUIT BREAKERS g phenomenon and arc interruption – DC and AC circuit breaking – reand recovery voltage – rate of rise of recovery voltage – current chopping		12
Static relays — Icomparators — Edifferential protes UNIT - V Physics of arcinestriking voltage interruption of	Phase, Amplitude Comparators – Synthesis of various relays using Static Block diagram of Numerical relays – Over current protection, transformer ction, distance protection of transmission lines. CIRCUIT BREAKERS g phenomenon and arc interruption – DC and AC circuit breaking – reand recovery voltage – rate of rise of recovery voltage – current chopping f capacitive current – resistance switching – Types of circuit breakers – air,		04
Static relays — Icomparators — Edifferential protestion of the Editor of	Phase, Amplitude Comparators – Synthesis of various relays using Static Block diagram of Numerical relays – Over current protection, transformer ction, distance protection of transmission lines. CIRCUIT BREAKERS g phenomenon and arc interruption – DC and AC circuit breaking – reand recovery voltage – rate of rise of recovery voltage – current chopping capacitive current – resistance switching – Types of circuit breakers – air, num circuit breakers – comparison of different circuit breakers – Rating and		12
Static relays — Isomparators — Edifferential protestions of arcin triking voltage interruption of the collection of the	Phase, Amplitude Comparators – Synthesis of various relays using Static Block diagram of Numerical relays – Over current protection, transformer ction, distance protection of transmission lines. CIRCUIT BREAKERS g phenomenon and arc interruption – DC and AC circuit breaking – reand recovery voltage – rate of rise of recovery voltage – current chopping capacitive current – resistance switching – Types of circuit breakers – air, num circuit breakers – comparison of different circuit breakers – Rating and		12
Static relays — Isomparators — Edifferential protestion. JNIT - V Physics of arcintriking voltage interruption or interruption of Circular and Cir	Phase, Amplitude Comparators – Synthesis of various relays using Static Block diagram of Numerical relays – Over current protection, transformer ction, distance protection of transmission lines. CIRCUIT BREAKERS g phenomenon and arc interruption – DC and AC circuit breaking – reand recovery voltage – rate of rise of recovery voltage – current chopping capacitive current – resistance switching – Types of circuit breakers – air, num circuit breakers – comparison of different circuit breakers – Rating and uit breakers.		12
Static relays – Isomparators – Edifferential protes JNIT - V Physics of arcin triking voltage interruption of circular of Circular Periods:	Phase, Amplitude Comparators – Synthesis of various relays using Static Block diagram of Numerical relays – Over current protection, transformer ction, distance protection of transmission lines. CIRCUIT BREAKERS g phenomenon and arc interruption – DC and AC circuit breaking – reand recovery voltage – rate of rise of recovery voltage – current chopping capacitive current – resistance switching – Types of circuit breakers – air, num circuit breakers – comparison of different circuit breakers – Rating and uit breakers.	C	12
Static relays — Isomparators — Edifferential protection. UNIT - V Physics of arcinutriking voltage — interruption of oil, SF6 and vacuelection of Circutal Periods: Total Periods:	Phase, Amplitude Comparators – Synthesis of various relays using Static Block diagram of Numerical relays – Over current protection, transformer ction, distance protection of transmission lines. CIRCUIT BREAKERS g phenomenon and arc interruption – DC and AC circuit breaking – reand recovery voltage – rate of rise of recovery voltage – current chopping capacitive current – resistance switching – Types of circuit breakers – air, num circuit breakers – comparison of different circuit breakers – Rating and uit breakers.	C(04 12 05
Comparators – Edifferential protest in the comparators – Edifferential protest in the comparator of th	Phase, Amplitude Comparators – Synthesis of various relays using Static Block diagram of Numerical relays – Over current protection, transformer ction, distance protection of transmission lines. CIRCUIT BREAKERS g phenomenon and arc interruption – DC and AC circuit breaking – reand recovery voltage – rate of rise of recovery voltage – current chopping capacitive current – resistance switching – Types of circuit breakers – air, num circuit breakers – comparison of different circuit breakers – Rating and uit breakers.	C(04 12 05
Static relays – Icomparators – Edifferential protes UNIT - V Physics of arcin striking voltage interruption of oil, SF6 and vacual selection of Circ Total Periods: 1. M.L.Son Engineer	Phase, Amplitude Comparators – Synthesis of various relays using Static Block diagram of Numerical relays – Over current protection, transformer ction, distance protection of transmission lines. CIRCUIT BREAKERS g phenomenon and arc interruption – DC and AC circuit breaking – reand recovery voltage – rate of rise of recovery voltage – current chopping capacitive current – resistance switching – Types of circuit breakers – air, num circuit breakers – comparison of different circuit breakers – Rating and uit breakers. A. P.V.Gupta, U.S.Bhatnagar, A.Chakrabarti, A Text Book on Powering, Dhanpat Rai & Co., 1998.	C0	04 12 05
Static relays – Isomparators – Edifferential protests JNIT - V Physics of arcintriking voltage interruption of oil, SF6 and vacelection of Circe Total Periods: 1. M.L.Son Engineer 2. Y.G.Paitle	Phase, Amplitude Comparators – Synthesis of various relays using Static Block diagram of Numerical relays – Over current protection, transformer ction, distance protection of transmission lines. CIRCUIT BREAKERS g phenomenon and arc interruption – DC and AC circuit breaking – reand recovery voltage – rate of rise of recovery voltage – current chopping capacitive current – resistance switching – Types of circuit breakers – air, num circuit breakers – comparison of different circuit breakers – Rating and uit breakers.	C0	04 12 05

- 1. Badri Ram ,B.H.Vishwakarma, Power System Protection and Switchgear, New Age International Pvt Ltd Publishers, Second Edition 2011.
- 2. Sunil S. Rao, Switchgear and Protection, Khanna publishers, New Delhi, 2008. Switchgear Protection and Power Systems (Theory, Practice & Solved Problems)
- 3. B. Rabindranath and N. Chander, Power System Protection and Switchgear, New Age International (P) Ltd., First Edition 2011.
- 4. C.L. Wadhwa, Electrical Power Systems, 6th Edition, New Age International (P) Ltd., 2010.
- 5. Ravindra P.Singh, "Switchgear and Power System Protection" PHI Learning Private Ltd., New Delhi 2009.
- 6. NPTEL Video Lecture Notes on "Power System Protection and Switchgear" by Prof. Bhaveshkumar R. Bhalja, IIT Roorkee

Course Outcomes (CO)

Upon completion of the course, students should have the

- CO1 Ability to understand the principles and need of protection schemes by different fault current calculation and also know the importance of grounding in power system.
- CO2 Ability to understand the basic principles, construction and characteristics of different Electromagnetic relays
- CO3 Ability to gain knowledge on CT and PT in protection schemes and learn to protect different power equipment like transformer, generator etc.,
- CO4 Ability to understand the concept of Static relay and numerical protection schemes.
- CO5 Ability to gain knowledge on theory of arc interruption and various type of circuit breakers.

Course				Program Specific Outcomes											
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	2	2	1	1	1	1	1	1	1	1	1	3	1	1
CO2	3	2	2	2	1	1	1	1	1	1	1	1	3	1	1
CO3	3	2	3	2	1	1	1	1	1	1	1	1	3	1	1
CO4	3	2	3	2	1	1	1	1	1	1	1	1	3	1	1
CO5	3	2	3	2	1	1	1	1	2	2	1	1	3	1	1

EE4702	RENEWABLE ENERGY SYSTEMS	L	T	P	C
		3	0	0	3

OBJECTIVES

- To create awareness about renewable and non-renewable Energy Sources, technologies and its impact on the environment.
- To learn wind energy conversion system and its issues with grid integration.
- To learn the concepts of solar PV and solar thermal systems.
- To learn other alternate energy sources such as Biomass, geothermal energy and hydro energy variety of issues in harnessing
- To understand the concept of tidal energy, hydrogen energy, ocean thermal energy and its significance.

UNIT – I RENEWABLE ENERGY SOURCES

Ç

Conventional energy sources- Fossil Fuels, Types of fossil fuel, Environmental consequences of fossil fuel use, Non-Conventional energy sources- Renewable energy(RE) and its types,

CO1

Significances of renewable energy sources, Sustainable Design and development, Effects and Limitations of RE sources, Present Indian and international energy scenario of NRE and RE sources.	
UNIT – II WIND ENERGY	9
Wind formation, Power in the Wind – WPP (wind power plant)- Components of WPPs -Types of Wind Power Plants (WPPs)– Working of WPPs- Siting of WPPs - Grid integration issues of WPPs.	CO2
UNIT - III SOLAR - THERMAL SYSTEMS AND PV SYSTEMS	9
Solar Photovoltaic systems (SPV): Basic Principle of SPV conversion – Types of PV Systems- Types of Solar Cells, Photovoltaic cell concepts: Cell, module, array, I-V Characteristics, Efficiency & Quality of the Cell, series and parallel connections, Grid Integration and Standalone system, maximum power point tracking, Applications.	CO3
UNIT - IV BIOMASS,GEOTHERMAL AND HYDRO ENERGY SOURCES	9
Introduction - Bio mass resources - Energy from Bio mass: conversion processes-Biomass Cogeneration-Environmental Benefits. Geothermal Energy: Basics, Direct Use, Geothermal Electricity. Mini/micro hydro power: Classification of hydropower schemes, Classification of water turbine, Turbine theory, Essential components of hydroelectric system.	CO4
UNIT - V OTHER ENERGY SOURCES	9
Tidal Energy: Energy from the tides, Barrage and Non Barrage Tidal power systems. Wave Energy: Energy from waves, wave power devices. Ocean Thermal Energy Conversion (OTEC)-Hydrogen Production and Storage- Fuel cell: Principle of working- various types - construction and applications. Energy Storage System- Hybrid Energy Systems	CO5
Total Periods:	45
 Joshua Earnest, Tore Wizeliu, 'Wind Power Plants and Project Development', PHI Le Pvt.Ltd, New Delhi, 2015. Scott Grinnell, "Renewable Energy & Sustainable Design", CENGAGE Learning, USA, 2 	
References:	
 A.K.Mukerjee and Nivedita Thakur," Photovoltaic Systems: Analysis and Design' Learning Private Limited, New Delhi, 2011 Richard A. Dunlap," Sustainable Energy" Cengage Learning India Private Limited, Delhi, Chetan Singh Solanki, "Solar Photovoltaics: Fundamentals, Technologies and Applica PHI Learning Private Limited, New Delhi, 2011 Bradley A. Striebig, Adebayo A. Ogundipe and Maria Papadakis," Engineering Applicat Sustainable Design and Development", Cengage Learning India Private Limited, Delhi, 20 	2015. ations",
5 Godfrey Royle "Renewable energy" Open University Oxford University Press in asso	

- 5. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004. 6. Shobh Nath Singh, 'Non-conventional Energy resources' Pearson Education, 2015.
- 6. D.P.Kothari, K.C Singal, Rakesh Ranjan "Renewable Energy Sources and Emerging Technologies", PHI Learning Pvt.Ltd, New Delhi, 2013.
- 7. NPTEL Video Lecture Notes on "Introduction to Non Conventional Energy Systems" by Prof. Dr.L.Umanand, IISc Bangalore.

Course Outcomes (CO)

Upon completion of the course, students will be able to

CO1	Create awareness about non- renewable and renewable Energy Sources and technologies
CO2	Acquire knowledge on the concepts of wind energy conversion system, siting and grid
	related issues.
CO3	Understand the solar PV and solar thermal systems
CO4	Analyse other types of renewable energy resources like biomass, geothermal and Hydro
	energy.
CO5	Acquire knowledge on tidal energy, hydrogen energy, ocean thermal energy and fuel cell.

Course Outcomes					Prog	gram	Outc	omes					Program Specific Outcomes			
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	1	1	1	1	3	3	3	1	1	1	3	1	1	1	
CO2	3	3	3	3	3	3	3	3	3	1	3	3	3	3	1	
CO3	3	3	3	3	3	3	3	3	3	1	3	3	3	3	1	
CO4	3	3	3	3	3	3	2	3	3	1	2	3	3	3	1	
CO5	3	3	3	3	3	3	2	3	3	1	2	3	3	3	1	

PRACTICALS

EE4711	POWER SYSTEM SIMULATION LABORATORY	L	T	P	C
		0	0	4	2

Objectives

• To provide better understanding of power system analysis through digital simulation.

LIST OF EXPERIMENTS

- 1. Computation of Transmission Line Parameters
- 2. Formation of Bus Admittance and Impedance Matrices and Solution of Networks
- 3. Power Flow Analysis using Gauss-Seidel Method
- 4. Power Flow Analysis using Newton Raphson Method
- 5. Symmetric and unsymmetrical fault analysis
- 6. Transient stability analysis of SMIB System
- 7. Economic Dispatch in Power Systems
- 8. Load Frequency Dynamics of Single- Area and Two-Area Power Systems
- 9. State estimation: Weighted least square estimation
- 10. Electromagnetic Transient Analysis in power system by using EMTP

Total Periods: 60

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

Personal computers (Intel i3, 80GB, 2GBRAM) – 30 nos

Printer laser- 1 No.

Dot matrix- 1 No.

Server (Intel i5, 80GB, 2GBRAM) (High Speed Processor) – 1 No.

Software: MATLAB simulation software with 5 user license and EMTP software.

Course Outcomes (CO)

Upon completion of the course, students will be able

- CO1 To develop simple Matlab programs for the following basic requirements: a) Formation of bus admittance and impedance matrices and line parameters with solutions.
- CO2 To understand the concepts of power flow solution of small systems using simple method, Gauss-Seidel P.F. method, Unit Commitment and Economic Dispatch.
- CO3 To arrive the solutions through the standard algorithms and researches available and to confirm the same by implementing in the modern software packages available
- CO4 To have experience in the usage of standard packages for the following analysis / simulation / control functions. a) Steady-state analysis of large system using NRPF method. b) Quasi steady-state (Fault) analysis for balanced and unbalanced faults.
- CO5 To know the basics of transient stability and Load Frequency dynamics and to check the same in the simulation of multi-machine power system for effective control of power system.

Course Outcomes	Program Outcomes													Program Specific Outcomes		
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	3	2	2	1	1	1	1	1	1	1	1	3	3	1	
CO2	3	3	2	2	2	1	1	2	1	1	1	1	3	3	1	

CO3	3	3	3	3	2	1	2	1	2	1	1	1	3	3	1	
CO4	3	2	3	3	3	1	2	2	1	1	1	1	3	3	1	
CO5	3	2	3	3	3	1	3	1	1	1	2	2	3	3	1	

EE4712	RENEWABLE ENERGY SYSTEMS LABORATORY	L	T	P	C
		0	0	4	2

OBJECTIVES

- To train the students in Renewable Energy Sources and technologies
- To provide adequate inputs on a variety of issues in harnessing Renewable Energy.
- To recognize current and possible future role of Renewable energy sources.

LIST OF EXPERIMENTS

- 1. Simulation study on Solar PV energy system.
- 2. Experiment on "VI-Characteristics and Efficiency of Solar PV System".
- 3. Simulation study on "Shadowing effect & diode based solution in 1kWp Solar PV System".
- 4. Simulation study on performance assessment of grid connected and Standalone 1kWp Solar power system.
- 5. Simulation study on Wind Energy Generator.
- 6. Simulation study on Hybrid (Solar-Wind) Power System.
- 7. Simulation study on Hydel Power.
- 8. Simulation study on Intelligent Controllers for Hybrid Systems.
- 9. Study of Solar PV Sizing, Battery Sizing and Inverter Sizing of a 1kWp system.

Total Periods: 60

Requirements for a batch of 30 students

S.No.	Description of Equipment	Quantity required
1	Personal computers (Intel i3, 80GB, 2GBRAM)	15
2	MATLAB simulation software with 5 user license	5 user
3	Hardware set up of Solar PV system	1

Course Outcomes (CO)

Upon completion of the course, students will be able to

CO1	Understand and analyse renewable energy systems.
CO2	Acquire knowledge about renewable energy sources and technologies.
CO3	Provide adequate inputs on a variety of issues in harnessing renewable energy.
CO4	Simulate the various renewable energy sources and to understand basics of Intelligent
	Controllers

CO5 | Recognize current and possible future role of renewable energy sources.

Course Outcomes					Prog	ram (Outco	omes					S	Program Specific Outcomes			
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	3	3	3	3	3	2	2	2	3	1	3	3	3	2	1		

CO2	3	3	3	3	3	2	2	2	3	1	3	3	3	2	1	
CO3	3	3	3	3	3	2	2	2	3	1	3	3	3	2	1	
CO4	3	3	3	3	3	2	2	2	3	1	3	3	3	2	1	
CO5	3	3	3	3	3	2	2	2	3	1	3	3	3	2	1	

SEMESTER- VIII

GE4791	HUMAN VALUES AND ETHICS L T	P	C
	3 0	0	2
01:			
Objectives To another	the students to smooth an evidences on Engineering Ethics and Hymne V	7.1	4
	the students to create an awareness on Engineering Ethics and Human ral and Social Values and Loyalty and to appreciate the rights of others.	/ arue	es, t
IIISHII IVIO	rai and social values and Loyarty and to appreciate the rights of others.		
UNIT I	HUMAN VALUES		10
Morals, values a	nd Ethics – Integrity – Work ethic – Service learning – Civic virtue –		
	rs – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing		\1
	on – Commitment – Empathy – Self-confidence – Character – Spirituality	CO)I
 Introduction to 	Yoga and meditation for professional excellence and stress management.		
UNIT II	ENGINEERING ETHICS		9
_	neering Ethics' - Variety of moral issues - Types of inquiry - Moral		
dilemmas – Mora			24
-	llberg's theory – Gilligan's theory – Consensus and Controversy – Models	C) 2
or professional re Uses of Ethical T	bles - Theories about right action – Self-interest – Customs and Religion –		
Uses of Eulical 1	neories.		
UNIT III	ENGINEERING AS SOCIAL EXPERIMENTATION		9
	Experimentation – Engineers as responsible Experimenters – Codes of		
	ced Outlook on Law.	CO)3
UNIT IV	SAFETY, RESPONSIBILITIES AND RIGHTS		9
Safety and Risk	Assessment of Safety and Risk – Risk Benefit Analysis and Reducing		
	for Authority - Collective Bargaining - Confidentiality - Conflicts of	C	24
	oational Crime – Professional Rights – Employee Rights – Intellectual		<i>)</i> 4
Property Rights ((IPR) – Discrimination.		
UNIT V	GLOBAL ISSUES		8
	orporations – Environmental Ethics – Computer Ethics – Weapons		
	Engineers as Managers – Consulting Engineers – Engineers as Expert	CO)5
Responsibility.	Advisors – Moral Leadership –Code of Conduct – Corporate Social		
Responsibility.			
Total Periods:		45	
Text Books:			
	rtin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, N	ew	
Delhi, 2003.			
_	n M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall	of Inc	dia,
New Delhi, 2	2004.		
References:			

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009.
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
- 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.
- 5. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" McGraw Hill education, India Pvt. Ltd., New Delhi, 2013.
- 6. World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 2011.

Course Outcomes (CO)

Upon completion of the course, students should have the

- CO1 Students should be able to apply ethics in society, and realize the responsibilities and rights in the society.
- CO2 Students should be able to discuss the ethical issues related to engineering
- CO3 Understood the core values that shape the ethical behaviour of an engineer
- CO4 Exposed awareness on professional ethics and human values
- CO5 Known their role in technological development

Course Outcomes					Prog	gram	Outc	omes					Program Specifi Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	-	-	-	-	-	2	2	3	2	-	-	2	3	1	1		
CO2	-	-	-	-	-	2	2	3	2	-	-	2	3	1	1		
CO3	-	-	-	-	-	2	2	3	2	-	-	2	3	1	1		
CO4	-	-	-	-	-	2	2	3	2	-	-	2	3	1	1		
CO5	-	_	-	-	_	2	2	3	2	-	-	2	3	1	1		

EE4811	PROJECT WORK	L	T	P	C
		0	0	20	10

Objectives

- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.
- To train the students in preparing project reports and to face reviews.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL PERIODS 300

Course Outcomes (CO)

On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

VERTICAL I - POWER ENGINEERING

POWER QUALITY

L

T

P

C

EE4001

	3)	0	0	3
Objectives					
U	definitions in Power Quality.				
	r quality issues in Single Phase and Three Phase Systems.				
• •	principles of Power System Harmonics.				
-	to use DSTATCOM for Harmonic Mitigation.				
•	pts related with Series Compensation.				
		T		~	
UNIT - I	INTRODUCTION	('	7+2	Ski 9	ll)
Introduction – Cha	aracterization of Electric Power Quality: Transients, short duration				
fluctuations, Powe	voltage variations, Voltage imbalance, waveform distortion, Voltage er frequency variation, Power acceptability curves – power quality ad power factor, Non-linear and unbalanced loads, DC offset in loads,		C O 1		
	voltage, Disturbance in supply voltage – Power quality standards.				
UNIT - II A	ANALYSIS OF SINGLE PHASE AND THREE PHASE	('	7+2	Ski	
	SYSTEM			9	,
source – supplying phase unbalanced s	ar and non-linear loads – single phase sinusoidal, non-sinusoidal g linear and nonlinear loads – three phase balanced system – three system – three phase unbalanced and distorted source supplying non-cept of power factor – three phase- three wire – three phase - four wire	0	CO2		
•					
UNIT - III N	MITIGATION OF POWER SYSTEM HARMONICS	(7+2	Ski 9	<u>ll</u>)
Introduction - Princ Filters — damped Harmonic Filter D	MITIGATION OF POWER SYSTEM HARMONICS ciple of Harmonic Filters – Series-Tuned Filters – Double Band-Pass Filters – Detuned Filters – Active Filters – Power Converters – Design – Tuned Filter – Second-Order Damped Filter – Impedance aks – Impedance Plots for a Three-Branch 33 kV Filter.			9	
Introduction - Princ Filters — damped Harmonic Filter D Plots for Filter Ban	ciple of Harmonic Filters – Series-Tuned Filters – Double Band-Pass Filters – Detuned Filters – Active Filters – Power Converters – Design – Tuned Filter – Second-Order Damped Filter – Impedance nks – Impedance Plots for a Three-Branch 33 kV Filter.	C	CO3	9	
Introduction - Princ Filters – damped Harmonic Filter D Plots for Filter Ban	ciple of Harmonic Filters – Series-Tuned Filters – Double Band-Pass Filters – Detuned Filters – Active Filters – Power Converters – Design – Tuned Filter – Second-Order Damped Filter – Impedance	C	CO3 7+2	9	
Introduction - Prince Filters - damped Harmonic Filter D Plots for Filter Ban UNIT - IV Compensating sing generating referer symmetrical comp	ciple of Harmonic Filters – Series-Tuned Filters – Double Band-Pass Filters – Detuned Filters – Active Filters – Power Converters – Design – Tuned Filter – Second-Order Damped Filter – Impedance nks – Impedance Plots for a Three-Branch 33 kV Filter.		CO3 7+2	9 Ski 9	
Introduction - Prince Filters — damped Harmonic Filter D Plots for Filter Ban UNIT - IV Compensating sing generating referer symmetrical compunbalanced —Realicontrol mode.	rciple of Harmonic Filters – Series-Tuned Filters – Double Band-Pass Filters – Detuned Filters – Active Filters – Power Converters – Design – Tuned Filter – Second-Order Damped Filter – Impedance aks – Impedance Plots for a Three-Branch 33 kV Filter. LOAD COMPENSATION USING DSTATCOM gle – phase loads – Ideal three phase shunt compensator structure – nce currents using instantaneous PQ theory – Instantaneous conents theory – Generating reference currents when the source is dization and control of DSTATCOM – DSTATCOM in Voltage		7+2	9 Ski 9	ill)
Introduction - Prince Filters — damped Harmonic Filter D Plots for Filter Ban UNIT - IV Compensating sing generating reference symmetrical compunbalanced —Realification of the control mode. UNIT - V S	riciple of Harmonic Filters – Series-Tuned Filters – Double Band-Pass Filters – Detuned Filters – Active Filters – Power Converters – Design – Tuned Filter – Second-Order Damped Filter – Impedance hks – Impedance Plots for a Three-Branch 33 kV Filter. LOAD COMPENSATION USING DSTATCOM gle – phase loads – Ideal three phase shunt compensator structure – nce currents using instantaneous PQ theory – Instantaneous conents theory – Generating reference currents when the source is		7+2 7+2 7+2	9 Ski 9	ill)
Introduction - Prince Filters — damped Harmonic Filter D Plots for Filter Ban UNIT - IV Compensating sing generating referer symmetrical compunbalanced —Realicontrol mode. UNIT - V S Rectifier supported	ciple of Harmonic Filters – Series-Tuned Filters – Double Band-Pass Filters – Detuned Filters – Active Filters – Power Converters – Design – Tuned Filter – Second-Order Damped Filter – Impedance aks – Impedance Plots for a Three-Branch 33 kV Filter. LOAD COMPENSATION USING DSTATCOM gle – phase loads – Ideal three phase shunt compensator structure – nce currents using instantaneous PQ theory – Instantaneous conents theory – Generating reference currents when the source is dization and control of DSTATCOM – DSTATCOM in Voltage SERIES COMPENSATION OF POWER DISTRIBUTION		7+2 7+2 7+2	Ski 9 Ski 9	ill)
Introduction - Prince Filters — damped Harmonic Filter D Plots for Filter Ban UNIT - IV Compensating sing generating referer symmetrical compunbalanced —Realicontrol mode. UNIT - V S Rectifier supported	rciple of Harmonic Filters – Series-Tuned Filters – Double Band-Pass Filters – Detuned Filters – Active Filters – Power Converters – Design – Tuned Filter – Second-Order Damped Filter – Impedance aks – Impedance Plots for a Three-Branch 33 kV Filter. LOAD COMPENSATION USING DSTATCOM gle – phase loads – Ideal three phase shunt compensator structure – nce currents using instantaneous PQ theory – Instantaneous conents theory – Generating reference currents when the source is dization and control of DSTATCOM – DSTATCOM in Voltage SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM d DVR – DC Capacitor supported DVR – DVR Structure – Voltage		7+2 7+2	Ski 9 Ski 9	ill)
Introduction - Prince Filters — damped Harmonic Filter D Plots for Filter Ban UNIT - IV Compensating sing generating referer symmetrical compunbalanced —Realification —Realification — Series Total Periods:	rciple of Harmonic Filters – Series-Tuned Filters – Double Band-Pass Filters – Detuned Filters – Active Filters – Power Converters – Design – Tuned Filter – Second-Order Damped Filter – Impedance aks – Impedance Plots for a Three-Branch 33 kV Filter. LOAD COMPENSATION USING DSTATCOM gle – phase loads – Ideal three phase shunt compensator structure – nce currents using instantaneous PQ theory – Instantaneous conents theory – Generating reference currents when the source is dization and control of DSTATCOM – DSTATCOM in Voltage SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM d DVR – DC Capacitor supported DVR – DVR Structure – Voltage		7+2 7+2	Ski 9	ill)

Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc)

- 1. Harmonic analysis of single phase power converters (Semi converters and Full Converters) with R and RL load via simulation
- 2. Harmonic analysis of three phase power converters (Semi converters and Full Converters) with R and RL load via simulation
- 3. Harmonic analysis of single phase inverters with R and RL load via simulation
- 4. Harmonic analysis of three phase inverters with R and RL load via simulation
- 5. Mitigation of Harmonics using Tuned Filter

List of Open Source Software/ Learning website:

- 1. http://nptel.iitm.ac.in/courses.php
- 2. https://old.amu.ac.in/emp/studym/2442.pdf
- 3. https://electricalacademia.com/electric-power
- 4. https://www.intechopen.com/books/6214
- **5.** https://www.cde.com/resources/technical-papers/Mitigation-of-Harmonics.pdf
- **6.** https://www.academia.edu/43237017/Use_Series_Compensation_in_Distribution_Networks 33 KV

Text Books:

- 1. Arindam Ghosh and Gerad Ledwich "Power Quality Enhancement Using Custom Power Devices", Kluwer Academic Publishers, First Edition, 2002
- 2. G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, Second Edition, 2011.
- 3. George J. Wakileh, "Power System Harmonics Fundamentals, Analysis and Filter Design", Springer Verlag Berlin Heidelberg, New York, 2019.

References:

- 1. R.C.Duggan "Electric Power Systems Quality", Tata MC Graw Hill Publishers, Third Edition, 2012.
- 2. Arrillga "Power System Harmonics", John Wiely and Sons, 2003 2nd Edition.
- 3. Derek A.Paice "Power Electronic Converter Harmonics" IEEE Press, 1995, Wiley IEE Press 1999, 18th Edition.

Course Outcomes (CO)

Upon completion of the course, students will be able to:

CO1	Use various definitions of power quality for power quality issues
CO2	Describe the concepts related with single phase / three phase, linear / nonlinear loads and
	single phase / three phase sinusoidal, non-sinusoidal source.
CO3	Solve problems related with mitigation of Power System Harmonics
CO4	Use DSTATCOM for load compensation
00.5	5 1 1 05775 G17 7750G1 11 11 1

CO5 Demonstrate the role of DVR, SAFs UPQC in power distribution systems

Course Outcomes					Prog	gram	Outo	omes				<u> </u>	_	gram S Outcor	specific nes
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	-	-	3	3	-	3	-	3	3	3	1
CO2	3	3	3	3	-	-	3	3	-	3	-	3	3	3	1
CO3	3	3	3	3	-	-	3	3	-	3	-	3	3	3	1
CO4	3	3	3	3	-	-	3	3	-	3	-	3	3	3	1
CO5	3	3	3	3	-	-	3	3	-	3	-	3	3	3	1

		3	0	0	3
Objectives					
•	ledge about the following topics:				
-	g of DC power transmission and comparison with AC power transmission	ion			
•	converters.	ion.			
	system control.				
	ics and design of filters.				
Power fl	ow in HVDC system under steady state.				
UNIT - I	INTRODUCTION				9
	smission technology–Comparison of AC and DC transmission–Appli	catio	on of	:	
	n–Description of DC transmission system–Planning for HVDC trans			_	
	in HVDC technology–DC breakers–Operating problems– HVDC trans				O 1
	Types and applications of MTDC systems.		55101		
oused on visc	Types and appreadons of 1/1120 systems.				
UNIT - II	ANALYSIS OF HVDC CONVERTERS				9
Line commutat	ed converter -Analysis of Graetz circuit with and without overla	p –l	Pulse		
	e of converter configuration – Converter bridge characteristics– Anal				O 2
	ter– Analysis of VSC topologies and firing schemes.	•			
1	, , , , , , , , , , , , , , , , , , , ,				
UNIT - III	CONVERTER AND HVDC SYSTEM CONTROL				9
Principles of D	OC link control—Converter control characteristics—System control hi	ierar	chv-		
	ntrol- Current and extinction angle control-Starting and stopping of I				03
	Higher level controllers –Control of VSC based HVDC link.				
UNIT - IV	REACTIVE POWER AND HARMONICS CONTROL				9
Reactive power	er requirements in steady state—Sources of reactive power—S	VC	and		
	eneration of harmonics –Design of AC and DC filters– Active filters.			C	O 4
UNIT - V	POWER FLOW ANALYSIS IN AC/DC SYSTEMS				9
Per unit system	for DC quantities-DC system model -Inclusion of constraints -Po	wer	flow		O5
analysis –case s	tudy				U3
Total Periods:				45	
Text Books:					
	K.R., "HVDC power transmission system", New Age International(P)I	_td.]	New	Del	hi,
	Edition,2010.				
2. Arrillaga	a, J., "High Voltage Direct Current Transmission", Peter Pregrinus, Lo	ndoı	1,198	3.	
References:					
1. Kundur	P.," Power System Stability and Control", McGraw-Hill,1993.				
 Kundur Colin A 	damson and Hingorani NG," High Voltage Direct Current Power	Tra	ansm	issic	'n"
 Kundur Colin A Garrawa 	damson and Hingorani NG," High Voltage Direct Current Power y Limited, London, 1960.				
 Kundur Colin A Garrawa Edward 	damson and Hingorani NG," High Voltage Direct Current Power Ly Limited, London, 1960. Wilson Kimbark," Direct Current Transmission", Vol.I, Wiley				
1. Kundur 2. Colin A Garrawa 3. Edward NewYor	damson and Hingorani NG," High Voltage Direct Current Power y Limited, London, 1960.	, in	ter s	scier	ıce

HIGH VOLTAGE DIRECT CURRENT TRANSMISSION

EE4002

Course	e Outcomes (CO)
Upon o	completion of the course, students should have the
CO1	Ability to get knowledge about principles, modern trends and planning of DC power
	transmission and also to know about the comparison with AC power transmission.
CO2	Ability to analyze and understand the concepts of HVDC converters.
CO3	Ability to acquire knowledge on DC link control and its control characteristics.
CO4	Ability to understand the concepts of reactive power management and harmonics control.
CO5	Ability to understand the importance of power flow in HVDC system under steady state.

Course					Pro	gram	Outo	omes					Program Specif Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	3	3	3	3	3	2	1	1	1	1	1	3	3	3	1		
CO2	3	3	3	3	3	2	1	1	1	1	1	3	3	3	1		
CO3	3	3	3	3	3	2	1	1	1	1	1	3	3	3	1		
CO4	3	3	3	3	3	2	1	1	1	1	1	3	3	3	1		
CO5	3	3	3	3	3	2	1	1	1	1	1	3	3	3	1		

EE4003	HIGH VOLTAGE ENGINEERING	L	T	P	C
		3	0	0	3

Objectives

- To understand the various types of over voltages in power system and protection methods
- To impart knowledge on breakdown mechanisms of different dielectrics
- To learn about high voltage and high current generation techniques
- To teach the different measurements techniques of high voltages & currents
- To learn the Testing of power apparatus and insulation coordination

• To learn the Testing of power apparatus and insulation coordination	
UNIT – I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS	9
Causes of over voltages and its effects on power system – Lightning, switching surges and	
temporary over voltages - Reflection and Refraction of Travelling waves- Bewley's Lattice	CO1
diagram -Protection against over voltages	<u> </u>
UNIT – II DIELECTRIC BREAKDOWN IN GASES, LIQUIDS AND SOLIDS.	9
Properties of Dielectric materials - Gaseous breakdown in uniform and non-uniform fields -	
Corona discharges - Vacuum breakdown - Conduction and breakdown in pure and	CO ₂
commercial liquids - Breakdown mechanisms in solid and composite dielectrics.	
UNIT – III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS	9
Generation of high D.C. voltages using voltage multiplier circuits - Greinacher Voltage	
Doubler - Cockroft Walton Voltage Multiplier - Electrostatic generator principle - Van de	CO3
Graff generator -Generation of high AC voltages: cascaded transformers, Resonant	COS
transformer and Tesla coil- Generation of switching surges.	
UNIT – IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS	9
High Resistance with series ammeter – Dividers, Resistance, Capacitance and Mixed dividers	CO4
Peak Voltmeter, Generating Voltmeters - Capacitance Voltage Transformers, Electrostatic	CO4

volunciers – Sphere Gaps - Tright current shunts- Digital techniques in high voltage	5C	
measurement.		
UNIT – V HIGH VOLTAGE TESTING & INSULATION COORDINATION		9
High voltage testing of electrical power apparatus as per International and Indian standards	-	
Power frequency, impulse voltage and DC testing of Insulators, circuit breakers, bushing	g, (CO5
isolators and transformers- testing of cables-Insulation Coordination		
Total Periods:	45	,

Sphere Gaps - High current shunts- Digital techniques in high

Text Books:

- 1. S.Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, Fifth Edition, 2013
- 2. E. Kuffel and W.S. Zaengl, J.Kuffel, 'High voltage Engineering fundamentals', Newnes Second Edition Elsevier, New Delhi, 2005.

References:

- 1. L.L. Alston, 'High Voltage Technology', Oxford University Press, First Indian Edition, 2011.
- 2. Mazen Abdel Salam, Hussein Anis, Ahdab A-Morshedy, Roshday Radwan, High Voltage Engineering Theory & Practice, Second Edition Marcel Dekker, Inc., 2010.
- 3. Subir Ray,' An Introduction to High Voltage Engineering' PHI Learning Private Limited, New Delhi, Second Edition, 2013.
- 4. C.L. Wadhwa, 'High voltage Engineering', New Age International Publishers, Third Edition, 2010.
- 5. NPTEL Video lecture notes on High Voltage Engineering by Prof. Ravindra Arora, IIT Kanpur

Course Outcomes (CO) Upon completion of the course, students will be Able to understand the sources and effects of switching surges, lightning and temporary over CO₁ voltages, corona and its effects in power systems, various protection mechanisms against overvoltage. CO₂ Able to understand the nature of various breakdown mechanisms in gas, liquid and solid dielectrics. CO3 Able to understand and analyze the various methods of generating high voltage AC, DC and impulse voltages and currents. CO4 Able to understand and analyze the various methods of measuring high voltage AC, DC and impulse voltages and currents. CO5 Able to understand and analyze the various methods of testing insulators, circuit breakers, bushings, Isolators and transformers, insulation coordination.

Course Outcomes	Program Outcomes														Program Specific Outcomes			
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	3	2	1	1	3	2	2	2	1	1	1	2	3	2	1			
CO2	3	2	1	1	1	2	1	2	1	1	1	3	3	1	1			
CO3	3	3	1	2	1	2	1	2	1	1	1	3	3	1	1			
CO4	3	3	1	2	1	2	1	2	1	1	1	3	3	1	1			
CO5	3	2	1	1	1	2	2	2	1	1	1	3	3	1	1			

\mathbf{L} \mathbf{T} **EE4004** P \mathbf{C} **CONSERVATION** 3 3 0 0 **OBJECTIVES** To impart knowledge on the following Topics To study the utilization and conservation of electrical power and energy efficient equipment. To understand the principle, design of illumination systems and energy efficiency lamps. To study the methods of industrial heating and welding. To understand the electric traction systems and their performance. **ILLUMINATION** 9 UNIT - I Importance of lighting - properties of good lighting scheme - laws of illumination photometry - types of lamps - lighting calculations - basic design of illumination schemes for **CO1** residential, commercial, street lighting, factory lighting and flood lighting – LED lighting and energy efficient lamps. REFRIGERATION AND AIR CONDITIONING 9 UNIT - II Refrigeration-Domestic refrigerator and water coolers - Air-Conditioning-Various types of airconditioning system and their applications, smart air conditioning units – Energy Efficient CO₂ motors: Standard motor efficiency, need for efficient motors, Motor life cycle, Direct Savings and payback analysis, efficiency evaluation factor. UNIT - III **HEATING AND WELDING** 9 Role of electric heating for industrial applications – resistance heating – induction heating – dielectric heating - electric arc furnaces. Brief introduction to electric welding - welding **CO3** generator, welding transformer and the characteristics. UNIT - IV **TRACTION** 9 Merits of electric traction - requirements of electric traction system - supply systems mechanics of train movement - traction motors and control - braking - recent trends in **CO4** electric traction. DOMESTIC UTILIZATION OF ELECTRICAL ENERGY UNIT - V 9 Domestic utilization of electrical energy – House wiring. Induction based appliances, Online and OFF line UPS, Batteries - Power quality aspects - nonlinear and domestic loads -CO₅ Earthing – Domestic, Industrial and Substation, BEE standards on energy efficiency **Total Periods:** 45 **Text Books:** 1. Wadhwa, C.L. "Generation, Distribution and Utilization of Electrical Energy", New Age International Pvt. Ltd, Reprint edition 2014. 2. Dr. Uppal S.L. and Prof. S. Rao, 'Electrical Power Systems', Khanna Publishers, New Delhi, 15th Edition, 2014. **References:** 1. Partab.H, "Art and Science of Utilisation of Electrical Energy", DhanpatRai and Co, New Delhi, Revised edition 2017. 2. Openshaw Taylor.E, "Utilization of Electrical Energy in SI Units", Orient Longman Pvt. Ltd, Reprint 2012. 3. Gupta.J.B, "Utilization of Electric Power and Electric Traction", S.K.Kataria and Sons, Reprint 2013. 4. Cleaner Production – Energy Efficiency Manual for GERIAP, UNEP, Bangkok prepared by National Productivity Council. 5. Energy Efficiency in Electric Utilities, BEE Guide Book, Revised 2015

ELECTRIC ENERGY UTILIZATION AND

Course	e Outcomes (CO)											
Upon c	Upon completion of the course, students will be able to											
CO1	Acquire knowledge about the basics of illumination systems based on electrical energy											
CO2	Gain knowledge on basics of refrigeration and air conditioning systems and the burden they											
	create on electrical systems											
CO3	Understand the process of heating and welding and different types of apparatus used											
CO4	Acquire a comprehensive overview of traction systems and their significance											
CO5	Understand the application of electrical energy in domestic appliances and energy											
	conservation with BEE standards.											

Course				Program Specific Outcomes											
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	2	3	3	1	1	1	1	1	1	1	1	3	1	1
CO2	3	3	3	1	1	1	1	1	1	1	1	2	3	3	1
CO3	3	2	3	3	1	1	1	1	1	1	2	1	3	3	1
CO4	3	3	3	2	2	1	3	1	1	1	1	1	3	3	1
CO5	3	3	3	1	3	1	1	1	1	1	2	1	1	2	1

EE4005	FLEXIBLE AC TRANSMISSION SYSTEMS	L	T	P	C
		3	0	0	3

OBJECTIVES

To impart knowledge on the following topics

- The start-of-art of the power system
- Performance of power systems with FACTS controllers
- FACTS controllers for load flow and dynamic analysis

UNIT - I INTRODUCTION (7+2 Skill) 9

Real and reactive power control in electrical power transmission lines—loads & system compensation-Uncompensated transmission line—shunt and series compensation.

UNIT - II STATIC VAR COMPENSATOR (SVC) AND APPLICATIONS (7+2 Skill)

Voltage control by SVC-Advantages of slope in dynamic characteristics-Influence of SVC on system voltage-Design of SVC voltage regulator-TCR-FC-TCR- Modeling of SVC for power flow and fast transient stability- Applications: Enhancement of transient stability - Steady state power transfer -Enhancement of power system damping.

UNIT - III THYRISTOR CONTROLLED SERIES CAPACITOR (TCSC) (7+2 Skill)
AND APPLICATIONS 9

CO₂

Operation of the TCSC–Different modes of operation–Modelling of TCSC, Variability reactance model– Modelling for Power Flow and stability studies. Applications: Improvement of the system stability limit–Enhancement of system damping.

UNIT - IV VOLTAGE SOURCE CONVERTER BASED FACTS (7+2 Skill)
CONTROLLERS 9

Static Synchronous Compensator (STATCOM)—Principle of operation—V-I Characteristics.

Applications: Steady state power transfer-enhancement of transient stability-prevention of

voltage instability. SSSC-operation of SSSC and the control of power flow-modelling of SSSC in load flow and transient stability studies- Dynamic voltage restorer(DVR).

UNIT - V	ADVANCED FACTS CONTROLLERS	(7+2 S	
Interline DVR controller (IPFC	(IDVR) - Unified Power flow controller (UPFC) - Interline power C) - Unified Power quality conditioner (UPQC).	flow	CO5
Total Periods:			45
	CLOPMENT ACTIVITIES (Group Seminar/Mini Project/ Assignment of Activities (Group Seminar/Mini Project/ Assignment of Quiz/ Surprise Test / Solving GATE questions/ etc)	ment/	10

- 1. Simulation of FC+TSR connected to IEEE 5 bus system
- 2. Realization of reactive power, support by SVC in open loop and closed loop control in simulation.
- 3. Regulation of line flows employing TCSC in closed loop control in simulation
- 4. Regulation of line flows employing TSSC in closed loop control in simulation
- 5. Realization of four quadrant operation of VSC in open loop mode in simulation

Text Books:

- 1. R.Mohan Mathur, Rajiv K.Varma, "Thyristor—Based Facts Controllers for Electrical Transmission Systems", IEEE press and John Wiley & Sons, Inc, 2002.
- 2. NarainG. Hingorani, "Understanding FACTS-Concepts and Technology of Flexible AC Transmission Systems", Standard Publishers Distributors, Delhi-110006,2011.
- 3. T.J.E Miller, Power Electronics in power systems, John Wiley and sons.

References:

- 1. K.R. Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International (P) Limited, Publishers, New Delhi, 2008
- 2. A.T.John, "Flexible A.C.Transmission Systems", Institution of Electrical and Electronic Engineers (IEEE), 1999.
- 3. V.K.Sood, HVDC and FACTS controllers–Applications of Static Converters in Power System, APRIL2004, Kluwer Academic Publishers, 2004

Course Outcomes (CO)

Upon completion of the course, students should have the

	<u> </u>
CO1	Ability to understand the concepts about load compensation techniques.
CO2	Ability to acquire knowledge on facts devices
CO3	Ability to understand the start-of-art of the power system
CO4	Ability to analyze the performance of steady state and transients of facts controllers
CO5	Ability to study about advanced FACTS controllers.

Course				Program Specific Outcomes											
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	2	3	3	1	1	1	1	1	1	1	1	3	1	1
CO2	3	3	3	1	1	1	1	1	1	1	1	2	3	3	1
CO3	3	2	3	3	1	1	1	1	1	1	2	1	3	3	1
CO4	3	3	3	2	2	1	3	1	1	1	1	1	3	3	1
CO5	3	3	3	1	3	1	1	1	1	1	2	1	1	2	1

	POWER SYSTEM STABILITY	L	T	P	C
		3	0	0	3
Objectives					
To impart kno	owledge about the following topics:				
	ndamentals of power systems stability and its classification.				
	signal stability modelling and analysis of power systems.				
	ent stability modelling of power system and to analyse using numerical met			C*1	
_	e stability in power system and the various methods to control the vols to enhance small-signal & transient stability.	oitage	epro	me.	
• Method	is to emiance sman-signal & transfent stability.				
UNIT – I	INTRODUCTION TO STABILITY				<u> </u>
	concepts - Stability and energy of a system - Power System Stability: De	efinit	ion,		
	re and Effects of disturbances, Classification of stability, Modelling of				
	Basic assumptions made in stability studies- Modelling of Synchronous	macl	hine	C	O 1
for stability s	tudies (classical model) – Rotor dynamics and the swing equation.				
					Τ.
UNIT – II	SMALL - SIGNAL STABILITY	o f o	a 11	1	9
	ts and definitions – State space representation, Physical Interpretation (ty, Eigen properties of the state matrix: Eigen values and eigenvector				
_	en value and stability, mode shape and participation factor. Small signal				:02
	Single-Machine Infinite Bus (SMIB) Configuration with numerical exa				
<u> </u>					
UNIT – III	TRANSIENT STABILITY				
	INANSIENTSTABILITY				9
Review of n	umerical integration methods: modified Euler and Fourth Order Rung	-			1
Review of n methods, Nur	umerical integration methods: modified Euler and Fourth Order Rung merical stability,. Interfacing of Synchronous machine (classical machine	e) mo	odel	C	1
Review of n methods, Nur to the transie	umerical integration methods: modified Euler and Fourth Order Rung merical stability,. Interfacing of Synchronous machine (classical machine at stability algorithm (TSA) with partitioned – explicit approaches- Approaches	e) mo	odel	C	1
Review of n methods, Nur to the transie	umerical integration methods: modified Euler and Fourth Order Rung merical stability,. Interfacing of Synchronous machine (classical machine at stability algorithm (TSA) with partitioned – explicit approaches- Approaches	e) mo	odel	C	1
Review of n methods, Nun to the transie of TSA to SM	umerical integration methods: modified Euler and Fourth Order Rung merical stability,. Interfacing of Synchronous machine (classical machine ent stability algorithm (TSA) with partitioned — explicit approaches- Ap IIB system.	e) mo	odel	C	203
Review of n methods, Nun to the transie of TSA to SM	umerical integration methods: modified Euler and Fourth Order Rung merical stability,. Interfacing of Synchronous machine (classical machine ent stability algorithm (TSA) with partitioned — explicit approaches- Ap MIB system. VOLTAGE STABILITY	e) mo	odel tion	C	203
Review of n methods, Nunto the transie of TSA to SM UNIT – IV Factors affect	umerical integration methods: modified Euler and Fourth Order Rung merical stability,. Interfacing of Synchronous machine (classical machine ent stability algorithm (TSA) with partitioned — explicit approaches- Ap IIB system.	e) mo	odel tion	С	9
Review of n methods, Nunto the transie of TSA to SM UNIT – IV Factors affect characteristic	umerical integration methods: modified Euler and Fourth Order Rung merical stability,. Interfacing of Synchronous machine (classical machine ent stability algorithm (TSA) with partitioned – explicit approaches- Ap IIB system. VOLTAGE STABILITY ting voltage stability- Classification of Voltage stability-Transmissionsy	e) mo	odel tion	С	9
Review of n methods, Nunto the transie of TSA to SM UNIT – IV Factors affect characteristic compensating	umerical integration methods: modified Euler and Fourth Order Rung merical stability,. Interfacing of Synchronous machine (classical machine ent stability algorithm (TSA) with partitioned — explicit approaches- Ap IIB system. VOLTAGE STABILITY ting voltage stability- Classification of Voltage stability-Transmissionsy s- Generator characteristics- Load characteristics- Characteristics of react a Devices- Voltage collapse.	e) moplica	odel tion owe	С	903
Review of n methods, Nunto the transie of TSA to SM UNIT – IV Factors affect characteristic	umerical integration methods: modified Euler and Fourth Order Rung merical stability,. Interfacing of Synchronous machine (classical machine ent stability algorithm (TSA) with partitioned – explicit approaches- Ap IIB system. VOLTAGE STABILITY ting voltage stability- Classification of Voltage stability-Transmissionsy s- Generator characteristics- Load characteristics- Characteristics of react	e) moplica	odel tion owe	С	903
Review of n methods, Nunto the transie of TSA to SM UNIT – IV Factors affect characteristic compensating UNIT – V	umerical integration methods: modified Euler and Fourth Order Rung merical stability,. Interfacing of Synchronous machine (classical machine ent stability algorithm (TSA) with partitioned — explicit approaches- Ap IIB system. VOLTAGE STABILITY ting voltage stability- Classification of Voltage stability-Transmissionsy as- Generator characteristics- Load characteristics- Characteristics of react a Devices- Voltage collapse. ENHANCEMENT OF SMALL-SIGNAL STABILITY AND TRANS	e) mopplica	odel tion owe	C C	9
Review of n methods, Nunto the transie of TSA to SM UNIT – IV Factors affect characteristic compensating UNIT – V Power System	umerical integration methods: modified Euler and Fourth Order Rung merical stability,. Interfacing of Synchronous machine (classical machine ent stability algorithm (TSA) with partitioned — explicit approaches- Applies system. VOLTAGE STABILITY ting voltage stability- Classification of Voltage stability-Transmissionsy se- Generator characteristics- Load characteristics- Characteristics of react a Devices- Voltage collapse. ENHANCEMENT OF SMALL-SIGNAL STABILITY AND TRANSE STABILITY	e) mopplica	odel tion owe	C C	904
Review of n methods, Nunto the transie of TSA to SM UNIT – IV Factors affect characteristic compensating UNIT – V Power System	where integration methods: modified Euler and Fourth Order Rung merical stability. Interfacing of Synchronous machine (classical machine ent stability algorithm (TSA) with partitioned – explicit approaches- Applies system. VOLTAGE STABILITY ting voltage stability- Classification of Voltage stability-Transmissionsy serogenerator characteristics- Load characteristics- Characteristics of react and Devices- Voltage collapse. ENHANCEMENT OF SMALL-SIGNAL STABILITY AND TRANSESTABILITY In Stabilizer –. Principle behind transient stability enhancement methods: It learing, regulated shunt compensation, dynamic braking, reactor	e) mopplica	odel tion owe	C C	903
Review of n methods, Nunto the transie of TSA to SM UNIT – IV Factors affect characteristic compensating UNIT – V Power System speed fault compensations	umerical integration methods: modified Euler and Fourth Order Rung merical stability. Interfacing of Synchronous machine (classical machine ent stability algorithm (TSA) with partitioned — explicit approaches- Ap IIB system. VOLTAGE STABILITY ting voltage stability- Classification of Voltage stability-Transmissionsy s- Generator characteristics- Load characteristics- Characteristics of react a Devices- Voltage collapse. ENHANCEMENT OF SMALL-SIGNAL STABILITY AND TRANSE STABILITY In Stabilizer —. Principle behind transient stability enhancement methods:	e) mopplica	odel tion owe	C C	904
Review of n methods, Nunto the transie of TSA to SM UNIT – IV Factors affect characteristic compensating UNIT – V Power System speed fault compensations	umerical integration methods: modified Euler and Fourth Order Rung merical stability,. Interfacing of Synchronous machine (classical machine stability algorithm (TSA) with partitioned – explicit approaches- Ap IIB system. VOLTAGE STABILITY ting voltage stability- Classification of Voltage stability-Transmissionsy serogenerator characteristics- Load characteristics- Characteristics of react a Devices- Voltage collapse. ENHANCEMENT OF SMALL-SIGNAL STABILITY AND TRANSESTABILITY in Stabilizer –. Principle behind transient stability enhancement methods: It learing, regulated shunt compensation, dynamic braking, reactor Total	e) mopplicate stem tive phigh-	odel tion owe	C C	903
Review of n methods, Nunto the transie of TSA to SM UNIT – IV Factors affect characteristic compensating UNIT – V Power System speed fault compensations 1. Power	umerical integration methods: modified Euler and Fourth Order Rung merical stability,. Interfacing of Synchronous machine (classical machine and stability algorithm (TSA) with partitioned — explicit approaches—Ap IIB system. VOLTAGE STABILITY ting voltage stability- Classification of Voltage stability-Transmissionsy as—Generator characteristics—Load characteristics—Characteristics of react and Devices—Voltage collapse. ENHANCEMENT OF SMALL-SIGNAL STABILITY AND TRANSESTABILITY In Stabilizer — Principle behind transient stability enhancement methods: learing, regulated shunt compensation, dynamic braking, reactor Total Total Total Total	e) mopplicate stem tive phigh-	odel tion owe	C C	903
Review of n methods, Nun to the transie of TSA to SM UNIT – IV Factors affect characteristic compensating UNIT – V Power System speed fault compensation 1. Power McGr	where it is a stability. Interfacing of Synchronous machine (classical machine and stability). Interfacing of Synchronous machine (classical machine and stability) algorithm (TSA) with partitioned — explicit approaches—Applies system. VOLTAGE STABILITY It is a voltage stability—Classification of Voltage stability—Transmissionsy as—Generator characteristics—Load characteristics—Characteristics of react and Devices—Voltage collapse. ENHANCEMENT OF SMALL-SIGNAL STABILITY AND TRANSESTABILITY In Stabilizer—Principle behind transient stability enhancement methods: It learing, regulated shunt compensation, dynamic braking, reactor Total Total Total Total Total Type of the property of the pr	e) mopplica vistem tive p SIEN high-	odel tion owe	C C C C	903
Review of n methods, Nun to the transie of TSA to SM UNIT – IV Factors affect characteristic compensating UNIT – V Power System speed fault compensation 1. Power McGr 2. R.Ran	umerical integration methods: modified Euler and Fourth Order Rung merical stability,. Interfacing of Synchronous machine (classical machine and stability algorithm (TSA) with partitioned — explicit approaches—Ap IIB system. VOLTAGE STABILITY ting voltage stability- Classification of Voltage stability-Transmissionsy as—Generator characteristics—Load characteristics—Characteristics of react and Devices—Voltage collapse. ENHANCEMENT OF SMALL-SIGNAL STABILITY AND TRANSESTABILITY In Stabilizer — Principle behind transient stability enhancement methods: learing, regulated shunt compensation, dynamic braking, reactor Total Total Total Total	e) mopplica vistem tive p SIEN high-	odel tion owe	C C C C	903

- 1. Peter W., Saucer, Pai M.A., "Power System Dynamics and Stability, Pearson Education (Singapore), 9th Edition, 2007.
- 2. SB. Crary., "Power System Stability", John Wiley & Sons Limited, New Jersey, 2002.
- 3. K.N. Shubhanga, "Power System Analysis" Pearson, 2017.
- 4. Power systems dynamics: Stability and control / K.R. Padiyar, BS Publications, 2008
- 5. Power system control and Stability P.M. Anderson, A.A. Foud, Iowa State University Press, 2007.
- 6. NPTEL Video lecture notes on Power System Stability and Control by Dr. B. Kalyan Kumar, IIT Madras

Course Outcomes (CO)

Upon completion of the course, students will be

CO1	Able to understand the stability problems in power system and dynamic modelling of the synchronous machine.
CO2	Able to understand the small-signal modelling and the stability analysis.
CO3	Able to understand the transient stability modelling and its solution using classical and numerical methods.
CO4	Able to understand the voltage stability problems in power systems and its control.
CO5	Able to understand the design of power system stabilizer and the various methods of enhancing the power system stability.

Course Outcomes				Pro	ograi	n Ou	tcom	es						Program Specific Outcomes			
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	2	2	1	1	1	1	1	1	1	2	1	1	3	2	1		
CO2	3	2	1	1	1	1	1	1	1	2	1	2	3	2	1		
CO3	2	2	1	1	1	1	1	1	1	1	1	2	3	2	1		
CO4	2	1	1	1	1	1	1	1	1	1	1	2	3	2	1		
CO5	2	2	1	1	1	1	1	1	1	1	1	2	3	2	1		

VERTICAL II: CONVERTERS AND DRIVES

1984

Application', CRC Press, New York, 2001.

EE4007	SPECIAL ELECTRICAL MACHINES	L	T	P	С
		3	0	0	3
Objectives					
To impart know	ledge about the following topics				
	n, principle of operation, control and performance of stepping motors.				
 Construction 	n, principle of operation, control and performance of switched reluctan	nce r	noto	rs.	
	n, principle of operation, control and performance of permanent n	nagn	et bi	ush	less
D.C. motors					
	n, principle of operation and performance of permanent magnet synch	rono	us m	iotoi	S.
Construction	n, principle of operation and performance of other special Machines.				
TINITE T	CEEDDED MOTODS				Τ.
UNIT – I	STEPPER MOTORS	A o	1		9
	eatures —Principle of operation —Types — Torque predictions — Linear s — Drive circuits — Closed loop control — Concept of lead angle — App				01
- Characteristics	s – Drive circuits – Closed 100p control – Concept of lead angle – App	ncai	10118		
UNIT – II	SWITCHED RELUCTANCE MOTORS (SRM)				9
	features –Principle of operation– Torque prediction–Characteristic	c St	eady	,	
	ce prediction – Analytical Method – Power controllers – Control				02
	ss operation of SRM – Applications.	01 .	J1 1 111		_
<u> </u>	of operation of State Trippicontons				
UNIT – III	PERMANENT MAGNET BRUSHLESS D.C. MOTORS				9
Fundamentals of	of Permanent Magnets- Types- Principle of operation- Magneti	c ci	rcuit		
	and Torque equations— Power Converter Circuits and their cont				03
Characteristics a	nd control- Applications				
UNIT – IV	PERMANENT MAGNET SYNCHRONOUS MOTORS (PMSM	,			9
	features -Principle of operation - EMF and Torque equations				
	practical windings – Power controllers – performance characteristics	–Di	igital	. C	O 4
controllers – Ap	plications.				
TINITE T	OWNED ODECLAL MACHINES				Τ_
UNIT – V	OTHER SPECIAL MACHINES Features Principle of appretion and Characteristics of Hystoresis		2+0#	\neg	9
	features – Principle of operation and Characteristics of Hysteresis			C	O 5
Sylicinollous Re	luctance Motor– Linear Induction motor– Repulsion motor– Applicat	ions.	•		
	Tota	l Do	riod	g•	45
	1002	1110	Hou	3.	4 3
Text Books:					
	Miller, 'Brushless Permanent-Magnet and Reluctance Motor	Driv	es'	Oxf	ord
	ty Press, 1989.	4.4 * '	,	J 111	
	ataratnam, 'Special Electrical Machines', Universities Press (India)	Priva	ate I	_imi	ted,
2008.	•				
References:					
1. T. Kenjo,	'Stepping Motors and Their Microprocessor Controls', Clarendor	Pre	ess I	Lond	on,

2. E.G. Janardanan, 'Special electrical machines', PHI learning Private Limited, Delhi, 2014R. Krishnan, 'Switched Reluctance Motor Drives - Modeling, Simulation, Analysis, Design and

- 3. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988.
- 4. T. J. E. Miller, 'Brushless Permanent–Magnet and Reluctance Motor Drives', Oxford University Press, 1989.
- 5. R. Srinivasan, 'Special Electrical Machines', Lakshmi Publications, 2013.
- 6. NPTEL Video Lecture Notes on "Special Electromechanical Systems" by Prof. Sreenivasa Murthy, IIT Delhi.

Course Outcomes (CO)

Upon completion of the course, students should have the

- CO1 Ability to analyse and design controllers for special Electrical Machines and knowledge on construction and operation of stepper motor.
- CO2 Ability to acquire the knowledge on construction and operation of switched reluctance motors.
- CO3 Ability to acquire the knowledge on construction and operation of permanent magnet brushless D.C. motors.
- CO4 Ability to acquire the knowledge on construction and operation of permanent magnet synchronous motors.
- CO5 Ability to select a special Machine for a particular application

Course	·		1	J	Progr	am O	utcor	nes	-11				Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	2	1	1	1	1	1	1	1	2	1	1	3	2	2	
CO2	3	2	1	1	1	1	1	1	1	2	1	2	3	2	2	
CO3	3	2	1	1	1	1	1	1	1	1	1	2	3	2	2	
CO4	3	1	1	1	1	1	1	1	1	1	1	2	3	2	2	
CO5	3	2	1	1	1	1	1	1	1	1	1	2	3	2	2	

EE4008	DESIGN OF ELECTRICAL APPARATUS	L	T	P	C
		3	0	0	3

Objectives

To impart knowledge about the following topics:

- Magnetic circuit parameters and thermal rating of various types of electrical machines.
- Armature and field systems for DC Machines.
- Core, yoke, windings and cooling systems of transformers.
- Design of stator and rotor of induction machines and synchronous machines.
- The importance of computer aided design method.

UNIT – I DESIGN OF FIELD SYSTEM AND ARMATURE

Major considerations in Electrical Machine Design – Materials for Electrical apparatus – Design of Magnetic circuits – Magnetising current – Flux leakage – Leakage in Armature. Design of lap winding and wave winding.

CO₁

9

9

UNIT – II DESIGN OF TRANSFORMERS

Construction - KVA output for single and three phase transformers - Overall dimensions - design of yoke, core and winding for core and shell type transformers - Estimation of No load current - Temperature rise in Transformers - Design of Tank and cooling tubes of Transformers.

CO₂

Compater program	m: Complete Design of single phase core transformer.	
UNIT – III D	DESIGN OF DC MACHINES	9
number of poles	atput Equations – Main Dimensions – Choice of specific loadings – Selection of – Design of Armature – Design of commutator and brushes – design of field m: Design of Armature main dimensions.	СО
UNIT – IV D	DESIGN OF INDUCTION MOTORS	9
loadings – Desig Operating charac	Output equation of Induction motor – Main dimensions – choice of specific on of squirrel cage rotor and wound rotor – Magnetic leakage calculations – eteristics: Magnetizing current - Short circuit current – Circle diagram - m: Design of slip-ring rotor.	СО
UNIT – V D	DESIGN OF SYNCHRONOUS MACHINES	9
Output equations ratio – Armature winding – Determ	- choice of specific loadings – Design of salient pole machines – Short circuit design – Estimation of air gap length – Design of rotor –Design of damper mination of full load field MMF – Design of field winding – Design of turbo outer program: Design of Stator main dimensions-Brushless DC Machines.	СО
		45

- 1. M V Deshpande 'Design and Testing of Electrical Machines' PHI learning Pvt Lt, 2011.
- 2. Sen, S.K., 'Principles of Electrical Machine Designs with Computer Programmes', Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, Second Edition, 2009.

References:

- 1. Shanmugasundaram, G.Gangadharan, R.Palani 'Electrical Machine Design Data Book', New Age International Pvt. Ltd., Reprint2007.
- 1. 'Electrical Machine Design', Balbir Singh, Vikas Publishing House Private Limited, 1981.
- 2. V Rajini, V.S Nagarajan, 'Electrical Machine Design', Pearson, 2017.
- 3. K.M.Vishnumurthy 'Computer aided design of electrical machines' B S Publications, 2008.
- 4. Sawhney, A.K., 'A Course in Electrical Machine Design', Dhanpat Rai& Sons, New Delhi, Fifth Edition, 1984.
- 5. NPTEL Video Lecture Notes on "Modelling and Analysis of Electric Machines," by Dr. Krishna Vasudevan, IIT Madras

Course Outcomes (CO)

Upon completion of the course, students will be

CO1	Able to understand the design of field system and armature.
CO2	Able to design the single and three phase transformer.
CO3	Able to design armature and field of DC machines.
CO4	Able to design stator and rotor of induction motor.
CO5	Able to design and analyze synchronous machines.

Course	Program Outcomes										Program Specific Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	2	3	1	3	3	3	3	3	1	1	3	3	2	1
CO2	3	2	1	1	1	1	1	1	2	1	1	2	3	2	1

CO3	3	2	3	2	2	3	3	3	2	3	1	3	3	2	1
CO4	3	3	3	3	3	3	3	3	2	3	1	3	2	3	1
CO5	3	3	3	3	3	2	3	3	1	3	3	2	3	3	1

EE4009	MULTILEVEL POWER CONVERTERS	L	T	P	C
		2	0	2	3

Objectives

- To learn multilevel topology (Symmetry & Asymmetry) with common DC bus link.
- To study the working of cascaded H Bridge, Diode Clamped and Flying Capacitor MLI.
- To study the working of MLI with reduced switch count.
- To simulate three level diode clamped MLI and three level flying capacitor based MLI with resistive and reactive load
- To simulate the MLI with reduced switch count.

UNIT – I MULTILEVEL TOPOLOGIES

6

Introduction – Generalized Topology with a Common DC bus – Converters derived from the generalized topology – symmetric topology without a common DC link – Asymmetric topology.

UNIT – II CASCADED H-BRIDGE MULTILEVEL INVERTERS

CO1

6

Introduction -H-Bridge Inverter, Bipolar Pulse Width Modulation, Unipolar Pulse Width Modulation. Multilevel Inverter Topologies, CHB Inverter with Equal DC Voltage, H-Bridges with Unequal DC Voltages – PWM, Carrier-Based PWM Schemes, Phase-Shifted Multicarrier Modulation, Level-Shifted Multicarrier Modulation, Comparison Between Phase- and Level-Shifted PWM Schemes-Staircase Modulation

CO₂

UNIT – III DIODE CLAMPED MULTILEVEL CONVERTER

6

Introduction – Converter structure and Functional Description – Modulation of Multilevel converters – Voltage balance Control – Effectiveness Boundary of voltage balancing in DCMC converters – Performance results.

CO₃

UNIT – IV FLYING CAPACITOR MULTILEVEL CONVERTER

6 CO4

Introduction – Flying Capacitor topology – Modulation scheme for the FCMC – Dynamic voltage balance of FCMC.

UNIT – V MULTILEVEL CONVERTER WITH REDUCED SWITCH COUNT

6

Multilevel inverter with reduced switch count-structures, working principles and pulse generation methods.

CO5

Total Periods:

LAB COMPONENT:

30 PERIODS

- 1. Simulation of Fixed PWM, Sinusoidal PWM for an inverter,
- 2. Simulation of H bridge inverter with R load.
- 3. Simulation of three level diode clamped MLI with R load.
- 4. Simulation of three level capacitor clamped MLI with R load
- 5. Simulation of MLI with reduced switch configuration.

TOTAL: 30+30 = 60 PERIODS

Text Books:

- Rashid M.H, "Power Electronics Circuits, Devices and Applications", Prentice Hall India, Third Edition, New Delhi, 2014 Pearson 4th edition.
- 2. Sergio Alberto Gonzalez, Santiago Andres Verne, Maria Ines Valla, "Multilevel Converters for Industrial Applications", CRC Press, 22-Jul-2013, 2017 1st Edition.
- 3. BinWu, Mehdi Narimani, High Power Converters and AC drives by IEEE press 2017, 2nd Edition.

References:

- 1. Thomas A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, D.Grahame Holmes, John Wiley & Sons, Oct-2003, 1st Edition.
- 2. Fang Lin Luo, Hong Ye, Advanced DC/AC Inverters: Applications in Renewable Energy, CRC Press, 22-Jan-2013, 2017, 1st Edition.
- 3. Hani Vahedi, Mohamed Trabelsi, Single-DC-Source Multilevel Inverters, Springer, 2019, 1st Edition.
- 4. Ersan Kabalcı, Multilevel Inverters Introduction and Emergent Topologies, Academic Press Inc,2021, 1st Edition.
- 5. Iftekhar Maswood, Dehghani Tafti, Advanced Multilevel Converters and Applications in Grid Integration, Wiley, 2018, 1st Edition.

Course Outcomes (CO)

Upon co	mpletion of the course, students will be able to
CO1	Examine the different topologies of multilevel inverters (MLIs) with and without DC link
	capacitor
CO2	Demonstrate the working principles of Cascaded H-Bridge MLI, diode clamped MLI, flying
	capacitor MLI and MLI with reduced switch count
CO3	Analyze the voltage balancing performance in Diode clamped MLI.
CO4	Simulate three level, capacitor clamed and diode clamped MLI with R and RL load.
CO5	Simulate MLI with reduced switch configuration using fundamental switching scheme.

Course		Program Outcomes										Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	2	2	3	-	-	2	1	-	3	-	3	3	3	1
CO2	3	2	2	3	_	_	2	1	-	3	-	3	3	3	1
CO3	3	3	3	3	-	-	2	1	-	3	-	3	3	3	1
CO4	3	3	3	3	3	_	2	1	-	3	-	3	3	3	1
CO5	3	3	3	3	3	-	2	1	_	3	_	3	3	3	1

EE4010	ELECTRIC VEHICLE	L	T	P	C
		2	0	2	3

Objectives

- To provide knowledge of the operation and dynamics of electrical vehicles
- To impart knowledge on vehicle control for standard drive cycles of electrical vehicles (EVs)
- To estimate the energy requirement of EVs and Hybrid Electric Vehicles (HEVs)
- To provide knowledge about different energy sources and energy management in HEVs.
- To provide knowledge of supervisory control of EVs

UNIT - I INTRODUCTION TO CONVENTIONAL AND ELECTRIC VEHICLES

6

Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization,	
transmission characteristics. Electric Vehicle: EV system-History of evolution of Electric	
Vehicles - Series parallel architecture of Hybrid Electric Vehicles (HEV) - Plug-in Hybrid	CO1
Electric Vehicles (PHEV)- Power train components and sizing, Gears, Clutches, Transmission	
and Brakes.	
UNIT - II MECHANICS OF ELECTRIC VEHICLES	6
Fundamentals of vehicle mechanics - tractive force, power and energy requirements for	COA
standard drive cycles of EV's - motor torque and power rating and battery capacity.	CO2
UNIT - III CONTROL OF DC AND AC MOTOR DRIVES	6
Speed control for constant torque, constant HP operation of all electric motors - DC/DC	
chopper based four quadrant operation of DC motor drives, inverter based V/f Operation	CO2
(motoring and braking) of induction motor drives, vector control operation of Induction motor	CO3
and PMSM, Brushless DC motor drives, Switched reluctance motor (SRM) drives.	
and Tribin, Brasiness Be motor drives, a whence retardance motor (Starr) drives.	<u> </u>
UNIT - IV ENERGY STORAGE AND MANAGEMENT SYSTEMS	6
Battery: Principle of operation, types, models, Estimation of SOC & SOH, Traction Batteries	
and their capacity for standard drive cycles. Alternate sources: Fuel cells, Ultra capacitors,	CO4
Fly wheels. Energy management systems-Classification of different management strategies	
Try wheels. Energy management systems etassification of different management strategies	<u> </u>
UNIT - V HYBRID VEHICLE CONTROL STRATEGY	6
HEV supervisory control - Selection of modes - power spilt mode - parallel mode - engine	COF
brake mode - regeneration mode - series parallel mode.	CO5
Total Periods:	30
I AD COMPONENTE	TODG.
LAB COMPONENT: 30 PER	פעטו
1. Simulation of buck, boost and buck boost converter-open loop	
2. Simulation of boost converter based power factor correction.	
3. Simulation of energy storage system for EV.	
4. Lithium Ion Battery Handling	
5. BLDC Hub Motor Control for EV	
TOTAL: $30+30 = 60$ PER	ODS
Text Books:	
1. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fu	el Cel
Vahialas: Fundamentals, Theory, and Dosign, CPC Press, 2004	

- Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.
- 2. Iqbal Husain, "Electric and Hybrid vehicles: Design fundamentals", CRC PRESS, Boca Raton London, New York Washington D.C, 2005.

References:

- 1. C. Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.
- 2. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.
- 3. Larminie, James, and John Lowry, "Electric Vehicle Technology Explained" John Wiley and Sons, 2012.
- 4. Tariq Muneer and Irene Illescas García, "The automobile, In Electric Vehicles: Prospects and Challenges", Elsevier, 2017.
- 5. Sheldon S. Williamson, "Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles", Springer, 2013.
- 6. Wei Liu, "Hybrid Electric Vehicle System Modeling and Control", Second Edition, WILEY,

	2017.
7.	NPTEL Video Lecture Notes on "Electric Vehicles" By Prof. Amit Jain, IIT Delhi
Course	e Outcomes (CO)
Upon o	completion of the course, students will be able to
CO1	Learn the significance of Electric Vehicle compared to conventional vehicles.
CO2	Understand the mechanics of Electric Vehicles.
CO3	Acquire knowledge in Control of DC And AC Motor Drives.
CO4	Understand the analyse the different strategies related to battery technology and energy
	storage systems.
CO5	Acquire knowledge in control strategy for Hybrid Vehicle & Battery management systems

Course Outcomes			Program Specific Outcomes												
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	3	2	2	1	3	2	3	3	3	3	1
CO2	3	3	3	3	3	2	2	1	3	2	3	2	3	3	1
CO3	3	3	3	3	2	2	2	1	2	2	3	3	3	3	1
CO4	3	3	3	3	3	3	3	1	3	3	3	3	3	3	1
CO5	3	3	3	3	3	3	3	1	3	3	3	3	3	3	1

EE4011	LINE COMMUTATED & ACTIVE RECTIFIERS	L	T	P	C
		3	0	0	3

Objectives

for EV

To impart knowledge about the following topics:

- Able to understand the diode, thyristor rectifiers with passive filtering
- Able to understand the multi pulse converter
- Able to understand the single–phase ac–dc single–switch boost converter
- Able to understand the isolated single—phase ac—dc flyback converter

• Able to	understand the isolated single—phase ac—dc hydack converter		
UNIT – I	DIODE RECTIFIERS WITH PASSIVE FILTERING	9)
Half-wave did	ode rectifier with RL and RC loads; 1-phase full-wave diode rectifier with L, C		
and LC filter;	3-phase diode rectifier with L, C and LC filter; continuous and discontinuous	CO ₁	l
conduction, in	put current waveshape, effect of source inductance; commutation overlap.		
UNIT – II	THYRISTOR RECTIFIERS WITH PASSIVE FILTERING	9)
Half-wave thy	ristor rectifier with RL and RC loads; 1-phase thyristor rectifier with L and LC		
filter; 3-phas	e thyristor rectifier with L and LC filter; continuous and discontinuous	CO ₂	2
conduction, in	put current waveshape.		
UNIT – III	MULTI-PULSE CONVERTER	9)
	nsformer phase shifting, generation of 6-phase ac voltage from 3-phase ac, 6- er and 12-pulse converters with inductive loads, steady state analysis,	CO3	3

			_
UNIT – IV	SINGLE-PHASE AC-DC SINGLE-SWITCH BOOST CONVERTER		9
	-dc boost converter, power circuit of single–switch ac–dc converter, steady state y power factor operation, closed–loop control structure. Review of 1–phase		
	-phase inverter, power circuits of 1-phase and 3-phase ac-dc boost converter,	CO	74
	nalysis, operation at leading, lagging and unity power factors. Rectification and		<i>)</i> +
•	nodes. Phasor diagrams, closed—loop control structure.		
regenerating i	iodes. I hasor diagrams, crosed 100p control structure.		
UNIT – V	ISOLATED SINGLE-PHASE AC-DC FLYBACK CONVERTER		9
Dc-dc flybacl	converter, output voltage as a function of duty ratio and transformer turns ratio.		
	of ac-dc flyback converter, steady state analysis, unity power factor operation,	CO)5
closed loop co	ntrol structure.		
Total Periods	:	4	5
Text Books:			
1. G. De.	'Principles of Thyristorised Converters', Oxford & IBH Publishing Co, 1988.		
2. J.G. I	Kassakian, M. F. Schlecht and G. C. Verghese, 'Principles of Power Elect	roni	cs
Addis	on–Wesley, 1991.		
References:			
	han and T. M. Undeland, 'Power Electronics: Converters, Applications and Design	n', J	oł
	& Sons, 2007.		
	& Sons, 2007. Erickson and D. Maksimovic, 'Fundamentals of Power Electronics', Springer S	Scie	enc
&Busi	& Sons, 2007. Erickson and D. Maksimovic, 'Fundamentals of Power Electronics', Springer Soness Media, 2001.	Scie	enc
&Busi 3. L. Um	& Sons, 2007. Erickson and D. Maksimovic, 'Fundamentals of Power Electronics', Springer Sons Media, 2001. anand, 'Power Electronics: Essentials and Applications', Wiley India, 2009.		
&Busi 3. L. Um 4. NPTE	& Sons, 2007. Erickson and D. Maksimovic, 'Fundamentals of Power Electronics', Springer Soness Media, 2001.		
&Busi 3. L. Um	& Sons, 2007. Erickson and D. Maksimovic, 'Fundamentals of Power Electronics', Springer Sons Media, 2001. anand, 'Power Electronics: Essentials and Applications', Wiley India, 2009.		
&Busi 3. L. Um 4. NPTE	& Sons, 2007. Erickson and D. Maksimovic, 'Fundamentals of Power Electronics', Springer Sons Media, 2001. anand, 'Power Electronics: Essentials and Applications', Wiley India, 2009.		
&Busi 3. L. Um 4. NPTE	& Sons, 2007. Erickson and D. Maksimovic, 'Fundamentals of Power Electronics', Springer Sons Media, 2001. anand, 'Power Electronics: Essentials and Applications', Wiley India, 2009. L Video Lecture Notes on "DC Power Transmission Systems" By Prof. Amit J.		
&Busi 3. L. Um 4. NPTE Delhi.	& Sons, 2007. Erickson and D. Maksimovic, 'Fundamentals of Power Electronics', Springer Sons Media, 2001. anand, 'Power Electronics: Essentials and Applications', Wiley India, 2009. L Video Lecture Notes on "DC Power Transmission Systems" By Prof. Amit J.		

oletion of the course, students will be able to									
Upon completion of the course, students will be able to									
alyse controlled rectifier circuits.									
derstand the operation of line-commutated rectifiers with passive filtering.									
derstand the operation of multi pulse converter.									
derstand the operation of PWM rectifiers - operation in rectification and regeneration									
odes and lagging, leading and unity power factor mode									
now the concepts about the flyback converter									

Course					Pro	gram	Outo	comes	5				Program Specific Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	3	2	3	1	1	1	1	1	1	1	1	1	3	1	1		
CO2	3	2	3	1	1	1	1	1	1	1	1	1	3	1	1		
CO3	3	2	3	2	1	1	1	1	1	1	1	1	3	3	2		
CO4	3	2	3	2	1	1	1	1	1	1	1	1	3	3	2		
CO5	3	1	3	1	1	1	1	1	1	1	1	1	2	3	1		

EE4012	POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS	L	Т	P	С
		3	0	0	3
Ol. 1					
Objectives To import know	wledge about the following topics:				
To proTo equence	wiedge about the following topics. vide knowledge about the stand alone and grid connected renewable eneming with required skills to derive the criteria for the design of power, ble energy applications. If you are topics and comprehend the various operating modes of wind electrical	r co	nvei	rters	for
solar erTo desfor reno	nergy systems. ign different power converters namely AC to DC, DC to DC and AC to ewable energy systems.				
• To dev	elop maximum power point tracking algorithms.				
UNIT – I	INTRODUCTION				9
on environme	aspects of electric energy conversion: impacts of renewable energy gent (cost-GHG Emission) - Qualitative study of different renewablear, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems an rgy systems.	e er	ergy		01
UNIT – II	ELECTRICAL MACHINES FOR RENEWABLE ENERGY CON	IVE	RSI	ON	9
	ory fundamentals-principle of operation and analysis: IG, PMSG, S			1	202
UNIT – III	POWER CONVERTERS				9
Solar: Block of converters (inv sizing, array	liagram of solar photo voltaic system -Principle of operation: line conversion mode) - Boost and buck-boost converters- selection of invertersizing Wind: Three phase AC voltage controllers- AC-DC-AC coectifiers, PWM Inverters, Grid Interactive Inverters.	r, ba	ittery	/	203
UNIT – IV	ANALYSIS OF WIND AND PV SYSTEMS				9
Stand alone of	peration of fixed and variable speed wind energy conversion systems connection Issues -Grid integrated PMSG, SCIG Based WECS, grid In				19 204
TINITE X	THYDDID DENIGHA DE E ENED CY CYCEPING				Τ <u>α</u>
•	HYBRID RENEWABLE ENERGY SYSTEMS orid Systems- Range and type of Hybrid systems- Case studies of ver Point Tracking (MPPT).	Win	d-PV	/ C	9
Total Periods	:				45
Text Books:					
1. S. N. 1 2005.	Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Systems", Oxford Unan Non-conventional Energy sources Tata McGraw-hill Publishing 2009				
References:					
2. Ion Bo	.M. H "power electronics Hand book", Academic press, 2001. ldea, "Variable speed generators", Taylor & Francis group, 2006. D, "Non conventional energy sources", Khanna publishes, 1993.				

- 4. Gray, L. Johnson, "Wind energy system", prentice hall linc, 1995.
- 5. Andrzej M. Trzynnadlowski, 'Introduction to Modern Power Electronics', Second edition, wiley India Pvt. Ltd, 2012.
- 6. NPTEL Video Lecture Notes on "Advance Power electronics and Control" by Prof. Avik Bhattacharya, IIT Roorkee.

Course Outcomes (CO)

Upon completion of the course, students will be able to

c pon c	onipietion of the course, statement will be take to
CO1	Analyse impacts of renewable energy generation on environment.
CO2	Understand the operation of electrical machines for renewable energy conversion.
CO3	Understand the operation of converters used in renewable energy conversion.
CO4	Analyse the working of wind and PV systems.
CO5	Know the concepts about hybrid renewable energy systems.

Course	Program Outcomes												Program Specific Outcomes					
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	1 2 3				
CO1	3	2	3	1	1	1	1	1	1	1	1	1	3	1	1			
CO2	3	2	3	1	1	1	1	1	1	1	1	1	3	1	1			
CO3	3	2	3	2	1	1	1	1	1	1	1	1	3	3	2			
CO4	3	2	3	2	1	1	1	1	1	1	1	1	3	3	2			
CO5	3	1	3	1	1	1	1	1	1	1	1	1	2	3	1			

VERTICAL III – EMBEDDED SYSTEMS

EE4013		L 3	T 0	P 0	<u>C</u>
			v		
Objectives					
-	ledge about the following topics:				
_	and systems & their mathematical representation.				
	time systems.				
	mation techniques & their computation.				
	nd their design for digital implementation.				
 Program 	mability digital signal processor & quantization effects.				
TINITE I	INTEROPLICATION				10
UNIT – I	INTRODUCTION for system of Continuous discrete linear course stability dynamic res				9
time variance; mathematical re	f systems: Continuous, discrete, linear, causal, stability, dynamic, re- classification of signals: continuous and discrete, energy and expresentation of signals; spectral density; sampling techniques, quantor, Nyquist rate, aliasing effect.	po	wer;	; _	:01
UNIT – II	DISCRETE TIME SYSTEM ANALYSIS				9
	d its properties, inverse z-transforms; difference equation – Solu	ıtior	hv	7	
ztransform, app	Discrete Time Fourier transform, magnitude and phase representation.				O2
UNIT – III	DISCRETE FOURIER TRANSFORM & COMPUTATION				9
	Transform- properties, magnitude and phase representation - Computalgorithm – DIT &DIF using radix 2 FFT – Butterfly structure.	tatio	on of	C	:03
UNIT – IV	DESIGN OF DIGITAL FILTERS				9
Need and choice and Chebyshev	realization – Parallel & cascade forms. FIR design: Windowing Technology of windows – Linear phase characteristics. Analog filter design – But approximations; IIR Filters, digital design using impulse invariant and Warping, pre warping.	terw	orth	1 6	:O4
UNIT – V	DIGITAL SIGNAL PROCESSORS				9
	Architecture – Features – Addressing Formats – Functional r Commercial DS Processors.	node	es -	C	:05
	Total Pe	erio	ds:	45	
Applicat	pakis and D.G. Manolakis, 'Digital Signal Processing Principles, Asions', Pearson Education, New Delhi, PHI. 2003.				
2. S.K. Mit 2013.	tra, 'Digital Signal Processing – A Computer Based Approach', Mcc		v H	III E	lau
References:					
2. Robert	Chandra S, Sasikala. B, Digital Signal Processing, Vijay Nicole/TMH,2 Schilling & Sandra L.Harris, Introduction to Digital Signal Pr. B", Cengage Learning,2014.			g us	sing
MAILA	D, Cengage Learning, 2014.				

- 2010
- 4. Taan S. ElAli, 'Discrete Systems and Digital Signal Processing with Mat Lab', CRC Press,
- 5. Lonnie C. Ludeman, "Fundamentals of Digital Signal Processing", Wiley, 2013.
- 6. Dimitris G.Manolakis, Vinay K. Ingle, Applied Digital Signal Processing, Cambridge, 2012
- 7. NPTEL Video Lecture Notes on "Digital Signal Processing" by Prof. S.C.Dutta Roy, IIT Delhi.

Course Outcomes (CO)

Upon completion of the course, students should have the

- Ability to acquire knowledge on Signals and systems & their mathematical representation. CO₁ CO₂ Ability to understand and analyze the discrete time systems. Ability to analyze the transformation techniques & their computation.
- CO3
- Ability to understand the types of filters and their design for digital implementation. CO₄ CO₅ Ability to acquire knowledge on programmability digital signal processor & quantization
- effects.

Course Outcomes					Pro	gram	Outo	comes	3				Program Specific Outcomes			
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	2	3	3	3	2	1	1	1	2	1	3	2	3	1	
CO2	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1	
CO3	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1	
CO4	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1	
CO5	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1	

EE4014	MEMS AND NEMS	L	T	P	C
		3	0	0	3

Objectives

- To introduce the concepts of micro and nano electromechanical devices
- To know the fabrication process of Microsystems
- To know the design concepts of micro sensors and micro actuators
- To introduce the concepts of quantum mechanics and nano systems

UNIT – I INTRODUCTION TO MEMS AND NEMS

9

Introduction to Design of MEMS and NEMS, Overview of Nano and Micro electromechanical Systems, Applications of Micro and Nano electromechanical systems, Materials for MEMS **CO1** and NEMS: Silicon, silicon compounds, polymers, metals.

MEMS FABRICATION TECHNOLOGIES UNIT – II

9

Photolithography, Ion Implantation, Diffusion, Oxidation, CVD, Sputtering Etching CO₂ techniques, Micromachining: Bulk Micromachining, Surface Micromachining, LIGA.

UNIT – III **MICRO SENSORS**

9

MEMS Sensors: Design of Acoustic wave sensors, Vibratory gyroscope, Capacitive Pressure sensors, Case study: Piezoelectric energy harvester.

CO₃

UNIT – IV MICRO ACTUATORS	9
Design of Actuators: Actuation using thermal forces, Actuation using shape memory Alloys,	
Actuation using piezoelectric crystals, Actuation using Electrostatic forces, Case Study:RF	CO ₄
Switch.	
UNIT – V NANO DEVICES	9
Atomic Structures and Quantum Mechanics, Shrodinger Equation, ZnO nanorods based	CO5
NEMS device: Gas sensor.	CU3
Total Periods: 45	 5

Text Books:

- 1. Marc Madou, "Fundamentals of Microfabrication", CRC press 1997.
- 2. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers, 2001

References:

- 1. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata Mcraw Hill, 2002.
- 2. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006,
- 3. Sergey Edward Lyshevski, "MEMS and NEMS: Systems, Devices, and Structures" CRC Press, 2002
- 4. NPTEL Video Lecture Notes on "MEMS and Microsystems" by Prof. Santiram Kal, IIT Kharagpur.

Course Outcomes (CO)

Upon completion of the course, students will be able to

- CO1 Interpret the basics of micro/nano electromechanical systems including their applications and advantages

 CO2 Recognize the use of materials in micro fabrication and describe the fabrication processes including surface micromachining, bulk micromachining and LIGA.

 CO3 Analyze the key performance aspects of sensors.
- CO4 Analyze the key performance aspects of actuators.
- CO5 Comprehend the theoretical foundations of quantum mechanics and Nano systems

Course Outcomes		Program Outcomes													m ic nes
	a	a b c d e f g h i j k l										1	2	3	
CO1	3	2	3	3	3	2	1	1	1	2	1	3	2	3	1
CO2	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1
CO3	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1
CO4	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1
CO5	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1

EE4015	OPERATING SYSTEMS	L	T	P	C
		3	0	0	3
UNIT – I	OPERATING SYSTEMS OVERVIEW				9

Operating exete	em overview: Objectives – functions - Computer System Organization-	
	m Structure - Operating System Operations - Computer System Organization-	CO
Operating 5 yste	in Structure - Operating System Operations- System Cans, System Programs.	
UNIT – II	PROCESS MANAGEMENT	
	ess Concept - Process Scheduling - Operations on Processes – Inter process	
	Process Synchronization: The Critical-Section Problem - Semaphores -	CO
	as of Synchronization – Monitors.	
Classic I Tooleii	5 of Sylicinomization Promisors.	
UNIT – III	SCHEDULING AND DEADLOCK MANAGEMENT	
CPU Schedulir	ng: Scheduling Criteria - Scheduling Algorithms. Deadlocks: Deadlock	•
Characterization	n - Methods for Handling Deadlocks - Deadlock Prevention - Deadlock	CO
Avoidance - De	adlock Detection - Recovery from Deadlock.	
UNIT – IV	MEMORY MANAGEMENT	
	Swapping - Contiguous Memory Allocation, Segmentation, Paging. Virtual	CO
Memory: Dema	nd Paging - Page Replacement - Allocation of Frames - Thrashing.	
TINITE V	CTOD A CE MANIA CEMENT	
UNIT – V	STORAGE MANAGEMENT	
	tructure: Disk Structure - Disk Scheduling - Disk Management. File-System	00
	Concepts, Directory Structure - File Sharing – Protection. File System. Case	CO
Study: Linux op	erating system and Windows10	
	Total Periods: 4	45
Text Books:		** 0
	n Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts	s", 9
	nn Wiley and Sons Inc., 2012.	
2. Richard	Petersen, "Linux: The Complete Reference", 6th Edition, Tata McGraw-Hill, 200)8.
References:		
	Tanenbaum, "Modern Operating Systems", 4th Edition, Prentice Hall, Wesley, 20	014
	allings, "Operating Systems – Internals and Design Principles", 7th Edition, Programme 2015, 201	
Hall, 2011.	annigs, Operating Systems – internals and Design Finiciples, / Edition, Fi	CHUC
	Deitel, "Operating Systems", 7 th Edition, Prentice Hall, 2003.	
	idhere, "Operating Systems: A Concept-Based Approach", 2 nd Edition, Tata McC	Grass
Hill Educat		Oran
	cowley, "Operating Systems: A Design-Oriented Approach", Tata McGraw	, H;
Education"		V 111
Laucation	, 1770.	
Course Outcon	200 (CO)	
	on of the course, students will be able to	
	the operating system program, structures and operations with system calls	
-	ne process management concept for real time problems.	
11.	e CPU scheduling algorithms and to handle the deadlock for the given situation.	
p.miii	the concepts of various memory management techniques.	
CO5 Summar	the concepts of various memory management techniques. rize the storage concepts of disk and file.	

Course Outcomes			Program Specific Outcomes												
	a	a b c d e f g h i j k l											1	2	3
CO1	1	2	2	-	-	-	-	-	-	-	-	-	2	3	1
CO2	1	3	2	2	2	-	1	2	1	-	1	2	3	3	1
CO3	1	3	2	2	1	-	-	-	1	-	-	-	3	3	1
CO4	1	2	2	2	1	-	-	2	-	-	-	1	3	3	1
CO5	1	2	2	1	-	1	-	-	-	-	-	1	3	3	1

MICROCONTROLLER BASED SYSTEM DESIGN

EE4016

3 0	0 3
Objectives	
To impart knowledge about the following topics:	
Architecture of PIC microcontroller	
 Interrupts and timers 	
Peripheral devices for data communication and transfer	
Functional blocks of ARM processor	
Architecture of ARM processors	
UNIT - I INTRODUCTION TO PIC MICROCONTROLLER	9
Introduction to PIC Microcontroller–PIC 16C6x and PIC16C7x Architecture- Pipelining -	
Program Memory considerations – Register File Structure - Instruction Set - Addressing modes – Simple Operations.	CO1
UNIT - II INTERRUPTS AND TIMER	9
PIC micro controller Interrupts- External Interrupts-Interrupt Programming—Loop time subroutine Timers-Timer Programming— Front panel I/O-Soft Keys— State machines and key switches— Display of Constant and Variable strings.	CO2
TINES THE DEDUCTED AT CLAND INVESTIGATION	
UNIT - III PERIPHERALS AND INTERFACING	9
I ² C Bus for Peripherals Chip Access: Bus operation-Bus subroutines— Serial EEPROM-Analog to Digital Converter, UART-Baud rate selection—Data handling circuit—Initialization, LCD and keyboard Interfacing, ADC, DAC and Sensor Interfacing.	CO3
UNIT - IV ARM ORGANIZATION	9
3-Stage Pipeline ARM Organization—5-Stage Pipeline ARM Organization—ARM Instruction	
Execution - ARM Implementation— ARM Instruction Set— ARM coprocessor interface—	CO4
Architectural support for High Level Languages	
UNIT - V APPLICATIONS	9
Embedded ARM & PIC Applications. Temperature control system –stepper motor control -	
Usage of IDE for assembly language programming.	CO5

Text Books:

- 1. Peatman, J.B., "Design with PIC Micro Controllers" Pearson Education, 3rd Edition, 2004.
- 2. Furber,S., "ARM System on Chip Architecture" Addison Wesley trade Computer Publication, 2000.

References:

- 1. Mazidi M.A., "PIC Microcontroller" Rollin Mckinlay, Danny causey, Prentice Hall of India, 2007
- 2. Muhammad Ali Mazidi, Rolin D. Mckinlay, Danny Causey 'PIC Microcontroller and Embedded Systems using Assembly and C for PIC18', Pearson Education 2008
- 3. John Iovine, 'PIC Microcontroller Project Book', McGraw Hill 2000
- 4. NPTEL Video Lecture Notes on "Embedded System Design with ARM" by Prof. Indranil Sengutta, Prof. Kamalika Datta, IIT Kharagpur.

Course Outcomes (CO) Upon completion of the course, students should have the CO1 Ability to understand the concepts of Architecture of PIC microcontroller CO2 Ability to acquire knowledge on Interrupts and timers. CO3 Ability to understand the importance of Peripheral devices for data communication and to understand the basics of sensor interfacing CO4 Ability to acquire knowledge in Architecture of ARM processors CO5 Ability to acquire knowledge on ARM Organization in embedded application.

Course Outcomes		Program Outcomes													
	a	a b c d e f g h i j k l											1	2	3
CO1	3	2	3	3	3	2	1	1	1	2	1	3	2	3	3
CO2	3	3	3	3	3	2	1	1	1	2	1	3	3	3	3
CO3	3	3	3	3	3	2	1	1	1	2	1	3	3	3	3
CO4	3	3	3	3	3	2	1	1	1	2	1	3	3	3	3
CO5	3	3	3	3	3	2	1	1	1	2	1	3	3	3	3

EE4017	VLSI DESIGN	L	T	P	C
		3	0	0	3

Objectives

To impart knowledge about the following topics:

- This course deals comprehensively with all aspects of transistor level design of all the digital building blocks common to all CMOS microprocessors, DPSs, network processors, digital backend of all wireless systems etc.
- The focus will on the transistor level design and will address all important issues related to size, speed and power consumption.
- The units are classified according to the important building and will introduce the principles and design methodology in terms of the dominant circuit choices, constraints and performance measures.

UNIT - I M	OS TRANSISTOR PRINCIPLES AND CMOS INVERTER	9
MOS(FET) Trans	istor Characteristic under Static and Dynamic Conditions, MOS Transistor	
	ts, Process Variations, Technology Scaling, CMOS Inverter - Static	CO ₁
Characteristic, Dy	rnamic Characteristic, Power, Energy, and Energy Delay parameters.	
	OMBINATIONAL LOGIC CIRCUITS	9
Elmore's constan	ys, Stick diagram, Layout diagrams, Examples of combinational logic design, t, Dynamic Logic Gates, Pass Transistor Logic, Power Dissipation, Low	CO2
Power Design prii	icipies.	
UNIT - III SI	EQUENTIAL LOGIC CIRCUITS	9
	Registers, Dynamic Latches and Registers, Timing Issues, Pipelines, Pulse	ı
	er based Registers, Nonbistable Sequential Circuits	CO ₃
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
UNIT - IV A	RITHMETIC BUILDING BLOCKS AND MEMORY ARCHITECTURE	S 9
Data path circuits	, Architectures for Adders, Accumulators, Multipliers, Barrel Shifters, Speed	004
	fs, Memory Architectures, and Memory control circuits.	CO4
1		
	TERCONNECT AND CLOCKING STRATEGIES	9
	meters – Capacitance, Resistance, and Inductance, Electrical Wire Models,	CO5
Timing classificat	ion of Digital Systems, Synchronous Design, Self-Timed Circuit Design.	
	m (ID)	4.5
	Total Periods: 4	15
Text Books:		
	abaey, Anantha Chandrakasan, Borivoje. Nikolic, "Digital Integrated Circ rspective", Second Edition, Pearson, 2016.	uits:A
D 4		
References:	"CMOS C''t D It 1 S'1-t' Third E 1't'? Wil	IEEE
	ter "CMOS: Circuit Design, Layout, and Simulation, Third Edition", Wiley	IEEE
	3rd Edition , "Application Specific Integrated Circuits", Addisson Wesley, 1997.	
	kang, Yusuf leblebici, Chulwoo Kim "CMOS Digital Integrated Circuits:Analy	veic &
	th edition McGraw Hill Education, 2013	y 515 CC
	ideo Lecture Notes on "CMOS Digital VLSI Design" by Prof. Sudeb Dasgupt	a IIT
Roorkee.	race Lecture Protes on Civios Digital vibsi Besign by Prof. States Dasgapt	.a., 111
110 01110 01		
Course Outcome	s (CO)	
Upon completion	of the course, students will be able to	
	he concepts of digital building blocks using MOS transistor.	
CO2 Design co	ombinational MOS circuits and power strategies.	
CO3 Design as	nd construct Sequential Circuits and Timing systems.	
	rithmetic building blocks and memory subsystems.	
CO5 Apply an	d implement FPGA design flow and testing.	
	Program	
Course	Program Outcomes Specific	
Outcomes	Outcomes	
	a b c d e f g h i j k l 1 2 3	3

CO1	3	2	3	3	3	2	1	1	1	2	1	3	2	3	1	
CO2	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1	
CO3	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1	
CO4	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1	
CO5	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1	

	SMART SYSTEM DESIGN L T	P	C
	3 0	0	3
Objectives			
	edge about the following topics:		
-	stand about the smart system technologies and its role in real time applications		
	e students to different open-source platforms and attributes.		
	the architecture and requirements of Home Automation.		
	e an insight into smart appliances and energy management concepts.		
5. 10 familia	arize the design and development of embedded system based system design		
UNIT - I	INTRODUCTION		
	mart system - Design Requirements - Hardware and software selection & co-		
	sensors and Actuators – Communication protocols used in smart systems –		
_	Need & Types – Open-source Analytics Platform for embedded systems	C	O 1
	speak) – Smart Microcontrollers - Embedded system for Smart card design		U.
	t – Recent trends.		
and developmen	t – Recent tiends.		
UNIT - II	HOME AUTOMATION		T
	tion – Design Considerations: Control Unit, Sensing Requirements,		
	Data Security - System Architecture - Essential Components - Linux and		O2
			U.
Raspoerry F1 – L	Design and Real-Time implementation.		
UNIT - III	SMART APPLIANCES AND ENERGY MANAGEMENT		_
	SMART APPLIANCES AND ENERGY MANAGEMENT ment: Demand-side Load Management: Energy scheduling – Significance of		
Energy Manager	ment: Demand-side Load Management: Energy scheduling - Significance of		
Energy Manager smart appliances	ment: Demand-side Load Management: Energy scheduling – Significance of s in energy management - Embedded and Integrated Platforms for Energy		
Energy Manager smart appliances Management - S	ment: Demand-side Load Management: Energy scheduling – Significance of s in energy management - Embedded and Integrated Platforms for Energy mart Meters: Significance, Architecture & Energy Measurement Technique -		
Energy Manager smart appliances Management - S	ment: Demand-side Load Management: Energy scheduling – Significance of s in energy management - Embedded and Integrated Platforms for Energy		
Energy Manager smart appliances Management - S Smart Networks	ment: Demand-side Load Management: Energy scheduling – Significance of s in energy management - Embedded and Integrated Platforms for Energy mart Meters: Significance, Architecture & Energy Measurement Technique - for Embedded Appliances – Security Considerations.		O.
Energy Manager smart appliances Management - S Smart Networks UNIT - IV	ment: Demand-side Load Management: Energy scheduling – Significance of s in energy management - Embedded and Integrated Platforms for Energy mart Meters: Significance, Architecture & Energy Measurement Technique - for Embedded Appliances – Security Considerations. SMART WEARABLE DEVICES		O.
Energy Manager smart appliances Management - S Smart Networks UNIT - IV Application of	ment: Demand-side Load Management: Energy scheduling – Significance of sin energy management - Embedded and Integrated Platforms for Energy mart Meters: Significance, Architecture & Energy Measurement Technique - for Embedded Appliances – Security Considerations. SMART WEARABLE DEVICES Smart Wearables in Healthcare & Activity Monitoring - Functional	С	O:
Energy Manager smart appliances Management - S Smart Networks UNIT - IV Application of requirements— S	ment: Demand-side Load Management: Energy scheduling – Significance of sin energy management - Embedded and Integrated Platforms for Energy mart Meters: Significance, Architecture & Energy Measurement Technique - for Embedded Appliances – Security Considerations. SMART WEARABLE DEVICES Smart Wearables in Healthcare & Activity Monitoring - Functional election of body sensors, Hardware platform, OS and Software platform –	С	O:
Energy Manager smart appliances Management - S Smart Networks UNIT - IV Application of requirements— S Selection of suit	ment: Demand-side Load Management: Energy scheduling – Significance of sin energy management - Embedded and Integrated Platforms for Energy mart Meters: Significance, Architecture & Energy Measurement Technique - for Embedded Appliances – Security Considerations. SMART WEARABLE DEVICES Smart Wearables in Healthcare & Activity Monitoring - Functional election of body sensors, Hardware platform, OS and Software platform – table communication protocol. Case Study: Design of a wearable, collecting	С	O:
Energy Manager smart appliances Management - S Smart Networks UNIT - IV Application of requirements— S Selection of suit	ment: Demand-side Load Management: Energy scheduling – Significance of sin energy management - Embedded and Integrated Platforms for Energy mart Meters: Significance, Architecture & Energy Measurement Technique - for Embedded Appliances – Security Considerations. SMART WEARABLE DEVICES Smart Wearables in Healthcare & Activity Monitoring - Functional election of body sensors, Hardware platform, OS and Software platform –	С	0.
Energy Manager smart appliances Management - S Smart Networks UNIT - IV Application of requirements— S Selection of suit heart-beat, tempor	ment: Demand-side Load Management: Energy scheduling – Significance of sin energy management - Embedded and Integrated Platforms for Energy mart Meters: Significance, Architecture & Energy Measurement Technique - for Embedded Appliances – Security Considerations. SMART WEARABLE DEVICES Smart Wearables in Healthcare & Activity Monitoring - Functional election of body sensors, Hardware platform, OS and Software platform – table communication protocol. Case Study: Design of a wearable, collecting	С	O.3
smart appliances Management - S Smart Networks UNIT - IV Application of requirements— S Selection of suit heart-beat, tempo	ment: Demand-side Load Management: Energy scheduling – Significance of sin energy management - Embedded and Integrated Platforms for Energy mart Meters: Significance, Architecture & Energy Measurement Technique - for Embedded Appliances – Security Considerations. SMART WEARABLE DEVICES Smart Wearables in Healthcare & Activity Monitoring - Functional election of body sensors, Hardware platform, OS and Software platform – table communication protocol. Case Study: Design of a wearable, collecting erature and monitoring health status using a smartphone application. EMBEDDED SYSTEMS AND ROBOTICS	С	03 04
Energy Manager smart appliances Management - S Smart Networks UNIT - IV Application of requirements— S Selection of suit heart-beat, temporary UNIT - V Robots and Con	ment: Demand-side Load Management: Energy scheduling — Significance of sin energy management - Embedded and Integrated Platforms for Energy mart Meters: Significance, Architecture & Energy Measurement Technique - for Embedded Appliances — Security Considerations. SMART WEARABLE DEVICES Smart Wearables in Healthcare & Activity Monitoring - Functional election of body sensors, Hardware platform, OS and Software platform — table communication protocol. Case Study: Design of a wearable, collecting erature and monitoring health status using a smartphone application. EMBEDDED SYSTEMS AND ROBOTICS trollers components - Aerial Robotics - Mobile Robot Design - Three-Servo	С	O.
Energy Manager smart appliances Management - S Smart Networks UNIT - IV Application of requirements— S Selection of suit heart-beat, temporary UNIT - V Robots and Con	ment: Demand-side Load Management: Energy scheduling – Significance of sin energy management - Embedded and Integrated Platforms for Energy mart Meters: Significance, Architecture & Energy Measurement Technique - for Embedded Appliances – Security Considerations. SMART WEARABLE DEVICES Smart Wearables in Healthcare & Activity Monitoring - Functional election of body sensors, Hardware platform, OS and Software platform – table communication protocol. Case Study: Design of a wearable, collecting erature and monitoring health status using a smartphone application. EMBEDDED SYSTEMS AND ROBOTICS	С	O:

Text Books:

- 1. Raj Kamal, "Embedded Systems Architecture, Programming and Design", McGraw- Hill, 2008
- 2. Nilanjan Dey, Amartya Mukherjee, "Embedded Systems and Robotics with Open-Source Tools", CRC press, 2016.

References:

- 1. Thomas Braunl, "Embedded Robotics", Springer, 2003.
- 2. Grimm, Christoph, Neumann, Peter, Mahlknech and Stefan, "Embedded Systems for Smart Appliances and Energy Management", Springer 2013.
- 3. Robert Faludi, "Wireless Sensor Networks", O'Reilly, 2011.
- 4. Karim Yaghmour, "Embedded Android", O'Reilly, 2013.
- 5. Steven Goodwin, "Smart Home Automation with Linux and Raspberry Pi", Apress, 2013

Course Outcomes (CO) Upon completion of the course, students will be able to CO1 Understand the concepts of smart system design and its present developments. CO2 Illustrate different embedded open-source and cost-effective techniques for developing solution for real time applications. CO3 Acquire knowledge on different platforms and Infrastructure for Smart system design. CO4 Infer about smart appliances and energy management concepts. CO5 Apply and improve Employability and entrepreneurship capacity due to knowledge upgradation on embedded system technologies.

Course Outcomes	Program Outcomes														m ic ies
	a	a b c d e f g h i j k l											1	2	3
CO1	3	2	3	3	3	2	1	1	1	2	1	3	2	3	1
CO2	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1
CO3	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1
CO4	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1
CO5	3	3	3	3	3	2	1	1	1	2	1	3	3	3	1

VERTICAL IV: ADVANCED CONTROL

	INDUSTRIAL AUTOMATION L T	P	C
	3 0	0	3
Objectives			
To eduTo IntrStudy oTo edu	cate on design of signal conditioning circuits for various applications. oduce signal transmission techniques and their design. of components used in data acquisition systems interface techniques. cate on the components used in distributed control systems. oduce the communication buses used in automation industries.		
UNIT - I	INTRODUCTION		9
Automation of Automation s	overview, Requirement of automation systems, Architecture of Industrial system, Introduction of PLC and supervisory control and data acquisition ustrial bus systems: Modbus & Profibus	C	:O1
**************************************	ANTEGRA ATTON CONTRACTOR		Τ.
measurement.	AUTOMATION COMPONENTS mperature, pressure, force, displacement, speed, flow, level, humidity and pH Actuators, process control valves, power electronics devices DIAC, TRIAC, ET and IGBT. Introduction of DC and AC servo drives for motion control.		9
UNIT - III	COMPUTER AIDED MEASUREMENT AND CONTROL SYSTEMS		9
control, man-interfaces, Contechniques, C	ters in measurement and control, Elements of computer aided measurement and machine interface, computer aided process control hardware, process related munication and networking, Industrial communication systems, Data transfer omputer aided process control software, Computer based data acquisition et of things (IoT) for plant automation	C	co:
UNIT – IV			
OTHE IV	PROGRAMMARI E LOGIC CONTROLLERS		9
modules, PLC and networkin	PROGRAMMABLE LOGIC CONTROLLERS controllers, Programmable logic controllers, Analog digital input and output programming, Ladder diagram, Sequential flow chart, PLC Communication g, PLC selection, PLC Installation, Advantage of using PLC for Industrial oplication of PLC to process control industries.	CO	□ 9
modules, PLC and networkin automation, A	controllers, Programmable logic controllers, Analog digital input and output programming, Ladder diagram, Sequential flow chart, PLC Communication g, PLC selection, PLC Installation, Advantage of using PLC for Industrial oplication of PLC to process control industries.	C	D4
modules, PLC and networkin automation, A	controllers, Programmable logic controllers, Analog digital input and output programming, Ladder diagram, Sequential flow chart, PLC Communication g, PLC selection, PLC Installation, Advantage of using PLC for Industrial oplication of PLC to process control industries. DISTRIBUTED CONTROL SYSTEM	CO	
modules, PLC and networkin automation, A UNIT – V Overview of Computer Tasl	controllers, Programmable logic controllers, Analog digital input and output programming, Ladder diagram, Sequential flow chart, PLC Communication g, PLC selection, PLC Installation, Advantage of using PLC for Industrial oplication of PLC to process control industries.	C)4 9
modules, PLC and networkin automation, A Description of Computer Task DCS.	controllers, Programmable logic controllers, Analog digital input and output programming, Ladder diagram, Sequential flow chart, PLC Communication g, PLC selection, PLC Installation, Advantage of using PLC for Industrial oplication of PLC to process control industries. DISTRIBUTED CONTROL SYSTEM DCS, DCS software configuration, DCS communication, DCS Supervisory as, DCS integration with PLC and Computers, Features of DCS, Advantages of	C)4 0
modules, PLC and networkin automation, A UNIT – V Overview of Computer Tasl DCS. Total Periods	controllers, Programmable logic controllers, Analog digital input and output programming, Ladder diagram, Sequential flow chart, PLC Communication g, PLC selection, PLC Installation, Advantage of using PLC for Industrial oplication of PLC to process control industries. DISTRIBUTED CONTROL SYSTEM DCS, DCS software configuration, DCS communication, DCS Supervisory as, DCS integration with PLC and Computers, Features of DCS, Advantages of)4 0
modules, PLC and networkin automation, A UNIT – V Overview of Computer Tasl DCS. Total Periods Text Books: 1. S.K.Sin	controllers, Programmable logic controllers, Analog digital input and output programming, Ladder diagram, Sequential flow chart, PLC Communication g, PLC selection, PLC Installation, Advantage of using PLC for Industrial oplication of PLC to process control industries. DISTRIBUTED CONTROL SYSTEM DCS, DCS software configuration, DCS communication, DCS Supervisory as, DCS integration with PLC and Computers, Features of DCS, Advantages of	45 3.	O5
modules, PLC and networkin automation, A UNIT – V Overview of Computer Tash DCS. Total Periods Text Books: 1. S.K.Sin 2. C D Jo	controllers, Programmable logic controllers, Analog digital input and output programming, Ladder diagram, Sequential flow chart, PLC Communication g, PLC selection, PLC Installation, Advantage of using PLC for Industrial oplication of PLC to process control industries. DISTRIBUTED CONTROL SYSTEM DCS, DCS software configuration, DCS communication, DCS Supervisory as, DCS integration with PLC and Computers, Features of DCS, Advantages of the process of DCS, Advantages of DCS, "Industrial Instrumentation", Tata Mcgraw Hill, 2nd edition companies, 2003	45 3.	O4

Mukhopadhyay, Prof. S. Sen, IIT Kharagpur.								
Course	Outcomes (CO)							
Upon c	Upon completion of the course, students will be able to							
CO1	Understand the basics and Importance of communication buses in applied automation							
	Engineering.							
CO2	Apply the various sensors in industrial process control.							
CO3	Study the basic principles of computer aided measurement.							
CO4	Implement programmable logic controllers for industrial automation.							
CO5	Acquire detailed knowledge on data acquisition system.							

Course	Program Outcomes													Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	2	3	3	3	3	2	3	1	1	3	3	1	3	2	1		
CO2	3	3	3	3	3	2	3	1	1	3	3	1	3	3	1		
CO3	2	3	3	3	3	2	3	1	1	3	3	1	3	3	1		
CO4	3	3	3	3	3	2	3	1	1	3	3	1	3	3	1		
CO5	2	3	3	3	3	2	3	1	1	3	3	1	3	3	1		

SYSTEM IDENTIFICATION AND ADAPTIVE CONTROL

3

0 0

3

EE4020

Objectives		
To impart kno	owledge about the following topics:	
• The	concept of system identification and adaptive control	
• Bla	ck-box approach based system identification	
• Bat	ch and recursive identification	
Cor	mputer Controlled Systems	
• Des	ign concept for adaptive control schemes	
UNIT - I	NON-PARAMETRIC METHODS	9
Non-parametr	ric methods - Transient analysis - frequency analysis - Correlation analysis -	CO1
Spectral analy	ysis - Input signal design for identification	CO ₁
UNIT - II	PARAMETRIC METHODS	9
Least squares	s estimation – Analysis of the least squares estimate - Best linear unbiased	CO2
estimate – Mo	odel parameterizations - Prediction error methods.	COZ
UNIT - III	RECURSIVE IDENTIFICATION METHODS	9
The recursive	e least square method - Model validation -Model structure determination -	
Introduction t	to closed loop system identification. of the Cell, series and parallel connections,	CO ₃
maximum po	wer point tracking, Applications.	
UNIT - IV	ADAPTIVE CONTROL SCHEMES	9
	- Auto-tuning of PID controller using relay feedback approach - Types of	CO4
adantirya aant	rol, Gain scheduling, Model reference adaptive control, Self–tuning controller –	CU4

Design	or gan	II SCI	icaaic		Purc	Conti					6					l
UNIT -	- V	MC	DEL	-REI	ERE	NCE	ADA	PTI	VE SY	STE	M (N	IRAS	s) and	SELF-	TUNI	NG
					R (S'											
STR – Lyapun											STR	– M	RAC	- MIT	rule –	COS
Fotal I	Periods	s:														45
Гехt В	ooks.															
		derst	rom a	nd Pe	etre S	toica,	Syste	em Id	entifi	cation	, Prei	ntice	Hall I	nternati	ional (1	UK) Lt
2.	Karl J Fifth i					Vitten	marl	x, Ada	aptive	Cont	rol, P	earso	n Edu	cation,	Second	d editio
Refere	nces:															
1.	L. Lju Upper	_	•				- The	eory f	or the	Use	r, 2nd	l edit	ion, P	TR Pre	entice I	Hall, 1
2.							wamy	, Stal	oility A	Adapt	ive S	ystem	s, Pre	ntice-H	all,198	9.
															,	
3.	H. K.	Khal	11, No)IIIIIIIE	ar bys	, comp	,	1100 1								
	Willia				-						ods, tl			Handbo	ook, Cl	RC Pre
4.	Willia 2011.	m S	.Levir	ne, "C	Contro	1 Sys	tems	Adva	nced]	Metho		ne Co		Handbo	ook, Cl	RC Pre
4.	Willia	m S	.Levir	ne, "C	Contro	1 Sys	tems	Adva	nced]	Metho		ne Co		Handbo	ook, Cl	RC Pre
4.5.	Willia 2011. S. Sas	m S	.Levir	ne, "C	Contro	1 Sys	tems	Adva	nced]	Metho		ne Co		Handbo	ook, Cl	RC Pre
4. 5. Course	Willia 2011. S. Sas	m Satry a	.Levirnd M.	Bods (1)	son, A	l Sys	ve Co	Adva	nced]	Metho		ne Co		Handbo	ook, Cl	RC Pre
4. 5. Course Jpon c	Willia 2011. S. Sas e Outcomple	m Satry a comes	.Levirnd M. s (CO of th	Bods) e cou	son, A	1 Sysadapti	ve Co	Adva	Prent	Methodice-H	[all, 1	ne Co	ontrol	Handbo		
4. 5. Course Upon C	Willia 2011. S. Sas Comple Abili contr	try a omes etion ity to	nd M. s (CO of the ounce when ST	Bods Bods Coulomb Annual Country Bods	rse, sond value of the MRA	l Systadapti dapti tuden rious AC	ve Co	Adva ontrol, ould l em id	nced in Prenting i	Methodice-H	Iall, 1	ne Co	es and	l featu	res of	
4. 5. Course Upon c CO1	Willia 2011. S. Sas Outcomple Abilia contraction Abilia	try a omes etion ty to	nd M. s (CO of the ounce ke ST ounder	Bods Bods Bods Bods R and R and	rse, sond valued the of	dapti tuden rious AC	ve Co	Advarantrol, ould lem ides	nced in Prentification identification	Methodice-H	tech	989 nnique	es and	l featur	res of	
4. 5. Course Upon C CO1 CO2 CO3	Willia 2011. S. Sas Outcomple Abili Abili	try a omes etion ity to ity to	nd M. s (CO of the o under the ounder the o	Bods	rse, sond valued the collaboration	dapti tuden rious AC conce	ve Co	Advarantrol, ould lem id system ox app	have the identification identification	Methodice-Head cation tifical based	tech	ne Co	es and aptive entific	l feature contro	res of	adapti
4. 5. Course Jpon C CO1 CO2 CO3	Willia 2011. S. Sas e Outce omple Ability Control Ability Abi	omesetion ty to ty to ty to	nd M. s (CO of th o under ounder ounder	Bods Bods Coulombre coul	rse, sond valued about	tuden trious AC conce it Bla	ve Co	Advarantrol, ould lem id system ox app	have the identification identification	Methodice-Head cation tifical based	tech	ne Co	es and aptive entific	l featur	res of	adapti
4. 5. Course Jpon c CO1 CO2 CO3 CO4	Willia 2011. S. Sas Outcomple Abilia Abilia for a	try a omes etion ity to ity to ity to dapti	nd M. s (CO of the o under o under o get 1) ve co	Bods Bods Coulomb And Country Bods Bod	rse, sond valued the collection about	tudentious AC conce it Bla about	ve Co	Adva: ontrol, ould lem id system ox app h and	have the lentification identification recurrence in the lentification identification identificat	Methodice-Head cation tifical based sive i	tech	ne Co	es and aptive entific	l feature contro	res of	adapti
4. 5. Course Upon C CO1 CO2 CO3 CO4 CO5	Willia 2011. S. Sas Outce Omple Ability Ability Ability for a Ability	try a omes etion ity to ity to ity to dapti	nd M. s (CO of the o under o under o get 1) ve co	Bods Bods Coulomb And Country Bods Bod	rse, sond valued the collection about	tudentious AC concept Bla about nes	nts she system to batch	Advarantrol, ould lem id system x app h and	have the identification identification	Methodice-Head cation tifical based sive in ms,	tech	ne Co	es and aptive entific	d feature control cation bility to	res of l design	adaptiva conce
4. 5. Course Jpon C CO1 CO2 CO3 CO4 CO5	Willia 2011. S. Sas Outce Omple Ability Ability Ability for a Ability	try a omes etion ity to ity to ity to dapti	nd M. s (CO of the o under o under o get 1) ve co	Bods Bods Coulomb And Course and Courstand Courstand Country and Courstand Courst Cours	rse, sond valued the collection about	tudentious AC concept Bla about nes	nts she system to batch	ould lem idesystem and rolled	have the hav	Methodice-Head cation tifical based sive in ms,	techtion a	ne Co	es and aptive entific	d feature control cation bility to	res of l design	adapti conce
4. 5. Course Upon C CO1 CO2 CO3 CO4 CO5	Willia 2011. S. Sas Outce comple Ability Abil	omesetion ty to ty to ty to dapti	nd M. s (CO of the o under o get leve co o study	Bods Bods Bods Be cou lerstanderstand Brancerstand Brance	rse, sond valued the color decided the color dec	tuden rious AC conce it Bla about nes nputer	ve Control system pt of s ck-bo batcle control gram	Advarantrol, ould lem id system x app h and	have the hav	Methodice-Head cation tifical based sive in ms,	tech	ne Co	es and aptive entific on, Ab	d feature control cation bility to	res of l design	adaption conce
4. 5. Course Upon C CO1 CO2 CO3 CO4 CO5 Cou	Willia 2011. S. Sas Outcomple Abilia Abilia Abilia for a Abilia	try a omes etion ty to ty to ty to dapti ty to	nd M. s (CO of the o under o under o get leave coo study	Bods Bods Bods Bods Be coulderstander	rse, sind valid the od about edge schemat com	tudentious AC concept Bla about nes puter Prog	ve Control of State o	ontrol, ould lem id system ox app h and rolled Outo	have the lentification identification recurres	Methodice-Head cation tifical based sive in ms,	tion a dentification	ne Co	es and aptive entificon, Ab	d feature control cation bility to	res of design gram S Outcon 2	adaption conce
4. 5. Course Upon C CO1 CO2 CO3 CO4 CO5 Cou Outco	Willia 2011. S. Sas e Outce comple Ability Ab	try a try a try to ty to ty to dapti ty to a 3	nd M. s (CO of th o under o under o get l ve co o study	Bods Bods Bods Be coulderstand	rse, sind valid the odd about edge schematicon	tuden rious AC conce it Bla about nes nputer Prog	nts she system to batch to control gram f 3	ould lem id system x app h and rolled Outc g 3	have the lentification identification identificatio	Methodice-Head cation tifical based sive in the cation tifical bat	techtion a dentif	ne Co	es and aptive entificon, Ab	d feature control cation bility to	design	adaptive aconce pecific nes
4. 5. Course Upon C CO1 CO2 CO3 CO4 CO5 Cou Outco	Willia 2011. S. Sas e Outce comple Ability Ab	omesetion ty to ty to dapti ty to a 3	s (CO of the ounder of the oun	e coulerstanders	rse, sind vall the od about edge schemat con	tuden rious AC conce ut Bla about nes nputer Pros	tems ve Co syste pt of s ck-bo batcl r contr gram f 3 3	ould lem idesystem ox apph and outcome and a system ox apph and outcome a system ox apph and ox apph	have the lentification identification recurrence by the lentification identification identificat	Methodice-Head cation tifical based sive in the sive i	tion a dentification a	ne Co	es and aptive entificon, Ab	Prog	res of design gram S Dutcon 2 1 3	adaptive aconce pecific nes 1 3

EE4021	PRINCIPLES OF ROBOTICS	L	T	P	C
		3	0	0	3
Objectives					
To impart know	wledge on the following topics:				

- To introduce the functional elements of Robotics
- To impart knowledge on the direct and inverse kinematics
- To introduce the manipulator differential motion and control
- To educate on various path planning techniques
- To introduce the dynamics and control of manipulators

UNIT – I BASIC CONCEPTS

9

Brief history—Types of Robot—Technology—Robot classifications and specifications—Design and control issues—Various manipulators—Sensors—work cell—Programming languages.

CO₁

UNIT – II DIRECT AND INVERSE KINEMATICS

9

Mathematical representation of Robots – Position and orientation – Homogeneous transformation– Various joints– Representation using the Denavit Hattenberg parameters – Degrees of freedom–Direct kinematics–Inverse kinematics– SCARA robots– Solvability – Solution methods–Closed form solution.

CO₂

UNIT – III MANIPULATOR DIFFERENTIAL MOTION AND STATICS

9

Linear and angular velocities—Manipulator Jacobian—Prismatic and rotary joints—Inverse —Wrist and arm singularity — Static analysis — Force and moment Balance.

CO3

UNIT – IV PATH PLANNING

9

Definition—Joint space technique—Use of p—degree polynomial—Cubic polynomial—Cartesian space technique — Parametric descriptions — Straight line and circular paths — Position and orientation planning.

CO4

UNIT – V DYNAMICS AND CONTROL

9

Lagrangian mechanics – 2DOF Manipulator–Lagrange Euler formulation–Dynamic model – Manipulator control problem – Linear control schemes –PID control scheme–Force control of robotic manipulator.

CO₅

Total Periods:

45

Text Books:

- 1. R. K. Mittal and I. J. Nagrath, 'Robotics and Control', Tata McGraw Hill, New Delhi, 4th Reprint, 2005.
- 2. John J. Craig, 'Introduction to Robotics Mechanics and Control', Third edition, Pearson Education, 2009.

References:

- 1. Ashitava Ghoshal, 'Robotics–Fundamental Concepts and Analysis', Oxford University Press, Sixth impression, 2010.
- 2. M. P. Groover, M. Weiss, R.N. Nagel and N. G. Odrej, 'Industrial Robotics', McGraw Hill Singapore, 1996.
- 3. Edwin Wise, 'Applied Robotics', Cengage Learning, 2003.
- 4. R. D. Klafter, T. A. Chimielewski and M. Negin, 'Robotic Engineering-An Integrated Approach', Prentice Hall of India, New Delhi, 1994.
- 5. B. K. Ghosh, 'Control in Robotics and Automation: Sensor Based Integration', Allied Publishers, Chennai, 1998.
- 6. S. Ghoshal, 'Embedded Systems & Robotics' Projects using the 8051 Microcontroller', Cengage Learning, 2009.
- 7. NPTEL Video Lecture Notes on "Introduction to Robotics" Dr. Krishna Vasudevan, Dr. T

I	Asokan, Dr. Balaraman Ravindran, IIT Madras.
Course	Outcomes (CO)
Upon co	ompletion of the course, students will be
CO1	Able to understand the basic concept of robotics.
CO2	Able to analyze Instrumentation systems and their applications to various
CO3	Able to know about the differential motion add statics in robotics
CO4	Able to know about the various path planning techniques.
CO5	Able to know about the dynamics and control in robotics industries.

Course								Prog	ram (Outc	omes	Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	2	1	1	1	1	1	1	1	2	1	1	3	2	2
CO2	3	2	1	1	1	1	1	1	1	2	1	2	3	2	2
CO3	3	2	1	1	1	1	1	1	1	1	1	2	3	2	2
CO4	3	1	1	1	1	1	1	1	1	1	1	2	3	2	2
CO5	3	2	1	1	1	1	1	1	1	1	1	2	3	2	2

ADVANCED CONTROL SYSTEM

EE4022

	3	0	0	3
Objectives				
To impart knowledge on the following topics:				
 To provide knowledge on design state feedback control and state observer. 				
 To provide knowledge in phase plane analysis. 				
 To give basic knowledge in describing function analysis. 				
 To study the design of optimal controller. 				
 To study the design of optimal estimator including Kalman Filter 				
UNIT – I STATE VARIABLE ANALYSIS				9
Introduction- concepts of state variables and state model-State model for linear co	ntin	uous		
time systems, Diagonalisation- solution of state equations- Concepts of controllab	ility	and	C	O 1
observability.				
UNIT – II STATE VARIABLE DESIGN				9
Introduction to state model: Effect of state feedback - Pole placement design: Neces				
sufficient condition for arbitrary pole placement, State regulator design, Design			C	\mathbf{CO}_2
observers- Separation principle- Design of servo systems: State feedback with integral	con	trol.		
				_
UNIT – III SAMPLED DATA ANALYSIS				9
Introduction spectrum analysis of sampling process signal reconstruction difference e				
The Z transform function, the inverse Z transform function, response of Linear				03
system, the Z transform analysis of sampled data control systems, response between significant the Z and S demain relationship. Stability analysis and compared to the significant transform to the significant transform.	•	_		
instants, the Z and S domain relationship. Stability analysis and compensation techniq	ues.			
UNIT – IV NON LINEAR SYSTEMS				9
UNII – IV NON LINEAR SISIEMS				7

Introduction - common physical non linearity's, The phase plane method: concepts, singular points, stability of nonlinear systems, construction of phase trajectories system analysis by phase plane method. The describing function method, stability analysis by describing function method, Jump resonance.

CO₄

UNIT - V OPTIMAL CONTROL 9 Introduction: Classical control and optimization, formulation of optimal control problem, Typical optimal control performance measures - Optimal state regulator design: Lyapunov equation, Matrix Riccati equation - LQR steady state optimal control - Application examples.

Total Periods: 45

Text Books:

- 1. M. Gopal, "Digital Control and State Variable Methods", 4th edition, McGraw Hill India, 2012
- 2. K. Ogata, 'Modern Control Engineering', 5th Edition, Pearson, 2012.

References:

- 1. M. Gopal, Modern Control System Theory, 3rd edition, New Age International Publishers, 2014.
- 2. William S Levine, "Control System Fundamentals," The Control Handbook, CRC Press, Tayler and Francies Group, 2011.
- 3. Ashish Tewari, 'Modern Control Design with Matlab and Simulink', John Wiley, New Delhi, 2002
- 4. T. Glad and L. Ljung,, "Control Theory –Multivariable and Non-Linear Methods", Taylor & Francis, 2002.
- 5. K. P. Mohandas, "Modern Control Engineering", Sanguine Technical Publishers, 2006.
- 6. NPTEL Video Lecture Notes on "Advanced Control Systems" Prof. S. Majhi, IIT Guwahati.

Course Outcomes (CO)

U	Jpon comp	letion	of	the	course.	, stud	lents	will	be
---	-----------	--------	----	-----	---------	--------	-------	------	----

Opon c	ompletion of the course, students will be
CO1	Able to understand the modelling of state equation and its solution.
CO2	Able to understand the state model, observer and feedback system.
CO3	Able to understand the sampled data analysis, various transforms, stability and compensation
	techniques.
CO4	Able to understand the nonlinear systems and various methods of analysis.
CO5	Able to understand and design optimal controller.

Course				Program Specific Outcomes											
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	2	2	1	1	1	1	1	1	1	2	1	1	3	2	2
CO2	3	2	1	1	1	1	1	1	1	2	1	2	3	2	2
CO3	2	2	1	1	1	1	1	1	1	1	1	2	3	2	2
CO4	2	1	1	1	1	1	1	1	1	1	1	2	3	2	2
CO5	2	2	1	1	1	1	1	1	1	1	1	2	3	2	2

EE4023	PROCESS MODELLING AND SIMULATION L T	P	C
Objectives	3 0	0	3
 To g techn To an To an To an 	ive an overview of various methods of process modelling, different computiques for simulation. alyze the steady state lumped systems. alyze the unsteady state lumped systems alyze the steady state distributed systems alyze the unsteady state distributed systems	tatio	ona
UNIT – I	INTRODUCTION		7
Introduction	to modelling and simulation, classification of mathematical models, conservation auxiliary relations.	C	01
UNIT – II	STEADY STATE LUMPED SYSTEMS		9
Degree of fre non- linear a	bedom analysis, single and network of process units, systems yielding linear and algebraic equations, flow sheeting – sequential modular and equation oriented aring, partitioning and precedence ordering, solution of linear and non-linear	C	02
UNIT – III	UNSTEADY STATE LUMPED SYSTEMS		9
Analysis of land distillation	iquid level tank, gravity flow tank, jacketed stirred tank heater, reactors, flash on column, solution of ODE initial value problems, matrix differential equations, closed loop systems.	C	03
UNIT – IV	STEADY STATE DISTRIBUTED SYSTEM		7
	compressible flow, heat exchanger, packed columns, plug flow reactor, solution dary value problems.	C	04
UNIT – V	UNSTEADY STATE DISTRIBUTED SYSTEM & OTHER MODELLIN APPROACHES	G	13
exchanger, h	ninar flow in pipe, sedimentation, boundary layer flow, conduction, heat eat transfer in packed bed, diffusion, packed bed adsorption, plug flow reactor. odelling, parameter estimation, population balance and stochastic modelling.	C	O5
Total Period	ls:		45
Publis 2. Luybo Book	rez, W.; "Computational Methods in Process Simulation", 2nd Education., Butte shers, New York,2000. en, W.L., "Process Modelling Simulation and Control",2nd Education, McGr Co., 1996		
Wiley 2. Frank	r,R.M. and Rousseau,R.W., "Elementary Principles of Chemical Processes", Fourth edition 2018. s, R. G. E., "Mathematical Modelling in Chemical Engineering", John Wiley, 20 a K. Jana, "Process Simulation and Control Using ASPEN", 2 nd Education, PHI L 2012).	14.	

- 4. Amiya K. Jana, "Chemical Process Modelling and Computer Simulation" 2ndEducation,PHI Learning Ltd,(2012).
- 5. NPTEL Video Lecture Notes on "Process Modelling and Simulation" Dr. V. K. Agrawal, IIT Roorkee.

Course Outcomes (CO)

Upon completion of the course, students should have the

- CO1 Ability to understand the development of process models based on conservation principles and process data and computational techniques to solve the process models.
- CO2 Ability to analyze steady state lumped system
- CO3 Ability to analyze unsteady state lumped system
- CO4 Ability to analyze steady state distributed system
- CO5 Ability to understand unsteady state distributed system and various modelling approaches

Course			Program Specific Outcomes												
Outcomes	a	b	c	d	E	f	g	h	I	j	k	l	1	2	3
CO1	3	2	2	1	1	2	2	1	1	1	1	1	2	2	1
CO2	3	3	3	3	2	2	2	1	2	1	1	1	3	3	1
CO3	3	3	3	3	2	2	2	1	2	1	1	1	3	3	1
CO4	3	3	3	3	2	2	2	1	2	1	1	1	3	3	1
CO5	3	3	3	3	2	2	2	1	2	1	1	1	3	3	1

EE4024	OPTIMAL CONTROL	L	T	P	C
		3	0	0	3

Objectives

- To highlight the significance of optimal control in process industries and the different methods of optimization
- To introduce the concept of variational approach for the design of optimal control system.
- To formulate linear quadratic optimal control strategy with specified degree of stability
- To impart knowledge about discrete time linear state regulator system and discrete time linear quadratic tracking system
- To illustrate the application of dynamic programming and HJB equation for the design of constrained and time optimal control systems.

UNIT – I	INTRODUCTION TO OPTIMAL CONTROL	9
Statement of opt	timal Control problem - problem formulation and forms of optimal control -	
performance me	asures - various methods of optimization - Linear programming - nonlinear	CO ₁
programming.		
UNIT – II	CALCULUS OF VARIATIONS	9
Basic concepts	- variational problem - Extreme functions with conditions - variational	CO2
approach to opti	mal control systems.	COZ
UNIT – III	LINEAR QUADRATIC OPTIMAL CONTROL SYSTEM	9
Problem formul	ation - finite time LQR - infinite time LQR - Linear Quadratic tracking	CO2
system – LQR w	vith a specified degree of stability.	CO ₃
UNIT – IV	DISCRETE TIME OPTIMAL CONTROL SYSTEM	7

T7 • .•	1 1 1 C Dm / Dm / 1 / 1 / Dm /
	onal calculus for DT system – DT optimal control system - DT linear state regulator
system	DT linear quadratic tracking system.
UNIT -	- V PONTRYAGIN MINIMUM PRINCIPLE 13
	gin minimum principle - Dynamic programming - Hamilton - Jacobi - Bellman
equatio	n - LQR system using HJB equation – Time optimal control – fuel optimal control CO5
system	- optimal control system with constraints.
Total P	Periods: 45
	·
Text B	ooks:
1.	Naidu D.S, Optimal Control System, CRC Press, 2003
Referen	nces:
1. K	Cirk D.E, Optimal Control Theory, Dover publication, 2004
2. L	ewis F.L. DragunaVrabia, Syrmos V.L, Optimal control, Johhn Wiley & sons, 2012.
3. N	IPTEL Video Lecture Notes on "Optimal Control" Prof. Barjeev Tyagi, IIT Roorkee.
	1
Course	Outcomes (CO)
	ompletion of the course, students will be able to
CO1	Formulate the optimization problem based on the requirements and evaluate the performance
	of optimal controller
CO2	Apply the variational approach for optimal control systems with conditions.
CO3	Differentiate finite time LQR and infinite time LQR and design linear quadratic tracking
	system.
CO4	Analyze discrete time optimal control systems used in different applications.
CO5	Design constrained optimal control system and time optimal control system.
	Design constrained optimal control system and time optimal control system.

Course			Program Specific Outcomes												
Outcomes	a	b	c	d	e	f	g	h	I	j	k	l	1	2	3
CO1	3	2	2	1	1	2	2	1	1	1	1	1	2	2	1
CO2	3	3	3	3	2	2	2	1	2	1	1	1	3	3	1
CO3	3	3	3	3	2	2	2	1	2	1	1	1	3	3	1
CO4	3	3	3	3	2	2	2	1	2	1	1	1	3	3	1
CO5	3	3	3	3	2	2	2	1	2	1	1	1	3	3	1

VERTICAL V: DIVERSIFIED COURSES

EE4025	SOFT COMPUTING TECHNIQUES	L	T	P	C
		3	0	0	3
OBJECTIV					
	miliarized with different architectures and training algorithms of neural ne				
	xposed to the various neural modeling and control techniques with ca	ise s	tudy	usi	ng
	ation tool box.				
	Knowledge on fuzzy set theory and fuzzy rules.				
	to design and implement the fuzzy logic controller with case study using	sim	ılatio	n to	ool
box.		:41-		-4	.1
-	ble of designing hybrid control schemes, selected optimization algorithms simulation tool box.	Wlui	case	stu	ay
using	Simulation tool box.				
TINITE T	ADDIELCIAL MELIDAL MEDWODY				Λ
UNIT - I	ARTIFICIAL NEURAL NETWORK ndamentals – Biological neuron, artificial neuron, activation function, sing	رام ار	TION		9
	Limitation – Multi layer perception – Back propagation algorithm (1)	-	•		
	aral network (RNN) – Adaptive resonance theory (ART) based network –			CO)1
	n network – online learning algorithms, BP through time – RTRL algor				-
Reinforcemen					
UNIT - II	MODELLING OF ARTIFICIAL NEURAL NETWORK	KS	Al	JD	9
	ASSOCIATIVE MEMORY				
	f non-linear systems using ANN – Generation of training data – G				
	Model validation – Control of non-linear systems using ANN – Dir			CO)2
	o control schemes, Counter propagation network, Hopfield network, Bodaptive Resonance Theory	oltzr	nan		_
Wiacillile – A	Taptive Resonance Theory				
UNIT - III	FUZZY LOGIC AND APPLICATIONS				9
	ory – Fuzzy sets – Operation on fuzzy sets – Scalar cardinality, fuzzy card	dinal	itx		9
	tersection, complement (Yager and Sugeno), equilibrium points, aggre				
	omposition, cylindrical extension, fuzzy relation – Fuzzy membership fun	_		CO)3
	- Knowledge base - Decision making logic - Defuzzification - Adaptiv				
	miliarization with fuzzy logic toolbox.		•		
UNIT - IV	GENETIC ALGORITHM AND OTHER EVOLUTIONARY ALGO			IS	9
	programs - Genetic algorithms, genetic programming and evolu-				
1 0	- Genetic Algorithm versus Conventional Optimization Techniques -				
-	as and selection mechanisms; Genetic operators- different types of crosso			CO)4
militation one	erators - Optimization problems using GA-discrete and continuous -				
	multi chicativa problema - Drocaduras in avalutionery programmina				
objective and	multi-objective problems - Procedures in evolutionary programming,	Part	icic		
objective and	multi-objective problems - Procedures in evolutionary programming, nization and ANT Colony algorithm.	Part			
objective and Swarm Optin	nization and ANT Colony algorithm.	Part			0
objective and Swarm Optin	nization and ANT Colony algorithm. HYBRID CONTROL SCHEMES				9
objective and Swarm Optin UNIT - V Fuzzification	HYBRID CONTROL SCHEMES and rule base using ANN–Neuro fuzzy systems-ANFIS – Fuzzy N	euro	n -		
objective and Swarm Optim UNIT - V Fuzzification Optimization	nization and ANT Colony algorithm. HYBRID CONTROL SCHEMES	euro	n - 1 to	CO	

Total Periods: 45

Text Books:

1. Laurene V. Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms And Applications", Pearson Education. 2017

2. T. Ross, "Fuzzy Logic with Engineering Applications", Tata McGraw Hill, New Delhi, 2015.

References:

- 1. S N Sivanandam and Deepa, Principles of Soft Computing Techniques Wiley and Sons 2015
- 2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications" Wiley India, 2012.
- 3. Zimmermann H.J. "Fuzzy set theory and its Applications" Springer international edition, 2011
- 4. David E. Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning", Pearson Education, 2014.
- 5. Ethem Alpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine Learning Series)", MIT Press,2014.
- 6. NPTEL Video Lecture Notes on "Introduction to Soft Computing" Prof. Debasis Samanta, IIT Kharagpur.

Course Outcomes (CO)

Upon completion of the course, students will be able to

Upon co	ompletion of the course, students will be able to
CO1	Articulate the main concepts, key technologies, strengths and limitations of Artificial Neural
	Network.
CO2	Learn the key and enabling technologies that help in modelling of ANN and associated
	memory.
CO3	Develop the ability to understand and use the architecture of fuzzy logic service and
	delivery models.
CO4	Explain the optimisation using genetic algorithm and PSO.
CO5	Install and use current control technologies and Choose the appropriate technologies and
	approaches for implementation and use of soft computing techniques.

Course					Prog	gram	Outco	omes	•	8				Program Specific Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	3	3	3	3	2	0	0	0	0	2	2	2	1	2	2			
CO2	3	3	3	3	2	0	0	0	0	2	2	2	1	2	2			
CO3	3	3	3	3	2	0	0	0	0	2	2	2	1	2	2			
CO4	3	3	3	3	2	0	0	0	0	2	2	2	1	2	2			
CO5	3	3	3	3	2	0	0	0	0	2	2	2	1	2	2			

EE4026	POWER SYSTEMS TRANSIENTS	L	T	P	C
		3	0	0	3

Objectives

To impart knowledge about the following topics:

- Generation of switching transients and their control using circuit theoretical concept.
- Mechanism of lighting strokes and the production of lighting surges.
- Propagation, reflection and refraction of travelling waves.
- Voltage transients caused by faults, circuit breaker action and load rejection on integrated power system.

UNIT - I INTRODUCTION AND SURVEY

9

Review and importance of the study of transients - causes for transients. RL circuit transient with sine wave excitation - double frequency transients - basic transforms of the RLC circuit transients. Different types of power system transients - effect of transients on power systems - role of the study of transients in system planning.	CO1
UNIT – II SWITCHING TRANSIENTS	9
Over voltages due to switching transients - resistance switching and the equivalent circuit for interrupting the resistor current - load switching and equivalent circuit - waveforms for transient voltage across the load and the switch - normal and abnormal switching transients. Current suppression - current chopping - effective equivalent circuit. Capacitance switching - effect of source regulation - capacitance switching with a restrike, with multiple restrikes. Illustration for multiple restriking transients – Ferro resonance.	CO2
UNIT – III LIGHTNING TRANSIENTS	9
Review of the theories in the formation of clouds and charge formation - rate of charging of thunder clouds – mechanism of lightning discharges and characteristics of lightning strokes model for lightning stroke - factors contributing to good line design - protection using ground wires - tower footing resistance - Interaction between lightning and power system.	CO3
UNIT – IV TRAVELING WAVES ON TRANSMISSION LINE COMPUTATION TRANSIENTS	OF 9
Computation of transients - transient response of systems with series and shunt lumped parameters and distributed lines. Traveling wave concept - step response - Bewely's lattice diagram - standing waves and natural frequencies - reflection and refraction of travelling waves.	CO4
UNIT – V TRANSIENTS IN INTEGRATED POWER SYSTEM	9
The short line and kilometric fault - distribution of voltages in a power system - Line dropping and load rejection - voltage transients on closing and reclosing lines – overvoltage induced by faults -switching surges on integrated system Qualitative application of EMTP for transient computation.	CO5
Total Periods:	45
 Allan Greenwood, 'Electrical Transients in Power Systems', Wiley Inter Science, New 2nd Edition,1991. Pritindra Chowdhari, "Electromagnetic transients in Power System", John Wiley an Inc., Second Edition, 2009. 	
References:	
 M.S.Naidu and V.Kamaraju, 'High Voltage Engineering', McGraw Hill, Fifth Edition, 2 R.D. Begamudre, 'Extra High Voltage AC Transmission Engineering', Wiley Limited, 1986. Y.Hase, Handbook of Power System Engineering," Wiley India, 2012. Akihiro ametani," Power System Transient theory and applications", CRC press, 2013. C.S. Indulkar, D.P.Kothari, K. Ramalingam, 'Power System Transients – A sta approach', PHI Learning Private Limited, Second Edition, 2010. 	Eastern
Course Outcomes (CO)	
Upon completion of the course, students will be able to	
CO1 Understand and analyse switching and lightning transients.	
CO2 Acquire knowledge on generation of switching transients and their control. CO3 Analyse the mechanism of lighting strokes.	
 CO3 Analyse the mechanism of lighting strokes. CO4 Understand the importance of propagation, reflection and refraction of travelling wave 	
CO+ Charlestand the importance of propagation, refrection and refraction of travelling wave	<i>-</i> 3.

CO5																
Course Outcomes					Program Specific Outcomes											
Outco	Outcomes		b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO	1	3	1	1	1	1	3	3	3	1	1	1	3	1	1	1
CO	2	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3
CO)3	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3
CO	94	3	3	3	3	3	3	2	3	3	1	2	3	3	3	3
СО	5	3	3	3	3	3	3	2	3	3	1	2	3	3	3	3

EE4027 INDUSTRY 4.0	Т	т	P	
EE4027 INDUSTRY 4.0	$\frac{\mathbf{L}}{3}$	T	$\frac{\mathbf{r}}{0}$	3
OBJECTIVES	3	U	U	3
After completion of this course, the students will be able to				
Understand the basics of Industrial Revolution				
 Understand the basic concepts of Industry 4.0 				
 Understand the Concepts of Industry 4.0 Understand the Concepts of Industrial IOT in various sectors 				
 Understand the concepts of Industrial IOT Understand the applications of Industrial IOT 				
 Understand the Business issues in Industry 4.0 				
UNIT – I INTRODUCTION TO INDUSTRY 4.0				9
The Various Industrial Revolutions - Digitalisation and the Networked Economy	Drivo	ro)
Enablers, Compelling Forces and Challenges for Industry 4.0 - The Journey				
Developments in USA, Europe, China and other countries - Comparison of Inc.			CO	11
Factory and Today's Factory - Trends of Industrial Big Data and Predictive Ana			CO	/ 1
Smart Business Transformation.	Tytics i	01		
Smart Dusiness Transformation.				
UNIT – II ROAD TO INDUSTRY 4.0				9
Internet of Things (IoT) & Industrial Internet of Things (IIoT) & Internet of Service	s _ Sm	art		
Manufacturing - Smart Devices and Products - Smart Logistics - Smart Cities - I			CO	12
Analytics	rearen	•	CO	
1 may nee				
UNIT – III IIOT				9
	نه د داد د	0.00		9
Fourth Revolution – Sustainability assessment of Manufacturing Industry – Lean P			00	
system – Smart and connected business perspective – smart factories – cyber	-pnysic	aı	CO	13
systems – collaboration platform and PLM				
UNIT – IV APPLICATIONS				9
Inventory Management and Quality Control - Plant security and safety -		-		
management - oil, chemical and Pharmaceutical Industry - Milk processing and p	ackagi	ng	CO) 4
industries				
				_
UNIT – V BUSINESS ISSUES IN INDUSTRY 4.0				9
Opportunities and Challenges - Future of Works and Skills for Workers in the Inc	ustry 4	0.	CO)5
Era – Strategies for competing in an Industry 4.0 world				_
Total Periods:			45	
Text Books:				

- 1. Bernd Klein, Christian Zinke, Sebastian Feldmann "Industry 4.0: An Introduction" Springer, 2019.
- 2. Alasdair Gilchrist "Industry 4.0: The Industrial Internet of Things" Create Space Independent Publishing Platform., 2016

References:

- 1. Alp Ustundag, Emre Cevikcan "Industry 4.0: Managing The Digital Transformation" Springer, 2018.
- 2. Volker Johanning "Industry 4.0: The Ultimate Guide to Digitize, Automate and Optimize Your Business" Independently published, 2020.
- 3. "Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries" by OECD (Organisation for Economic Co-operation and Development), OECD Publishing, 2017.
- 4. NPTEL Video Lecture Notes on "Introduction to Industry 4.0 and Industrial Internet of Things" Prof. Sudip Misra, IIT Kharagpur.

Course Outcomes (CO)

Upon completion of the course, students will be able to

CO1	Understand the basics of Industrial Revolution
CO2	Understand the basic concepts of Industry 4.0
CO3	Understand the Concepts of Industrial IOT in various sectors
CO4	Understand the applications of Industrial IOT
CO5	Understand the Business issues in Industry 4.0

Course				Program Specific Outcomes											
Outcomes	a	b	С	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	3	2	3	1	1	3	3	1	3	3	3
CO2	3	3	3	3	3	2	3	1	1	3	3	1	3	3	3
CO3	2	3	3	3	3	2	3	1	1	3	3	1	3	2	2
CO4	3	3	3	3	3	2	3	1	1	3	3	1	3	3	3
CO5	2	3	3	3	3	2	3	1	1	3	3	1	3	3	3

EE4028	EHVAC TRANSMISSION	L	T	P	C
		3	0	0	3

Objectives

To impart knowledge about the following topics:

- EHVAC Transmission lines
- Electrostatic field of AC lines
- Corona in E.H.V. lines

UNIT – I INTRODUCTION 9

EHVAC Transmission line trends and preliminary aspect – standard transmission voltages – Estimation at line and ground parameters–Bundle conductors: Properties – Inductance and Capacitance of EHV lines – Positive, negative and zero sequence impedance – Line Parameters for Modes of Propagation.

CO₁

UNIT – II ELECTROSTATIC FIELDS

Electrostatic field and voltage gradients – Calculations of electrostatic field of AC lines – Effect of high electrostatic field on biological organisms and human beings – Surface voltage

CO₂

9

conducto		
UNIT –		
three ph control	atic induction in un energized lines – Measurement of field and voltage gradients for ase single and double circuit lines – Un energized lines. Power Frequency Voltage and overvoltage in EHV lines: No load voltage – Charging currents at power y–Voltage control – Shunt and Series compensation – Static VAR compensation	CO
UNIT –	IV CORONA EFFECTS AND RADIO INTERFERENCE	
	in EHV lines – Corona loss formulae–Charge voltage diagram– Attenuation of	
traveling limits. N	waves due to Corona – Audio noise due to Corona, its generation, characteristic and leasurements of audio noise radio interference due to Corona – properties of radio requency spectrum of RI fields – Measurements of RI and RIV.	CC
UNIT –	V STEADY STATE AND TRANSIENT LIMITS	
	of EHV lines based on steady state and transient limits – EHV cables and their	
	ristics—Introduction six phase transmission – UHV	CC
CHaracte	istics—introduction six phase transmission — off v	
Total Pe	riods.	
	3 10US.	4:
	oks:	4:
1. F L 2. S		laste
1. F I 2. S 1	oks: Rokosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering' – Wiley Extd., New Delhi 1990. Rao, 'HVAC and HVDC Transmission, Engineering and Practice' Khanna Publisher, 990.	Easte
1. F I 2. S 1 Referen 1. S	oks: Cokosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering' – Wiley Etd., New Delhi 1990. Rao, 'HVAC and HVDC Transmission, Engineering and Practice' Khanna Publisher, 990.	Easte
1. F	oks: Rokosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering' – Wiley Extd., New Delhi 1990. Rao, 'HVAC and HVDC Transmission, Engineering and Practice' Khanna Publisher, 990. ces: ubir Ray, 'An Introduction to High Voltage Engineering', Prentice Hall of India Faimited, 2013. D Begamudre, 'Extra High Voltage AC Transmission Engineering' – New Academic School School (1988).	Dell Priva
1. F	coks: Cokosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering' – Wiley Etd., New Delhi 1990. Rao, 'HVAC and HVDC Transmission, Engineering and Practice' Khanna Publisher, 990. Ces: Tubir Ray, 'An Introduction to High Voltage Engineering', Prentice Hall of India Filimited, 2013.	Dell Priva
1. F	coks: Rokosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering' – Wiley Entd., New Delhi 1990. Rao, 'HVAC and HVDC Transmission, Engineering and Practice' Khanna Publisher, 1990. Ces: Rubir Ray, 'An Introduction to High Voltage Engineering', Prentice Hall of India Faimited, 2013. RD Begamudre, 'Extra High Voltage AC Transmission Engineering' – New Academic Stately, 4th edition 2011.	Dell Prive
1. F	cokosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering' – Wiley Etd., New Delhi 1990. Rao, 'HVAC and HVDC Transmission, Engineering and Practice' Khanna Publisher, 1990. Ces: Tubir Ray, 'An Introduction to High Voltage Engineering', Prentice Hall of India Filmited, 2013. CD Begamudre, 'Extra High Voltage AC Transmission Engineering' – New Academic Scatet, 4 th edition 2011. Edison,' EHV Transmission line' – Electric Institution, GEC, 1968.	Dell Prive
1. F	cokosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering' – Wiley Entd., New Delhi 1990. Rao, 'HVAC and HVDC Transmission, Engineering and Practice' Khanna Publisher, 1990. ces: ubir Ray, 'An Introduction to High Voltage Engineering', Prentice Hall of India Entimited, 2013. D Begamudre, 'Extra High Voltage AC Transmission Engineering' – New Academic State; 4th edition 2011. Edison,' EHV Transmission line' – Electric Institution, GEC, 1968. EPTEL Video Lecture Notes on "Advances in UHV Transmission and Distribution"	Dell
1. F	cokosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering' – Wiley Entd., New Delhi 1990. Rao, 'HVAC and HVDC Transmission, Engineering and Practice' Khanna Publisher, 1990. Ces: Tubir Ray, 'An Introduction to High Voltage Engineering', Prentice Hall of India Frimited, 2013. ED Begamudre, 'Extra High Voltage AC Transmission Engineering' – New Academic Stat; 4th edition 2011. Edison,' EHV Transmission line' – Electric Institution, GEC, 1968. EPTEL Video Lecture Notes on "Advances in UHV Transmission and Distribution subba Reddy B, IISc Bangalore. Outcomes (CO)	Dell Prive
1. F	cokosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering' – Wiley Extd., New Delhi 1990. Rao, 'HVAC and HVDC Transmission, Engineering and Practice' Khanna Publisher, 1990. ces: ubir Ray, 'An Introduction to High Voltage Engineering', Prentice Hall of India Eximited, 2013. Degamudre, 'Extra High Voltage AC Transmission Engineering' – New Academic Stat; 4th edition 2011. dison,' EHV Transmission line' – Electric Institution, GEC, 1968. Description of the Course, Students should have the	Dell Prive
1. F	Cokosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering' – Wiley Extd., New Delhi 1990. Rao, 'HVAC and HVDC Transmission, Engineering and Practice' Khanna Publisher, 1990. Ces: Tubir Ray, 'An Introduction to High Voltage Engineering', Prentice Hall of India Eximited, 2013. CD Begamudre, 'Extra High Voltage AC Transmission Engineering' – New Academic Stati; 4th edition 2011. Edison,' EHV Transmission line' – Electric Institution, GEC, 1968. COUTOMES (CO) Male Tourish Voltage AC Transmission and Distribution in the Course, Students Should have the Ability to understand the principles and types of EHVAC system.	Dell
1. F	cokosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering' – Wiley Etd., New Delhi 1990. Rao, 'HVAC and HVDC Transmission, Engineering and Practice' Khanna Publisher, 990. ces: ubir Ray, 'An Introduction to High Voltage Engineering', Prentice Hall of India Edimited, 2013. Degamudre, 'Extra High Voltage AC Transmission Engineering' – New Academic Stat; 4th edition 2011. Idison,' EHV Transmission line' – Electric Institution, GEC, 1968. IPTEL Video Lecture Notes on "Advances in UHV Transmission and Distribution ubba Reddy B, IISc Bangalore. Outcomes (CO) mpletion of the course, students should have the Ability to understand the principles and types of EHVAC system. Ability to analyze the electrostatic field of AC lines	Dell
Course Group CO1 CO2 CO3 CO3	cokosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering' – Wiley Etd., New Delhi 1990. Rao, 'HVAC and HVDC Transmission, Engineering and Practice' Khanna Publisher, 990. ces: ubir Ray, 'An Introduction to High Voltage Engineering', Prentice Hall of India Edimited, 2013. D Begamudre, 'Extra High Voltage AC Transmission Engineering' – New Academic State, 4th edition 2011. Edison,' EHV Transmission line' – Electric Institution, GEC, 1968. IPTEL Video Lecture Notes on "Advances in UHV Transmission and Distribution ubba Reddy B, IISc Bangalore. Outcomes (CO) mpletion of the course, students should have the Ability to understand the principles and types of EHVAC system. Ability to analyze the electrostatic field of AC lines Ability to study about the compensation.	Dell
1. F	cokosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering' – Wiley Etd., New Delhi 1990. Rao, 'HVAC and HVDC Transmission, Engineering and Practice' Khanna Publisher, 990. ces: ubir Ray, 'An Introduction to High Voltage Engineering', Prentice Hall of India Edimited, 2013. Degamudre, 'Extra High Voltage AC Transmission Engineering' – New Academic Stat; 4th edition 2011. Idison,' EHV Transmission line' – Electric Institution, GEC, 1968. IPTEL Video Lecture Notes on "Advances in UHV Transmission and Distribution ubba Reddy B, IISc Bangalore. Outcomes (CO) mpletion of the course, students should have the Ability to understand the principles and types of EHVAC system. Ability to analyze the electrostatic field of AC lines	Dell Prive

Course Outcomes	Program Outcomes														Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	3	2	2	1	1	1	1	1	1	1	1	1	3	1	1			
CO2	3	2	2	1	1	1	1	1	1	1	1	1	3	1	1			

CO3	3	2	2	2	1	1	1	1	1	1	1	1	3	3	2
CO4	3	2	2	2	1	1	1	1	1	1	1	1	3	3	2
CO5	3	1	1	1	1	1	1	1	1	1	1	1	2	3	1

EE4029	SMART ENERGY GRID L T	P	C
EE4029	SWART ENERGY GRID L 1	0	3
OBJECTIVES		U	J
	wledge about the following topics:		
-	Grid technologies, different smart meters and advanced metering infrastructure.		
	wer quality management issues in Smart Grid.		
-	th performance computing for Smart Grid applications		
UNIT – I	INTRODUCTION		9
	lectric Grid, Concept, Definitions and Need for Smart Grid, Smart grid drivers,)
	ortunities, challenges and benefits, Difference between conventional & Smart	C	01
	and International Initiatives in Smart Grid.	C	J 1
Olia, Ivadoliai	and international initiatives in Smart Orid.		
UNIT – II	SMART GRID TECHNOLOGIES		9
	privers, Smart energy resources, Smart substations, Substation Automation,		
	ation ,Transmission systems: EMS, FACTS and HVDC, Wide area monitoring,		
	I control, Distribution systems: DMS, Volt/VAR control, Fault Detection,	C	<u> </u>
	service restoration, Outage management, High-Efficiency Distribution	C	U 2
	Phase Shifting Transformers, Plugin Hybrid Electric Vehicles(PHEV).		
	Thuse smithing Transformers, Tragin Tryotta Ziecute + emeres (1712 +).		
*******			Τ_0
UNIT – III	SMART METERS AND ADVANCED METERING INFRASTRUCTURE	; T	9
	Smart Meters, Advanced Metering infrastructure(AMI) drivers and benefits,		
	, standards and initiatives, AMI needs in the smart grid, Phasor Measurement	C	03
* * * * * * * * * * * * * * * * * * * *	Intelligent Electronic Devices(IED)&their application for monitoring &		
protection.			
UNIT – IV	POWER QUALITY MANAGEMENT IN SMART GRID		9
Power Quality	& EMC in Smart Grid, Power Quality issues of Grid connected Renewable		1
	es, Power Quality Conditioners for Smart Grid, Web based Power Quality	C	04
U	wer Quality Audit.		
		<u> </u>	
UNIT – V	HIGH PERFORMANCE COMPUTING FOR SMART GR	ID	9
V	APPLICATIONS		
Local Area N	etwork (LAN), House Area Network (HAN), Wide Area Network (WAN),		1
	er Power line (BPL), IP based Protocols, Basics of Web Service and CLOUD	C	05
	11 1 0 11 mile (11 12), in cased i location, basies of the bettie and choop	ı ~`	
Computing to 1	make Smart Grids smarter, Cyber Security for Smart Grid.		

- **Text Books:**
 - 1. Stuart Borlase, "Smart Grid: Infrastructure, Technology and Solutions", CRC Press 2012.
 - 2. Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, AkihikoYokoyama, "Smart Grid: Technology and Applications", Wiley 2012.

References:

- 1. Vehbi C. Gungor, Dilan Sahin, Taskin Kocak, Salih Ergut, Concettina Buccella, Carlo Cecati, and Gerhard P. Hancke, "Smart Grid Technologies: Communication Technologies and Standards" IEEE Transactions On Industrial Informatics, Vol.7,No.4, November 2011.
- 2. Xi Fang, Satyajayant Misra, Guoliang Xue, and DejunYang "SmartGrid –The New and Improved Power Grid: A Survey", IEEE Transaction on Smart Grids, vol. 14,2012.
- 3. James Momohe "Smart Grid: Fundamentals of Design and Analysis,", Wiley-IEEE Press, 2012.
- 4. NPTEL Video Lecture Notes on"Smart Grid: Basics to Advanced Technologie" Prof. N.P. Padhy, Prof. Premalata Jena IIT Roorkee

Course Outcomes (CO)

Upon completion of the course, students should have the

Opon co	ompletion of the course, students should have the
CO1	Ability to understanding on the concepts of Smart Grid and its present developments.
CO2	Ability to gain knowledge about different Smart Grid technologies.
CO3	Ability to acquire knowledge about different smart meters and advanced metering
	infrastructure.
CO4	Ability to acquire knowledge on power quality management and issues in Smart Grids.
CO5	Ability to develop more understanding on LAN, WAN and Cloud Computing for Smart Grid
	applications.

Course					Program Specific Outcomes										
Outcomes	a	b	С	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	3	2	3	1	1	3	3	1	3	3	2
CO2	3	3	3	3	3	2	3	1	1	3	3	1	3	3	2
CO3	2	3	3	3	3	2	3	1	1	3	3	1	3	2	2
CO4	3	3	3	3	3	2	3	1	1	3	3	1	3	3	2
CO5	2	3	3	3	3	2	3	1	1	3	3	1	3	3	2

EE4030	ENERGY STORAGE SYSTEMS	L	T	P	C
		3	0	0	3

OBJECTIVES

To impart knowledge about the following topics:

-Simple units, packed bed storage units.

- 1. To understand the various types of energy storage technologies and its applications.
- 2. To study the various modeling techniques of energy storage systems.
- 3. To learn working concepts and types of batteries.
- 4. To make the students to get understand the concepts of Hydrogen and Biogas storage.
- 5. To provide the insights on super capacitor. Fly wheel and compressed energy storage system.

3. To provide the hisights on super capacitor, Try wheel and compressed energy storage system.	
UNIT – I INTRODUCTION	9
Necessity of energy storage-types of energy storage-comparison of energy storage	CO1
technologies– Applications.	COI
UNIT – II THERMAL STORAGE SYSTEM	9
Thermal storage—Types—Modelling of thermal storage units—Simple water and rock bed	
storage system–pressurized water storage system–Modelling of phase change storage system	CO2

UNIT – III ELECTRICAL ENERGY STORAGE

Fundamental concept of batteries—measuring of battery performance, charging and discharging of a battery, storage density, energy density, and safety issues. Types of batteries

9

– Lead Acid, Nick	tel- Cadmium, Zinc Manganese di oxide and modern batteries for example	
(i)zinc-Air(ii)Nick	el Hydride,(iii)Lithium Battery.	
UNIT – IV	HYDROGEN AND BIOGAS STORAGE	9
Harden of the second	antions communicated and liquid budge can Matal Hadridge about all	-

IINIT _ V AI TERNATE ENERGY STORAGE TECHNOLOGIES	0
storage - Applications.	
Storage, Biogas storage-comparisons. Safety and management of hydrogen and Biogas	CO4
	COA
Hydrogen storage options—compressed gas—liquid hydrogen—Metal Hydrides, chemical	

UNIT – V	ALTERNATE ENERGY STORAGE TECHNOLOGIES	9
Flywheel, Super storage, Concept of	capacitors, Principles & Methods—Applications, Compressed air Energy of Hybrid Storage – Applications.	CO5
Total Periods:		45

Text Books:

- 1. Robert Huggins, "Energy Storage", 2nd edition, Springer, 2015
- 2. Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Applications, John Wiley & Sons 2010.

References:

- 1. Viswanathan, Fuel cell principle and applications university press, 2006.
- 2. Luisa F.Cabeza, Advances in Thermal Energy Storage Sy stems: Methods and Applications, Elsevier Wood head Publishing, 2015
- 3. Ru-shiliu, Leizhang, Xueliang sun, Electrochemical technologies for energy storage and conversion, Wiley publications, 2012.

Course Outcomes (CO)

Upon completion of the course, students will be able to

C P OZZ C	protection of the obtained, statement with no table to
CO1	Identify the energy storage technologies for suitable applications.
CO2	Analyze the energy storage systems.
CO3	Summarise the concepts and types of batteries.
CO4	Examine the principle of operation of Hydrogen and Biogas storage systems.
CO5	Explain the working of super capacitor, Flywheel and compressed energy storage systems.

 Course Outcomes
 Program Outcomes
 Program Specific Outcomes

 a
 b
 c
 d
 e
 f
 g
 h
 i
 j
 k
 l
 l
 2
 3

 CO1
 3
 3
 3
 3
 2
 3
 1
 1
 3
 3
 1
 3
 3
 2

Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	3	2	3	1	1	3	3	1	3	3	2
CO2	3	3	3	3	3	2	3	1	1	3	3	1	3	3	2
CO3	2	3	3	3	3	2	3	1	1	3	3	1	3	2	2
CO4	3	3	3	3	3	2	3	1	1	3	3	1	3	3	2
CO5	2	3	3	3	3	2	3	1	1	3	3	1	3	3	2

OPEN ELECTIVE-I (V SEMESTER)

OEC411	IOT CONCEPTS AND APPLICATIONS L	T	P	C
	3	0	0	3
OBJECTIVES				
	ise students with basic knowledge of IoT that paves a platform to understacal design of IOT.	and ph	ysi	cal
	th a student how to analyze requirements of various communication	model	s a	ınd
	Is for cost-effective design of IoT applications on different IoT platforms.			
-	duce the technologies for implementing Internet of Things (IoT).			
UNIT – I	INTRODUCTION TO INTERNET OF THINGS			9
Definition of	IoT - Characteristics of IoT - Evolution of IoT - Study of IoT Enable Architecture of IoT based Systems - Fog, Applications of Cloud and Edge	_	CO	1
	T. T. COMPONENTES			
UNIT – II	IOT COMPONENTS	· I		9
	eks of an IoT ecosystem – Sensors, Actuators, Smart Objects and Connection IoT levels and deployment templates. Study of Communication Modula, GSM. Zigbee		CO)2
UNIT – III	IoT PROTOCOLS			9
IoT Access T Architecture, to	Pechnologies: Physical Layer of IoT and MAC layer concepts of pology and Security of IEEE 802.15.4 Network Layer: IP versions, Optimi 5, 6LoWPAN, MQTT. Introductory concepts of cloud computing.		CO	
UNIT – IV	TOOLS FOR IoT IMPLEMENTATION			9
	Python, Basic programming concepts of Python, Python development t	toola		9
like Jupyter, Color tools, Se	o-lab - Introduction to different IoT tools, Applications development through based application through embedded system platform-devlopment of IoT techniques using Python.	ough	C)4
				_
UNIT – V	IoT BASED APPLICATIONS			9
Implementing i	ations of IoT based in Home automations — Design of IoT in Smart citin Environment — Case study of IoT based system in Logistics — Agricultuth and life style.		CO)5
Total Periods:			45	
Text Books:	Barton, Patrick Grossetete, David Hanes, Jerome Henry, Gonzalo Salg	gueiro,	"I	οΤ
Things"	entals: Networking Technologies, Protocols, and Use Cases for the CISCO Press, 2017.	Intern	et	of
2. Samuel	Greengard, The Internet of Things, The MIT Press, 2015			
Defenores				
	Hersent, David Boswarthick, Omar Elloumi, "The Internet of Thiions and Protocols", Wiley, 2012	ngs –	K	ey
1.1	ternet of Things) Programming: A Simple and Fast Way of Learning,	IOT K	Kino	ile

- 3. Dieter Uckelmann, Mark Harrison, Florian Michahelles, "Architecting the Internet of Things" Springer-Verlag Berlin Heidelberg, 2011.
- 4. Arshdeep Bahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015.

Course Outcomes (CO)

Upon completion of the course, students will be able to

- CO1 | Explain the concept of IoT.
- CO2 Analyze the networking and sensors communications with IoT Components
- CO3 Understand the communication models and various protocols for IoT.
- CO4 Analyze and design different models for IoT implementation.
- CO5 Analyze applications of IoT in real time scenario.

Course Outcomes		мрр гг			Prog	gram	Outc	omes					Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	1	2	2	2	1	-	-	-	-	-	2	3	1	3	1	
CO2	2	2	2	2	1	-	-	-	-	-	2	3	2	3	1	
CO3	2	2	2	3	1	-	-	-	1	-	2	3	2	3	1	
CO4	2	1	3	3	1	-	-	-	1	-	2	3	1	3	1	
CO5	3	1	3	3	2	-	-	-	1	-	2	3	3	2	2	

OEC412	FOUNDATIONS OF ROBOTICS	L	T	P	C
	(Common to CSE, IT, ADS, EEE & Mechanical)	3	0	0	3

OBJECTIVES

- To comprehend robot's fundamental parts work.
- To examine how different Ends of Effector and sensors are used.
- To disseminate information on programming and robot kinematics.
- To learn about the economics, safety, and future of robots.

UNIT – I FUNDAMENTALS OF ROBOT

9

Robot - Definition - Robot Anatomy - Coordinate Systems, Work Envelope Types, and Classification - Specifications - Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load - Robot Parts and their Functions - Need for Robots - Different Applications.

UNIT – II SYSTEMS FOR ROBOT DRIVE AND ENDEFFECTORS

9

Pneumatic Drives - Hydraulic Drives - Mechanical Drives - Electrical Drives - D.C. Servo Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and Comparison - End effectors - Classification, Types of Mechanical actuation, Gripper design, Robot drive system Types, Position, and velocity feedback devices - Robot joints and links - Types, Motion interpolation.

UNIT – III SENSORS AND MACHINE VISION

9

Sensors in robots: Touch Sensors, Tactile Sensors, Proximity, and range sensors, Force sensor, Light sensors, Pressure sensors - Triangulation Principles Structured - Lighting Approach, Time of Flight, Camera, Frame Grabber, Sensing and Digitizing Image Data - Signal Conversion, Image Storage, Lighting Techniques, Image Processing, and Analysis - Data Reduction, Segmentation, Feature Extraction, Object Recognition, Other Algorithms, Applications Inspection, Identification, Visual Serving and Navigation.

CO₃

UNIT – IV KINEMATICS AND PROGRAMMING FOR ROBOTS

9

Transformation -Scaling, Rotation, Translation Homogeneous transformation manipulators — Point-to-point, Continuous Path Control, Robot programmin Artificial Intelligence.	n. Control of robot ng - Introduction to	CO4
UNIT – V ROBOT APPLICATIONS AND ECONOMIC IMPLEM	MENTATION	9
RGV, AGV, Industrial applications of robots, Medical, Household, Ent Underwater, Defense, and Disaster management. Applications, Micro and Disaster management.	Nanorobots, Future	CO5
Applications Robotics adoption in Industries - Safety Considerations for Economic Analysis of Robots.	Robot Operations -	

Robot kinematics – Basics of direct and inverse kinematics, Robot trajectories, 2D and 3D

Text Books:

Total Periods:

1. Klafter R.D., Chmielewski T.A, and Negin M., "Robotic Engineering - An Integrated Approach", Prentice Hall, 2003.

45

2. Bruno Siciliano, Oussama Khatib, "Springer Handbook of Robotics", Springer, 2008.

References:

- 1. Deb.S.R and Sankha Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill Publishing Company Limited, 2010.
- 2. Mikell P. Groover, Mitchell Weiss, Roger N Nagel, Nicholas G Odrey, "Industrial Robotics Technology, Programming and Applications", Tata –McGraw Hill Pub. Co., 2008.
- 3. Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.
- 4. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.

Course Outcomes (CO)

Upon completion of the course, students will be able to

CO1	List and describe the fundamental components of industrial robots.
CO2	Examine the kinematics and control strategies of the robot.
CO3	Improve performance, classify the numerous robot sensors.
CO4	Apply basic engineering knowledge for the design of robotics
CO5	List the different commercial and non commercial uses of robots

Course					Prog	gram	Outc	omes					Program Specific Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	3	3	3	2	2	2	-	-	ı	-	2	1	3	2	1		
CO2	3	3	3	3	2	3	-	-	1	-	2	1	3	2	1		
CO3	3	2	3	3	2	2	-	-	-	-	2	1	3	2	1		
CO4	3	3	3	2	2	2	-	-	ı	-	2	2	3	2	1		
CO5	3	2	3	3	2	3	-	-	-	-	2	1	3	2	1		

OEC414	BIOMEDICAL INSTRUMENTATION	L	T	P	C
	(Common to CSE, IT, ADS, EEE & Mechanical)	3	0	0	3

OBJECTIVES

- To study about the biopotentials and its propagation
- To understand the different types of electrodes and its placement for various recording
- To study the design of bio amplifier for various physiological recording
- To learn different measurement techniques for non-physiological parameters

• ′	To dis	cuss the recent trends in the field of diagnostic and therapeutic equipment	
UNIT -	- I	BIOPOTENTIAL RECORDING AND ELECTRODE TYPES	
Biopote	ntial o	origin and its propagation. Types of electrodes and its equivalent circuits -	
		e and micro electrodes. Recording problems - measurement with two electrodes	CO
UNIT -	TT	FEATURES OF BIOSIGNAL AND ELECTRODE CONFIGURATIONS	
		Bio-signal – frequency and amplitude ranges. ECG – Einthoven's triangle, and system. EEG – unipolar, bipolar, average mode and 10-20 electrode system.	CO
			CO
EMG-	umpon	ar and bipolar mode.	<u> </u>
UNIT -	- III	BIOAMPLIFIER CIRCUITS AND ASSIST DEVICES	
		ments for bio-amplifier - differential bio-amplifier, PLI, Right leg driven ECG	
		nd pass filtering. Assist Devices- Dialyzer, Cardiac Pacemakers, and Heart Lung	CO
Machin			
UNIT -	- IV	MEASUREMENT OF NON-ELECTRICAL AND BIO-CHEMICA	AL S
		PARAMETERS	
-		respiration rate and pulse rate measurements. Blood Pressure: indirect methods -	
		method, direct methods: electronic manometer, Systolic, diastolic pressure,	CO
		nd cardiac output measurement: Indicator dilution, and dye dilution method.	
Calorin	neter, S	Sodium Potassium Analyzer, auto analyzer (simplified schematic description).	
UNIT -		CURRENT TRENDS IN MEDICAL DEVICES	<u> </u>
		icine and its applications, Thermograph – System, working, endoscopy unit, blication, Introduction to tele-medicine.	CO
Total P			45
Totall	CHOUS	•	73
Text Bo	noks:		
		Cromwell, "Biomedical Instrumentation and measurement", Prentice hall of India	
		Delhi,2007.	,
		G. Webster, "Medical Instrumentation: Application and Design", John Wiley and so	ons.
		ork,2004.(Unit I,II&III).	,
		-) () /-	
Referer			
	•	Kutz, "Standard Handbook of Biomedical Engineering and Design", McGrav	v Hi
		her, 2003.	
		pur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, New	Delh'
	`	Unit II&IV)	
	-	J. Carr and John M Brown, "Introduction to Biomedical Equipment Technology	ogy",
		n Education, 2004.	••
		and Anthony Y.K, "Biomedical Device Technology: Principles and Desi	gn´´,
		field, Illinois: Charles C. Thomas publisher Limited, 2016.	
		omes (CO) tion of the course, students will be able	
CO1		cquire knowledge about bio-potentials and its propagation	
CO2		get familiarized with different electrode placements for various physiological record	ding
CO3		esign bio amplifiers for various physiological recording	umg
CO4		inderstand various techniques for non-electrical and physiological measurements	
CO5	_	inderstand the recent trends in the field of diagnostic and therapeutic equipment	
Cou		Program Outcomes Program Spec	rific
_ Ju	- 50	1 Togram Outcomes 1 Togram Spec	/111C

Outcomes														Outcomes				
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	2	2	2	-	1-	3	-	-	1	-	-	-	1	2	1			
CO2	2	2	2	-	1-	3	-	-	1	-	-	-	1	2	1			
CO3	3	3	3	-	3	3	-	-	2	-	-	-	2	3	2			
CO4	2	2	3	-	3	3	-	-	2	-	-	-	2	3	2			
CO5	2	2	3	-	3	3	-	-	2	-	-	ı	2	3	2			

OIT411	FUNDAMENTALS OF DATABASE DESIGN	L	T	P	C
		3	0	0	3

OBJECTIVES

- The role of database management system in an organization and learn the database concepts.
- The design databases using data modelling and data normalization techniques.
- Construct database queries using relational algebra and calculus.
- The concept of a database transaction and related database facilities.
- To learn the basic concepts of Transactions, concurrency control techniques, and recovery procedures

UNIT – I CONCEPTUAL MODELLING

9

Introduction database design-Database Environment, - Data Models: Entity Relationship Model, Relational Model- Database Development Lifecycle

UNIT – II RELATIONAL MODELS

Integrity Constraints- SQL Data Manipulation and Definition- Views- Relational Models-Hierarchical and Network

CO₂

UNIT – III INTRODUCTION TO SQL

9

Introduction to Structured Query Language-DDL Commands-DML Commands-TCL Commands -views-Index-Synonyms- Sub queries- SQL Functions-Joins-PL/SQL-simple programs

CO3

UNIT – IV RELATIONAL DATABASE DESIGN AND NORMALIZATION

9

ER and EER to relationship Model-ER Diagrams--Functional Dependencies-First, Second and Third Normal Forms-Dependency preservation

UNIT – V TRANSACTION MANAGEMENT

9

Transaction Concepts- Properties- Schedules- Serializability- Concurrency Control – Two phase locking techniques

CO₅

Total Periods:

45

Text Books:

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", McGraw-Hill, 4th Edition, 2002.
- 2. http://www.e-booksdirectory.com/details.php?ebook=10166
- 3. http://www.e-booksdirectory.com/details.php?ebook=7400re

References:

1. Ramez Elmasri, Shamkant B. Navathe, "Fundamental Database Systems", Pearson Education,

- 3rd Edition, 2003.
- 2. Raghu Ramakrishnan, "Database Management System", Tata McGraw-Hill Publishing Company, 3rd Edition, 2003.
- 3. Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, "Database System Implementation", Pearson Education, United States, 1st Edition, 2000.
- 4. Peter Rob, Corlos Coronel, "Database System, Design, Implementation and Management", Thompson Learning Course Technology, 5th Edition, 2003.
- 5. https://www.youtube.com/results?search_query=DBMS+onluine+classes
- 6. http://www.w3schools.in/dbms/
- 7. http://beginnersbook.com/2015/04/dbms-tutorial

Course Outcomes (CO)

CO1	The fundamentals of Database systems are vital components of modern information systems.
CO2	Understand the need for Databases and relational Model concepts.
CO3	Database applications all pervasive and range in size from small in-memory databases to
	terabytes or even larger in various applications domains.
CO4	The course focuses and the fundamentals of knowledgebase and relational database
	management systems, and the current developments in database theory and their practices.
CO5	Write Queries in SQL and execute multiple sub-queries, functions and joins.

Course					Prog	gram	Outc	omes	-				Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	3	3	3	3	2	3	1	1	3	3	1	3	3	2	
CO2	3	3	3	3	3	2	3	1	1	3	3	1	3	3	2	
CO3	2	3	3	3	3	2	3	1	1	3	3	1	3	2	2	
CO4	3	3	3	3	3	2	3	1	1	3	3	1	3	3	2	
CO5	2	3	3	3	3	2	3	1	1	3	3	1	3	3	2	

OME416	TESTING OF MATERIALS	L	T	P	C
		3	0	0	3
OBJECTIVES					

To understand the various destructive and non-destructive testing methods of materials and its industrial applications.

INTRODUCTION TO MATERIALS TESTING Overview of materials, Classification of material testing, Purpose of testing, Selection of material, Development of testing, Testing organizations and its committee, Testing standards, **CO1** Result Analysis, Advantages of testing.

UNIT – II MECHANICAL TESTING Introduction to mechanical testing, Hardness test (Vickers, Brinell, Rockwell), Tensile test,	
Introduction to machanical tacting Hardness tact (Violege Bringl Bookwall) Tancila tact	9
Impact test (Izod, Charpy) - Principles, Techniques, Methods, Advantages and Limitations, Applications. Bend test, Shear test, Creep and Fatigue test - Principles, Techniques, Methods, Advantages and Limitations.	02

UNIT – III NON DESTRUCTIVE TESTING

Visual inspection, Liquid penetrant test, Magnetic particle test, Thermography test – Principles, Techniques, Advantages and Limitations, Applications. Radiographic test, Eddy current test, Ultrasonic test, Acoustic emission- Principles, Techniques, Methods, Advantages and Limitations, Applications.	CO
UNIT – IV MATERIAL CHARACTERIZATION TESTING	
Macroscopic and Microscopic observations, Optical and Electron microscopy (SEM and TEM) - Principles, Types, Advantages and Limitations, Applications. Diffraction techniques, Spectroscopic Techniques, Electrical and Magnetic Techniques- Principles, Types, Advantages and Limitations, Applications.	CO
UNIT – V OTHER TESTING	
Thermal Testing: Differential scanning calorimetry, Differential thermal analysis. Thermo mechanical and Dynamic mechanical analysis: Principles, Advantages, Applications. Chemical Testing: X-Ray Fluorescence, Elemental Analysis by Inductively Coupled Plasma-Optical Emission Spectroscopy and Plasma-Mass Spectrometry.	CO
Total Periods:	45
Text Books:	
1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing" Narosa Publishing House, 2009.	
2. Cullity, B. D., "Elements of X-ray diffraction", 3 rd Edition, Addison-Wesley Company Inc. New York, 2000.	c.,
3. P. Field Foster, "The Mechanical Testing of Metals and Alloys" 7 th Edition, Cousens Pres 2007.	SS,
References:	
 Metals Handbook: Mechanical testing, (Volume 8) ASM Handbook Committee, 9th Edition American Society for Metals, 1978. 	n,
2. ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American So	ciety

- 2. ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA.
- 3. Brandon D.G., "Modern Techniques in Metallography", Von Nostrand Inc. NJ, USA, 1986

Course Outcomes (CO) Upon completion of the course, students should have the CO1 Know about testing standards and selection of materials. CO2 Understand the different types of mechanical testing. CO3 Understand the different types of Non- destructive testing methods. CO4 Identify suitable testing technique like macroscopic and microscopic observationsto inspect industrial component. CO5 Know about different thermal, chemical and Optical testing methods.

Course Outcomes		Program Outcomes									Program Special Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	2	3	-	2	-	-	-	2	-	3	-	2	-
CO2	3	3	2	3	-	2	-	-	-	2	-	3	-	2	-

CO3	3	3	2	3	-	2	-	-	-	2	-	3	-	2	-
CO4	3	3	2	3	-	2	-	-	-	2	-	3	-	2	-
CO5	3	3	2	3	-	2	-	-	-	2	-	3	-	2	-

OPEN ELECTIVE-II (VII SEMESTER)

l.	DATA SCIENCE FUNDAMENTALS L T	P	C				
	3 0	0	3				
UNIT – I	DATASCIENCE IN BIG DATA	•	9				
Defining resea	Benefits and uses – facets of data - Data Science Process: Overview – arch goals – Retrieving data – Data preparation - Exploratory Data analysis – el–presenting findings and building applications.	CO)1				
TINITE II	DESCRIPTION DATA		Λ				
UNIT - II	 DESCRIBING DATA Types of Variables -Describing Data with Tables and Graphs -Describing 		9				
• 1	rages - Describing Variability - Normal Distributions and Standard (z) Scores	CO)2				
UNIT – III	RELATIONSHIPS FOR ORGANIZING		9				
	Scatter plots –correlation coefficient for quantitative data –computational	CO					
formula for correlation coefficient – Regression – regression line – least squares regression line – Standard error of estimate.							
			_				
UNIT – IV	PYTHON MAGIC COMMANDS	1	9				
arrays-Data	npy array –comparisons, masks, boolean logic – fancy indexing – structured manipulation with Pandas – data indexing and selection — missing data — indexing — combining datasets — Aggregation and grouping	CO)4				
UNIT – V	VISUALIZATION WITH MATPLOTLIB		9				
	atplotlib – Line plots – Scatter plots – visualizing errors – density and		,				
contour plots – Histograms – legends – colors – subplots – text and annotation – three							
	lotting - Visualization with Seaborn)5				
	lotting - Visualization with Seaborn.	45					
Text Books:	:	45					
Total Periods Text Books: 1. David 6	Cielen, Arno D.B.Meysman, and Mohamed Ali, "Introducing Data Science" Man	45					
Text Books: 1. David 6 Publica	:	45					
Text Books: 1. David Publica 2. Robert (Units)	Cielen, Arno D.B.Meysman, and Mohamed Ali, "Introducing Data Science" Manations, 2016. (Unit I) S.Witteand John S.Witte, "Statistics", Eleventh Edition, Wiley Publications, 201 II and III)	45					
Text Books: 1. David Publica 2. Robert (Units)	Cielen, Arno D.B.Meysman, and Mohamed Ali, "Introducing Data Science" Manations, 2016. (Unit I) S.Witteand John S.Witte, "Statistics", Eleventh Edition, Wiley Publications, 201	45					
Text Books: 1. David Publica 2. Robert (Units 3. Jake V	Cielen, Arno D.B.Meysman, and Mohamed Ali, "Introducing Data Science" Manations, 2016. (Unit I) S.Witteand John S.Witte, "Statistics", Eleventh Edition, Wiley Publications, 201 II and III) ander Plas, "Python Data Science Handbook", O'Reilly, 2016. (Units IV and V) omes (CO)	45					
Text Books: 1. David Publica 2. Robert (Units 3. Jake V	Cielen, Arno D.B.Meysman, and Mohamed Ali, "Introducing Data Science" Manations, 2016. (Unit I) S.Witteand John S.Witte, "Statistics", Eleventh Edition, Wiley Publications, 201 II and III) ander Plas, "Python Data Science Handbook", O'Reilly, 2016. (Units IV and V) omes (CO) tion of the course, students should	45					
Text Books: 1. David Publica 2. Robert (Units 3. Jake V. Course Outco Upon complet CO1 Defin	Cielen, Arno D.B.Meysman, and Mohamed Ali, "Introducing Data Science" Manations, 2016. (Unit I) S.Witteand John S.Witte, "Statistics", Eleventh Edition, Wiley Publications, 201 II and III) ander Plas, "Python Data Science Handbook", O'Reilly, 2016. (Units IV and V) omes (CO) tion of the course, students should the the data science process	45					
Text Books: 1. David Publica 2. Robert (Units 3. Jake V Course Outco Upon complet CO1 Defin	Cielen, Arno D.B.Meysman, and Mohamed Ali, "Introducing Data Science" Manations, 2016. (Unit I) S.Witteand John S.Witte, "Statistics", Eleventh Edition, Wiley Publications, 201 II and III) ander Plas, "Python Data Science Handbook", O'Reilly, 2016. (Units IV and V) omes (CO) tion of the course, students should the the data science process erstand different types of data description for data science process	45					
Text Books: 1. David Publica 2. Robert (Units 3. Jake V. Course Outco Upon complet CO1 Defin CO2 Unde CO3 Appl	Cielen, Arno D.B.Meysman, and Mohamed Ali, "Introducing Data Science" Manations, 2016. (Unit I) S.Witteand John S.Witte, "Statistics", Eleventh Edition, Wiley Publications, 201 II and III) ander Plas, "Python Data Science Handbook", O'Reilly, 2016. (Units IV and V) omes (CO) tion of the course, students should the the data science process erstand different types of data description for data science process by data processing methods for processing health care data.	45					
Text Books: 1. David Publica 2. Robert (Units 3. Jake V Course Outco Upon complet CO1 Defin CO2 Unde CO3 Appl CO4 Use to	Cielen, Arno D.B.Meysman, and Mohamed Ali, "Introducing Data Science" Manations, 2016. (Unit I) S.Witteand John S.Witte, "Statistics", Eleventh Edition, Wiley Publications, 201 II and III) ander Plas, "Python Data Science Handbook", O'Reilly, 2016. (Units IV and V) omes (CO) tion of the course, students should ne the data science process erstand different types of data description for data science process by data processing methods for processing health care data. The Python Libraries for Data Wrangling	45					
Text Books: 1. David Publica 2. Robert (Units 3. Jake V Course Outco Upon complet CO1 Defin CO2 Unde CO3 Appl CO4 Use to	Cielen, Arno D.B.Meysman, and Mohamed Ali, "Introducing Data Science" Manations, 2016. (Unit I) S.Witteand John S.Witte, "Statistics", Eleventh Edition, Wiley Publications, 201 II and III) ander Plas, "Python Data Science Handbook", O'Reilly, 2016. (Units IV and V) omes (CO) tion of the course, students should the the data science process erstand different types of data description for data science process by data processing methods for processing health care data.	7.					

Outcomes		Outcomes								es					
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	2	1	-	-	-	-	-	-	-	-	-	2	2	-
CO2	3	2	1	-	-	-	-	-	-	-	-	-	2	2	-
CO3	3	2	2	-	-	-	-	-	-	-	-	-	2	2	-
CO4	3	3	3	-	-	_	-	-	-	_	-	-	2	2	-
CO5	3	3	3	-	-	-	-	-	-	-	-	-	2	2	-

OCS422	MACHINE LEARNING TECHNIQUES L	T]	P C
	3	0	0 3
OBJECTIVES			
To unders	stand the basic concepts of machine learning and probability theory.		
• To learn t	the supervised learning and their algorithms.		
 To unders 	stand unsupervised learning like clustering.		
 To unders 	stand the theoretical and practical aspects of probabilistic graphical models.		
	other learning aspects such as reinforcement learning, representation learning	, de	ep
	neural networks and other technologies.		
	INTRODUCTION		9
	ng - Types of Machine Learning - Supervised Learning - Unsupervise		
	Basic Concepts in Machine Learning - Machine Learning Process - Weigh		CO1
	Machine Learning Algorithms – A Brief Review of Probability Theory	- '	COI
Turning Data into	o Probabilities – Candidate Elimination Algorithm	\perp	
	CUREDINGED I EADMING		
	SUPERVISED LEARNING	$\overline{}$	9
	for Regression – Bayesian Linear Regression – Common Regression		
	Simple Linear Regression – Multiple Linear Regression – Commo		CO2
Support Vector N	gorithms – k-Nearest Neighbors – Decision Trees – Random Forest model	_	
Support vector is	//acmines		
UNIT – III	UNSUPERVISED LEARNING		9
	ring – Dirichlet Process Mixture Models – Spectral Clustering – Hierarchica	al	
	Curse of Dimensionality – Dimensionality Reduction – Principal Componen		CO3
	t Variable Models (LVM) – Latent Dirichlet Allocation (LDA)		
	GRAPHICAL MODELS		9
	rks – Conditional Independence – Naive Bayes Classifiers – Markov Chai		
	thods – Sampling – Proposal Distribution – Markov Random Fields – Hidde	n	CO4
Markov Model.			
l l	INTELLIGENCE AND APPLICATIONS		9
	e processing-Morphological Analysis – Syntax analysis – Semantic Analysis		~~ =
	s – Language Models – Information Retrieval – Information Extraction	- (CO5
	tion – Machine Learning - Symbol-Based – Machine Learning	+	45
Total Periods:		4	45
Text Books:			
1 E41 A	Inovidia "Introduction to Machine I coming?" Third Edition Describe II-11	of I	nd:
1. Ethem A	lpaydin, "Introduction to Machine Learning," Third Edition, Prentice Hall	01 1	naia,

2015.

2. Stephen Marsland, —Machine Learning – An Algorithmic Perspectivell, Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.

References:

- 1. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 2. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.
- 3. Tom Mitchell, "Machine Learning", McGraw-Hill, 2017.
- 4. Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Second Edition, Springer, 2008.
- 5. Fabio Nelli, "Python Data Analytics with Pandas, Numpy, and Matplotlib", Second Edition, Apress, 2018.

Course Outcomes (CO)

Upon completion of the course, students should

CO1	Gain knowledge about basic concepts of machine learning techniques and terminology.
CO2	Develop predictive model based on both input and output data using supervised algorithms
CO3	Understand the unsupervised learning algorithm and dimensionality reduction techniques
CO4	Design systems that use the appropriate graphical models of machine learning
CO5	Improve problem solving skills using the acquired knowledge in the areas of natural
	language processing with machine learning

Course				<u> </u>	Program Outcomes								Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	2	3	3	2	1	-	-	-	-	-	-	1	2	2	1	
CO2	2	3	3	2	2	-	-	-	-	-	-	1	2	2	1	
CO3	2	3	3	2	3	-	-	-	-	-	-	1	2	2	2	
CO4	2	3	3	2	3	-	-	-	1	-	-	1	2	2	2	
CO5	2	2	3	2	1	-	-	-	-	-	-	1	2	2	2	

OCS423	AUGMENTED AND VIRTUAL REALITY	L	T	P	C
		3	0	0	3

OBJECTIVES

- To gain the knowledge of historical and modern overviews and perspectives on virtual reality.
- To learn the fundamentals of sensation, perception, and perceptual training.
- To have the scientific, technical, and engineering aspects of augmented and virtual reality systems.
- To learn the evaluation of virtual reality from the lens of design.
- To learn the technology of augmented reality and implement it to have practical knowledge.

UNIT – I INTRODUCTION

9

Introduction to Augmented-Virtual and Mixed Reality, Taxonomy, technology and features of augmented reality, difference between AR, VR and MR, Challenges with AR, AR systems and functionality, Augmented reality methods, visualization techniques for augmented reality.

UNIT – II VR SYSTEMS

9

VR as a discipline, Basic features of VR systems, Architecture of VR systems, VR hardware: VR input hardware: tracking systems, motion capture systems, data gloves, VR output hardware: visual displays, Methodology and terminology, user performance studies, VR health

CO₂

UNIT – III	STEREOSCOPIC VISION & HAPTIC RENDERING	
	of the human visual system, Depth cues, Stereopsis, Retinal disparity, Haptic levices, Algorithms for haptic rendering and parallax, Synthesis of stereo pairs.	СО
TINITED IN	VID DEVEL ODMENIE	
UNIT – IV	VR DEVELOPMENT	
	VR in Mechanical development, Control Architectures, Rendering mechanical	~~
	3D interaction techniques: Manipulation Techniques and Input Devices,	CO
Interaction Tec	chniques for 3D Manipulation.	
UNIT – V	APPLICATIONS	
AR software,	Camera parameters and camera calibration, Marker-based augmented reality,	
AR Toolkit, M	edical, military & mechanical applications, Advanced Real time Tracking, other	00
	games, movies, simulations, therapy, Understanding Meta, AR VR in Cyber	CO
	hanics in VR, Matlab.	
Total Periods:		45

Text Books:

- 1. George Mather, Foundations of Sensation and Perception: Psychology Press; 2ndedition, 2009.
- 2. The VR Book: Human-Centered Design for Virtual Reality, by Jason Jerald
- 3. Learning Virtual Reality by Tony Parisi, O' Reilly
- 4. Burdea, G. C. and P. Coffet. Virtual Reality Technology, Second Edition. Wiley, IEEE Press, 2003/2006.
- 5. Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.

References:

- 1. Steven M. LaValle, "Virtual Reality", Cambridge University Press, 2016
- 2. Alan Craig, William Sherman and Jeffrey Will, Developing Virtual Reality Applications, Foundations of Effective Design, Morgan Kaufmann, 2009.
- 3. Schmalstieg / Hollerer, "Augmented Reality: Principles & Practice", Pearson Education India; First edition (12 October 2016), ISBN-10: 9332578494

Course Outcomes (CO)

Upon completion of the course, students should

CO1	Identify, examine, and develop software that reflects fundamental techniques for the design
	and deployment of VR and AR experiences.
CO2	Describe how VR and AR systems work.
CO3	Choose, develop, explain, and defend the use of particular designs for AR and VR
	experiences.
CO4	Evaluate the benefits and drawbacks of specific AR and VR techniques on the human body.
CO5	Identify and examine state-of-the-art AR and VR design problems and solutions from the
	industry and academia.

Course		Program Outcomes												gram Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	-	1	2	1	-	-	-	-	ı	-	-	-	2	2	1		
CO2	1	2	2	-	2	-	-	-	-	-	-	1	2	2	1		

CO3	1	2	2	-	ı	ı	ı	ı	İ	ı	ı	2	2	2	2
CO4	1	2	2	ı	2	1	1	1	1	-	-	1	2	2	2
CO5	1	2	2	2	3	-	-	-	-	-	-	2	2	2	2

OME421	ENERGY CONSERVATION AND MANAGEMENT	L	T	P
		3	0	0
OBJECTIVES				
At the end of the	e course, the student is expected to			
Unders	stand and analyze the energy data of industries			
Carryo	ut energy accounting and balancing			
Condu	ct energy audit and suggest methodologies for energy savings and			
Utilize	the available resources in optimal ways			
UNIT – I	INTRODUCTION			9
Waste heat man	nergy management - Energy conservation schemes - Optimizing steam unagement - Insulation - Optimum selection of pipe size — Energy conservation — Energy and cost indices - Energy diagrams — Energy auditing.			CO
UNIT – II	THERMODYNAMIC SYSTEMS			9
fuel, Thermody – performance concept of tri cogeneration cogeneration sy	c availability analysis – Thermodynamic efficiencies -Available energy namic Cycles: topping, bottoming and combined cycle - organic rankine of indices of cogeneration systems, waste heat recovery – sources and tygeneration. Configuration and thermodynamic performance – steam to systems, gas turbine cogeneration systems, reciprocating IC erestems, combined cycles cogeneration systems, advanced cogeneration systems, Heat Recovery Steam Generators.	cycl ypes urbin	es - ne es	CO2
UNIT – III	WASTE HEAT RECOVERY SYSTEMS			
Thermodynami Analysis – LM Heat Exchange pipes &Vapor (conversion tech MHD Heat Pur	c cycles for low temperature application, Introduction to Heat Excha TD and NTU method Analysis of Heat Exchanger Problem solving, S rs for Waste Heat Recovery, Systems of Heat Exchanger Network of Chambers, Direct conversion technologies – Thermoelectric Generators. Innologies – Thermoelectric Generators, Thermionic conversion, Thermoelectric Generators, Sorption Systems Selection criter overy systems – Recuperators, Regenerators, Economizers, Thermic heat boilers – classification, location, service conditions, design considera	peci He Dire o-P ria f flu	al at ect V, or	CO
	ical boners classification, focation, service conditions, design considera			
heaters, Waste				
UNIT – IV Energy Storage Magnetic Stora	ENERGY STORAGE TECHNIQUES Techniques — Pumped hydro, Compressed Air, Flywheel, Superconduge Energy Storage Techniques — Thermal storage (Sensible & Latent), Bay Storage, Fuel cell		_	CO
UNIT – IV Energy Storage Magnetic Stora Chemical Energ	ENERGY STORAGE TECHNIQUES Techniques — Pumped hydro, Compressed Air, Flywheel, Supercondige Energy Storage Techniques — Thermal storage (Sensible & Latent), Bay Storage, Fuel cell		_	CO
UNIT – IV Energy Storage Magnetic Stora Chemical Energ UNIT – V Investment cos economic analy	ENERGY STORAGE TECHNIQUES Techniques — Pumped hydro, Compressed Air, Flywheel, Superconduction of the Energy Storage Techniques — Thermal storage (Sensible & Latent), Bay Storage, Fuel cell ECONOMICS t — economic concept — Analysis of economic performance — proceduction of the Energy Storage of the Energy Storage (Sensible & Latent), Bay Storage, Fuel cell ECONOMICS t — economic concept — Analysis of economic performance — proceduction of the Energy Storage (Sensible & Latent), Bay Storage, Fuel cell	atter	or ad	

Text Books:

- 1. Energy Management and Conservation , P. Venkataseshaiah K.V. Sharma, Wiley Publication, January 2020
- 2. Energy Engineering and Management, Amlan Chakrabarti, PHI publishers, Second Edition January 2019

References:

- 1. Fuel Economy in furnaces and Waste heat recovery PCRA
- 2. Heat Recovery Systems by D.A.Reay, E &F.N.Span, London,.
- 3. Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Applications, John Wiley & Sons 2002
- 4. Trivedi, PR, Jolka KR, Energy Management, Commonwealth Publication, New Delhi, 1997

Course Outcomes (CO)

Upon completion of the course, students should

c pon co	inpletion of the course, students should
CO1	Understand about need for Energy Conservation and Management.
CO2	Apply concepts of thermodynamics to engineering systems.
CO3	Study the different measures for energy conservation.
CO4	Study the various applications of energy storage systems

CO5 Develop optimized model for energy planning.

Course	Program Outcomes												Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	2	2	-	-	2	2	-	-	-	2	2	2	2	-	
CO2	3	2	2	-	-	2	2	-	-	-	2	2	2	2	1	
CO3	3	2	2	-	-	2	2	-	-	-	2	2	2	2	-	
CO4	3	2	2	-	-	2	2	-	-	-	2	2	2	2	-	
CO5	3	2	2	-	-	2	2	-	-	-	2	2	2	2	-	

OME422	AIR POLLUTION AND CONTROL	L	T	P	C	
		3	0	0	3	

OBJECTIVES

❖ To impart knowledge on the principle and design of control of Indoor/ particulate/ gaseous air pollutant and its emerging trends.

UNIT – I INTRODUCTION

on – | nals, | **CO1**

Structure and composition of Atmosphere – Definition, Scope and Scales of Air Pollution – Sources and classification of air pollutants and their effect on human health, vegetation, animals, property, aesthetic value and visibility- Ambient Air Quality and Emission standards.

UNIT – II METEOROLOGY

_ _

9

9

Effects of meteorology on Air Pollution - Fundamentals, Atmospheric stability, Inversion, Wind profiles and stack plume patterns- Atmospheric Diffusion Theories – Dispersion models, Plume rise.

CO₂

UNIT – III	CONTROL OF PARTICULATE CONTAMINANTS	9
Factors affecting	g Selection of Control Equipment – Gas Particle Interaction – Working principle -	
Gravity Separa	tors, Centrifugal separators Fabric filters, Particulate Scrubbers, Electrostatic	CO3
Precipitators.		
UNIT – IV	CONTROL OF GASEOUS CONTAMINANTS	9
	g Selection of Control Equipment – Working principle - absorption, Adsorption, acineration, Bio filters – Process control and Monitoring.	CO4
UNIT – V	INDOOR AIR QUALITY MANAGEMENT	9
	and control of indoor air pollutants, sick building syndrome and Building	
related illness and Preventive.	Sources and Effects of Noise Pollution – Measurement – Standards –Control	CO5
Total Periods:		45
Text Books:		

- 1. Lawrence K. Wang, Norman C. Pareira, Yung Tse Hung, "Air Pollution Control Engineering",
- 2. Tokyo, Springer science + science media LLC, 2004.
- 3. Noel de Nevers, "Air Pollution Control Engineering", Waveland press, Inc 2017.
- 4. Anjaneyulu. Y, "Air Pollution and Control Technologies", Allied Publishers (P) Ltd., India 2002.

References:

- 1. David H.F. Liu, Bela G. Liptak, "Air Pollution", Lweis Publishers, 2000.
- 2. Arthur C. Stern, "Air Pollution (Vol.I Vol.VIII)", Academic Press, 2006.
- 3. Wayne T.Davis, "Air Pollution Engineering Manual", John Wiley & Sons, Inc, 2000.
- 4. M.N Rao and HVN Rao, "Air Pollution", TataMcgraw Hill Publishing Company Limited, 2007.
- 5. C.S. Rao, "Environmental Pollution Control Engineering", New Age International (P) Limited Publishers, 2006.

Course Outcomes (CO)

Opon co	ompletion of the course, students should have the
CO1	An understanding of the nature and characteristics of air pollutants, noise pollution and
	basic concepts of air quality management
CO2	To identify, formulate and solve air and noise pollution problems
CO3	To design stacks and particulate air pollution control devices to meet applicable standards.
CO4	To select control equipments.
CO5	To ensure quality, control and preventive measures

Course		Program Outcomes													Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	3	-	-	2	-	3	3	-	-	-	-	3	-	2	-			
CO2	3	-	-	2	-	3	3	-	-	-	-	3	-	2	-			
CO3	3	-	-	2	-	3	3	-	-	-	-	3	-	2	-			
CO4	3	-	-	2	-	3	3	-	ı	-	-	3	-	2	-			

MANDATORY COURSES

MX4001	INTRODUCTION TO WOMEN AND GENDER STUDIES	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	3	0	0	0

Objectives

- ❖ To enhance social sensitivity, sensibility and responsibility thereby instilling the life skills among students, through applied learning.
- ❖ To upgrade knowledge and comprehension of gender issues for attitudinal and behavioural changes among marginalized groups to claim the right to life with dignity and equality through extension and collaborative activities.
- ❖ To evolve inclusive approach for holistic development in order to promote women empowerment

UNIT - I INTRODUCTION TO WOMEN'S STUDIES

q

Key concepts in Gender studies - Need, Scope and challenges of Women's Studies - Women's Studies as an academic discipline -Women's Studies to Gender Studies -Need for Gender Sensitization - Women's Movements—global and local: Pre-independence -Post-independence and Contemporary Debates - National Committees and Commissions for Women.

UNIT – II FEMINIST THINKERS AND THEORIES

9

Liberal Feminism – Marxist Feminism – Radical Feminism –Socialist Feminism – Indian Feminism – Black Feminism - Eco-Feminism – New Feminist Debates- Post Colonial/Post Modern – Masculinity Studies – Contemporary Contestations –Intersex and Transgender Movements. Feminist thinkers in 18th ,19th , 20th and 21st Century.

UNIT – III GENDER AND EDUCATION

9

Women's Education – Gender diversities and disparities in enrolment, Curriculum content, Dropouts, profession and Gender – Gendered Education-Family, Culture, Gender roles, Gender Identities – Education for the Marginalized Women – Recent Trends in Women's Education –Committees and Commissions on Education – Vocational education and skill development for women.

UNIT – IV WOMEN, WORK AND EMPLOYMENT

9

Theoretical Perspective: Fredrick Engels, Rosa Luxemburg, Sandra Whiteworth, Boserup Esther – Concept of Work– Productive and non– productive work–Use value and market value – Gender Division of Labour–Mode of Production–Women in organized and unorganized sector – New Economic Policy and its impact on Women's Employment–Globalization–Structural Adjustment Programs.

UNIT – V GENDER AND ENTREPRENEURSHIP

9

Concept and meaning, Importance of Entrepreneurship, Entrepreneurial traits, Factors contributing to Entrepreneurship, enabling environment, small Enterprises, women in agri-business – Gender and emerging Technology – Impact - Self-help Groups and Micro Credit – Gender mainstreaming, Gender budgeting, planning and Analysis.

Total Periods:

45

Text Books:

- 1. Jaya Kothari Pillai- 1995, Women and Empowerment, New Delhi: Gyan Publishing House
- 2. JoRoland: 1997, Questioning Empowerment, Oxfam Oxford.

- 3. Janet Townsend etal-: 1999, Women and Power, Fighting Patriarchy and Poverty. Zed Books, London.
- 4. Naila Kabeer: 1996, Reversed Realities, Kali for women, New Delhi.

Course Outcomes (CO)

Upon completion of the course, students will be able

- CO1 To enhance the social sensitivity, sensibility and responsibility thereby instilling the life skills among students.

 CO2 To upgrade knowledge and comprehension of gender issues for attitudinal and behavioural change among men, women and transgender etc. to claim the right to life with dignity and equality.

 CO3 To bring social, economic, political and cultural empowerment and gender equality in personal as well Professional life.

 CO4 To crystallize the teaching of Women's Studies in term of teaching, research and extension.
- in order

 CO5 To create more gender equality and equity world by education, sensitization and

CO5 To create more gender equality and equity world by education, sensitization and empowerment.

Course		Program Outcomes													Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	-	-	-	-	-	1	-	1	-	-	-	1	-	-	1			
CO2	-	-	-	-	-	1	-	1	-	-	-	1	-	-	1			
CO3	-	-	-	-	-	1	-	1	-	-	-	1	-	-	1			
CO4	-	-	-	-	-	1	-	1	-	-	-	1	-	-	1			
CO5	-	-	-	-	-	1	-	1	-	-	-	1	-	-	1			

MX4002	ELEMENTS OF LITERATURE	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	3	0	0	0

Objectives

- ❖ To understand the recent contexts, concepts and ideologies.
- ❖ To acquaint themselves with the major generic divisions in English literature.
- ❖ To acknowledge the conventions of literary research and documentation.

UNIT - I KEY ELEMENTS OF LITERATURE

9

Language - Plot - Setting/Milieu - Character - Theme - Point of View - Tone/Mood.

UNIT – II PROSE

The form of prose - written and spoken prose - individual and common style - simplicity and ornamentation - abstract and concrete - realism, romance and unreality - the science of rhetoric.

UNIT – III POETRY

9

The importance of form - the physical form of poetry - metre - variation - rhyme - internal pattern - logical sequence - the use of associations - patterns of imagery the main types of poetry.

UNIT – IV NOVEL

9

The concept of fiction - verisimilitude - the point of view - plot - character - character revealed - conversation - scene and background - dominant themes - the experimental novel.

UNIT – V DRAMA

9

Live literature - action - plots - conventional divisions - direct experience of characters - dialogue and conversation - verse and prose - types of drama - drama and history - use of notes — interpretation.

Total Periods: 45

Text Books:

- 1. Barnet Sylvan, Types of Drama; Plays and Essays, Boston, Little Brown, 1981.
- 2. Brooks, Peter, Reading for the Plot; Design and Intention in Narrative, Oxford, Clarendon Press, 1984.
- 3. Hardings D.W., Words Into Rhythm; English Speech, OUP, New Delhi, 1976.
- 4. Murfin, Ross, and Supriya M. Ray. The Bedford Glossary of Critical and Literary Terms. New York: Macmillan Press Ltd., 1997.
- 5. Paul, Poplawski, ed. English Literature in Context. London: CUP,2008.

Course Outcomes (CO)

Upon completion of the course, students will be able to

Upon co	ompletion of the course, students will be able to
CO1	Comprehend various forms of literature like prose, poetry, drama and fiction.
CO2	Interpret and appreciate the didactic purpose in literature.
CO3	Identify the poetic devices to the connection of poems.
CO4	Describe the process and origin of the development of drama in its structure with the text.
CO5	Define the various types of novels with their structure

Course Outcomes					Pro	gram	Out	comes	S				Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	-	-	-	-	-	1	-	1	-	-	-	1	-	-	1	
CO2	-	-	-	-	-	1	-	1	-	-	-	1	-	-	1	
CO3	-	-	-	-	-	1	-	1	-	-	-	1	-	-	1	
CO4	-	-	-	-	-	1	-	1	-	-	-	1	-	-	1	
CO5	-	-	-	-	-	1	-	1	-	-	-	1	-	-	1	

MX4003	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	3	0	0	0

Objectives

- ❖ To develop inter personal skills and be an effective goal-oriented team player.
- * To develop professionals with idealistic, practical and moral values.
- ❖ To develop communication and problem-solving skills.
- ❖ To re-engineer attitude and understand its influence on behaviour.

UNIT - I NEETISATAKAM-HOLISTIC DEVELOPMENT OF PERSONALITY-I

9

Verses- 19,20,21,22 (wisdom), Verses- 29,31,32 (pride & heroism), Verses- 26,28,63,65 (virtue) NEETISATAKAM-HOLISTIC DEVELOPMENT OF PERSONALITY-II Verses- 52.53.59 (don'ts), Verses- 71.73.75.78 (do's) UNIT – III | APPROACH TO DAY-TO-DAY WORK AND DUTIES Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48, Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35, Chapter 18-Verses 45, 46, 48. UNIT – IV STATEMENTS OF BASIC KNOWLEDGE Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68, Chapter 12 -Verses 13, 14, 15, 16, 17, 18 PERSONALITY OF ROLE MODEL UNIT - VShrimad Bhagwad Geeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39, Chapter18 – Verses 37,38,63. **Total Periods:** 45 **Text Books:** 1. "Srimad Bhagavad Gita" by Swami Swarupananda, Advaita Ashram (Publication Department), Kolkata 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi **Course Outcomes (CO)** Study of Shrimad Bhagwad Geeta will help the student in developing his personality and CO₁ achieve the highest goal in life. CO₂ The person who has studied Geeta will lead the nation and mankind to peace and prosperity.

Course					Pro	gram	Out	comes	S				Program Specifi Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	-	-	-	-	-	1	-	1	-	-	-	1	-	-	1		
CO2	-	-	-	-	-	1	-	1	-	-	-	1	-	-	1		
CO3	-	-	-	-	-	1	-	1	-	-	-	1	-	-	1		

MX4004	DISASTER MANAGEMENT	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	3	0	0	0

Objectives

CO₃

❖ To provide students an exposure to disasters, their significance and types.

Study of Neetishatakam will help in developing versatile personality.

- ❖ To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction.
- ❖ To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- ❖ To enhance awareness of institutional processes in the country and
- ❖ To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

UNIT I	INTRODUC	TION TO	DISAST	TERS					9
	Disaster, Hazar	*	•				~ 1		
 Earthqua 	ake, Landslide,	Flood, D	Orought,	Fire e	tc -	Classification,	Causes,	Impacts	

including social, economic, political, environmental, health, psychosocial, etc Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.	CO1
UNIT – II APPROACHES TO DISASTER RISK REDUCTION (DRR)	9
Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processess and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.	CO2
UNIT – III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT	9
Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.	CO3
UNIT – IV DISASTER RISK MANAGEMENT IN INDIA	9
Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness), Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.	CO4
UNIT – V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS	9
Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.	CO5
	45
 Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423 Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259 Gupta Anil K, Sreeja S. Nair "Environmental Knowledge for Disaster Risk Management NIDM, New Delhi, 2011 Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publish New Delhi, 2010. 	on nt",
References:	
1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005	
 Government of India, National Disaster Management Policy, 2009. 	
Course Outcomes (CO)	
Upon completion of the course, students will be able to	
CO1 Differentiate the types of disasters, causes and their impact on environment and society	7

CO2	Assess vulnerability and various methods of risk reduction measures as well as mitigation
CO3	Draw the hazard and vulnerability profile of India, Scenarios in the Indian context,
CO4	Know about the relief measures, Disaster damage assessment and management.
CO5	Learn through case studies about the damages caused due to various disasters.

Course					Pro	gram	Out	comes	S				Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	_	-	3	-	-	3	3	-	-	-	-	2	-	-	2	
CO2	-	-	3	-	-	3	3	-	-	-	-	2	-	-	2	
CO3	-	-	3	-	-	3	3	-	-	-	-	2	-	-	2	
CO4	-	-	3	-	-	3	3	-	-	-	-	2	-	-	2	
CO5	-	-	3	-	-	3	3	-	-	-	-	2	-	-	2	

MX4005	WELL BEING WITH TRADITIONAL PRACTICES	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	3	0	0	0

Objectives

- Explaining the purpose of well being and impact it has on their work and life.
- To teach basic methods used in the systems of Ayurveda, Siddha and Yoga.
- Identify key factors that contribute to work place burnout and sustainability.

UNIT - I HEALTH AND HAPPINESS

9

Mental and physical health, physical and emotional safety, and a feeling of belonging, sense of purpose, achievement and success. Need for Managing Self, Positive Psychology and Yoga.

UNIT – II WELL BEING

0

Health and Wellbeing: Perspectives from Positive Psychology, Yoga and Ayurveda, Attaining Wellbeing – Methods, Obstacles, Realms and Types of Interventions for Managing Self and Career

UNIT – III YOGA PRACTICES

9

Definitions of Eight parts of yoga (Ashtanga) Asan and Pranayam - Various yoga poses and their benefits for mind & body - Regularization of breathing techniques and its effects-Types of pranayam

UNIT – IV AYURVEDA PRACTICS

9

Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines –Approach to health disease in Ayurveda

UNIT – V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE

9

Principles of Siddha- the five natural elements and three humours, Physical constituents.

Total Periods:

45

Text Books:

- 1. Mental health and well being in workplace by Gill hassan and Donna Butler.
- 2. Yogic Asanas for Group Training Part- I": Janardan Swami Yogabhyasi Mandal, Nagpur.
- 3. Textbook of Ayurveda: Volume 1 Fundamental Principles of Ayurveda by Dr Vasant Lad.
- 4. Siddha medicine handbook of traditional remedies by Paul Joseph

References:

- 1. The Social Psychology of Mental Health: Basic Mechanisms and Applications by Diane N Ruble
- 2. "Raja yoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama Publication Department, Kolkata.

Course Outcomes (CO)

Upon completion of the course, students will be able

_	<u>.</u>
CO1	To create awareness about health and happiness
CO2	To develop healthy mind in a healthy body thus improving social health also
CO3	To educate the importance of various yoga asanas
CO4	To know the values of ayurveda system
CO5	To understand the importance of siddha medicine.

Course					Pro	gram	Out	comes	S				Program Specific Outcomes			
Outcomes	a	b	С	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	2	3	2	3	2	2	2	3	2	2	2	2	2	1	
CO2	3	2	3	3	2	2	2	2	2	2	2	3	2	2	1	
CO3	3	3	2	3	2	2	2	3	3	2	2	2	2	2	1	
CO4	3	3	3	2	2	2	3	3	3	2	2	2	2	2	1	
CO5	2	3	2	2	3	2	2	2	3	2	2	2	2	2	1	

MX4006	HISTORY OF SCIENCE AND TECHNOLOGY IN INDIA	L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes)	3	0	0	0

Objectives

- To provide an exposure to the development of science and technology in India
- To impart authentic knowledge of India's scientific and technological traditions.
- To provide an understanding of the socio-cultural and philosophical context in which science and technology developed.
- To help in repositioning India's contributions in science and technology.

UNIT - I INTRODUCTION

9

Logic and methodology of Indian sciences - An overview of Indian contributions to sciences - An overview of Indian contributions to technology.

UNIT – II ASTRONOMY

9

Development of astronomy in India- Pancanga: Indian calendrical computations- The distinct features of Indian planetary models- Computation of eclipses: Its simplicity- elegance and efficiency- Observational astronomy in India.

UNIT - III | MATHEMATICS

9

An overview of the development of mathematics in India – Mathematics contained in Sulbasutras – combinatorial aspects of the Chandassastra – Solutions to the first and second order indeterminate equations- Weaving mathematics into beautiful poetry: Bhaskaracarya – The evolution of sine function in India – The discovery of calculus by Kerala astronomers.

UNIT – IV AYURVEDA

9

History of Ayurveda – Rational foundations of Ayurveda – Textual sources in Ayurveda – Ayurveda and allied disciplines – Approach to health disease in Ayurveda – Approach to diet and nutrition in Ayurveda – Ayurveda and modern medicine – Ayurveda and Yoga

UNIT – V | TECHNOLOGICAL DEVELOPMENT IN INDIA

9

Agriculture: Origin and development- Ancient crops- Traditional practices

Water management: Overview- Harappan water management- Other case studies-

Medieval Water structures

Pottery: Overview- Technical aspects

Silpasastra: Architecture and Construction: An introduction to Silpasastra- Construction Technology

Metallurgy: Copper/Bronze/Zinc- Iron and Steel Technology in India

Total Periods: 45

Text Books:

- 1. Suvobrata Sarkar, History of Science, Technology, Environment, and Medicine in India, Taylor & Francis, London
- 2. Neera Misra, Sabareesh P.a. 2022, A Brief History of Science in India, Garuda Prakashan Private Limited.
- 3. Prittam Dutta 2021, WHAT IS ASTRONOMY?, Notion Press

References:

- 1. D. P. Chatpathayaya, History of science, philosophy, and culture in India civilization, Uma das Gupta, Pearson Education.
- 2. Bryan Bunch, Bryan H. Bunch, Alexander Hellemans, The History of Science and Technology, Houghton Mifflin.
- 3. Projit Bihari Mukharji 2016, Doctoring Traditions-Ayurveda, Small Technologies, and Braided Sciences, University of Chicago Press

Course Outcomes (CO)

Upon completion of the course, students will be able to

CO1	Gain knowledge on Indian sciences
CO2	Understand the evolution of stars as well as of the large scale structure of the Universe
CO3	Solve problems involved in arithmetic, algebra, geometry, and other fields of mathematics
CO4	Understand each individual at a very subtle, personal level and gives a detailed protocol for diet, daily routines and activities to be followed.
CO5	Gain knowledge on origin of agriculture, technical aspects of pottery and silpasastra

Course Outcomes					Pro	gram	Out	comes	S					gram S Outcon	Specific nes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3				
CO1	-	-	-	1	-	-	2	2	-	-	-	2	2	1	1				
CO2	2	2	1	1	1	2	2	1	-	-	1	3	2	1	1				
CO3	3	3	2	1	1	-	-	-	1	-	1	2	2	1	1				
CO4	1	-	-	-	-	3	3	1	-	-	-	3	2	1	1				
CO5	2	2	1	1	2	3	3	1	-	-	-	2	2	1	1				

MX4007	POLICAL AND ECONOMIC THOUGHT FOR HUMAN	т	Т	D	
	SOCIETY	L	ı	r	

(Common to al	l branches of B.E.	B. Tech Programmes)
---------------	--------------------	---------------------

3 0

0

0

0

Objectives

- To understand the concept of political science and theories of political science.
- To know the types of political socialization and their role.
- To explore various theories of economic thought.
- To learn the importance of human values of life.

UNIT - I POLITICAL THOUGHTS

9

Political science: Definition, Nature & Scope; Relation of Political Science with other Social Sciences; Traditional approaches to the study of Political Science: Normative, Empirical and Feminist-State: Definition; Elements; Relation with other organizations; Theories of origin of state (Theory of Divine, Force, and Evolutionary); Sovereignty- definition and characteristics.

UNIT – II | POLITICAL CULTURE AND POLITICAL SOCIALIZATION

9

Meaning and dimensions of political culture, meaning and types of political socialization agencies of political socialization and their role-Meaning and types of political participation, political apathy – reasons for political apathy, Determinants of political participation – psychological, social and political.

UNIT-III | HISTORY OF ECONOMIC THOUGHT

9

Nature and Importance of Economic thought – Approaches of Economic Thought – Scholastics – Mercantilism, French and English – Thomas Munn – Scientific Method and the French Physiocrats – Quesnay – The Classical School – Adam Smith – Division of Labour – Ricardo and Theory of Rent – Comparative Cost Theory – Stationary State – Malthus and Theory of Population and Theory of Gluts.

UNIT-IV | ECONOMIC BEHAVIOUR AND MORAL SENTIMENTS

9

Importance of ethics in economics; Outcomes of ethical analysis; Duties, rules and virtues; Economic behaviour: Self-interest and rational behaviour- Adam Smith and self-interest - Social Philosophy (Naturalism, Optimism, Self Interest, Invisible hand, Laisseze faire); Economic ideas: Wealth, Labour& Division of labour, Value, Distribution.

UNIT – V | HUMAN VALUES

q

Value Education, Self-Exploration- its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self-exploration, Continuous Happiness and Prosperity- A look at basic Human Aspirations, Right understanding, Relationship - the basic requirements for fulfillment of aspirations of every human being with their correct priority, Method to fulfill the human Values, understanding and living in harmony at various levels.

Total Periods: 45

Text Books:

- 1. Bhargava, R. (2008) 'What is Political Theory', in Bhargava, R and Acharya, A. (eds.) Political Theory: An Introduction. New Delhi: Pearson Longman.
- 2. Olivier Blanchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 2017.
- 3. R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and Professional Ethics.

References:

- 1. O.P.Gauba, (2015) An Introduction to Political Theory, New Delhi: Mayur Publishers.
- 2. Ashaf, Ali and Sharma B.N. 2001. Political Sociology, University Press, Hyderabad.
- 3. Jonathan Conlin, Great Economic Thinkers: From Adam Smith to Amartya Sen, Speaking

- Tiger Publishing, 2018.
- 4. Linda Yueh, The Great Economists: How Their Ideas Can Help Us Today, Viking, 2018.
- 5. B P Banerjee, 2005, Foundations of Ethics and Management, Excel Book.
- 6. B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.
- 7. Irene van Staveren, The Values of Economics: An Aristotelian Perspective, London: Routledge, 2001

Course Outcomes (CO)

Upon completion of the course, students will be ab
--

opon co	displiction of the course, students will be able
CO1	To explain the traditional approached of political science and theories of state.
CO2	To identify the political culture, socialization, participation and apathy.
CO3	To understand the importance of economic thought and their approaches.
CO4	To explore the economic behaviour and moral sentiments of the individuals.
CO5	To learn the human values for harmony and to build better relationships.

Course					Pro	gram	Outo	comes	3					ram S Outcon	pecific nes					
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3					
CO1	1	1	1	3	1	1	1	1	2	2	1	2	2	2	1					
CO2	1	1	1	3	1	2	1	1	2	2	1	2	2	2	1					
CO3	1	2	1	3	1	2	1	2	2	2	1	2	2	2	1					
CO4	1	2	2	3	1	2	3	2	2	3	1	2	2	2	1					
CO5	1	2	1	3	1	1	3	3	3	3	1	2	2	2	1					

MX4008	INDUSTRIAL SAFETY L	T	P	C
	(Common to all branches of B.E. / B. Tech Programmes) 3	0	0	0
Objectives				
To in	mpart knowledge on safety engineering fundamentals and safety management pa	racti	ces.	
UNIT I	INTRODUCTION			9
	of modern safety concepts – Fire prevention – Mechanical hazards – Boile essels, Electrical Exposure.	ers,	C	D1
UNIT – II	CHEMICAL HAZARDS			9
	exposure – Toxic materials – Ionizing Radiation and Non-ionizing Radiation Hygiene – Industrial Toxicology.	n -	C	02
UNIT – III	ENVIRONMENTAL CONTROL			9
	Iealth Hazards – Environmental Control – Industrial Noise - Noise measure. Control of Noise, Vibration, - Personal Protection.	ring	C	03
UNIT – IV	HAZARD ANALYSIS			9
_	afety Analysis –Techniques – Fault Tree Analysis (FTA), Failure Modes analysis (FMEA), HAZOP analysis and Risk Assessment	ınd	C	04

UNIT – V	INDUSTRIAL SAFETY	9				
Explosions – training - Fac	Disaster management – catastrophe control, hazard control, Safety education and ctories Act, Safety regulations Product safety – Case studies.	CO5				
Total Periods: 45						
Text Books:						

1. John V. Grimaldi, "Safety Management", AITB S Publishers, 2003.

References:

- 1. Safety Manual, "EDEL Engineering Consultancy", 2000.
- 2. David L. Goetsch, "Occupational Safety and Health for Technologists, Engineers and Managers", 7th Edition, Pearson Education Ltd., 2013

Course Outcomes (CO)

Upon completion of the course, students will be able to

o Pozz Co	provide of the course, stated to
CO1	Understand the modern safety concepts and Mechanical hazards
CO2	Identify the effects of Chemical exposure and Toxic materials
CO3	Understand the Industrial Health Hazards due to environment
CO4	Understand the System Safety Analysis Techniques
CO5	Understand the Factories Act, Safety regulations

Course Outcomes					Pro	gram	Out	comes	S				Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	-	-	3	-	-	3	2	2	-	-	-	3	-	-	2	
CO2	-	-	3	-	-	3	2	2	-	-	-	3	-	-	2	
CO3	-	-	3	-	-	3	2	2	-	-	-	3	-	-	2	
CO4	-	-	3	-	-	3	2	2	-	-	-	3	-	-	2	
CO5	-	-	3	-	-	3	2	2	-	-	-	3	-	-	2	

St. JOSEPH'S INSTITUTE OF TECHNOLOGY (An Autonomous Institution)

OMR, Chennai - 119

Faculty of Electrical and Electronics Engineering

MINUTES OF MEETING OF BOARD OF STUDIES

The Second meeting of Board of Studies was held on 14.02.2023 Tuesday, 10:00 AM.

The following Members were present for the meeting:

S. No	Designation	Name	Phone no / mail id
1.	Chairman	Dr.D.Kirubakaran Professor & Head Department of Electrical and Electronics Engineering St. Joseph's Institute of Technology	9840009248 hodeeestaffaffairs@stjosephstec hnology.ac.in
2.	University Nominee	Dr. Bogaraj T Professor , Department of Electrical and Electronics Engineering PSG College of Technology	8838020959 tbr.eee@psgtech.ac.in
3. from out	Subject Experts	Dr.S.Senthil Kumar Associate Professor National Institute of Technology, Tiruchirappalli	9443165211 skumar@nitt.edu
	parent University	Dr.K.Vijayakumar Assistant Professor Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram	9549659069 vijayakumar@iiitdm.ac.in
4.	Industry expert	Mr.S.Selvakumar Business Head Power Projects, Chennai	9962188337 selvaspecial@gmail.com
5.	Post Graduate Meritorious Alumni	Mr.Rahulkumar J Junior Research Fellow & Research Scholar Department of EEE SRM Institute of Science and Technology, Chennai	6380680391 rahulkumarjkb@gmail.com
6.	Department Faculty for each specialization	All Faculty Members	9840009248 hodeeestaffaffairs@stjosephstec hnology.ac.in

We Make You Shine

St. JOSEPH'S INSTITUTE OF TECHNOLOGY

(An Autonomous Institution)

St. Joseph's Group of Institutions

OMR, Chennai - 119

List of Internal Faculty Members

Dr. S. Hemalatha/ Professor

Mr. R. Manivannan/Associate Professor

Mr. I. Cephas / Assistant Professor

Mrs. M.R Faridha Banu /Assistant Professor

Mrs. M.Latha Devi /Assistant Professor

Mr. S.Karthick / Assistant Professor

Mr.R.Sampath Kumar/Assistant Professor

Mrs.S.Vasanthi / Assistant Professor

Mrs.G.Konamma / Assistant Professor

Mrs.S.Izzat Fathima / Assistant Professor

Mr.B. Vinoth / Assistant Professor

Dr.D.Kirubakaran, Chairman of BoS formally welcomed the members for the second BoS
meeting and presented the B.E Electrical and Electronics Engineering curriculum and
Syllabus of the I to VIII semester Electrical based courses under Autonomous Regulations
R2022 to the members of the board.

BoS 02.01: To consider and approve the curriculum of the B.E. Electrical and Electronics Engineering program and syllabi of I to VIII semester Electrical based courses under Autonomous Regulations R2022 with effect from the academic year 2022 - 2023 onwards. The following suggestions were discussed.

> Credit Points

 It is recommended that the credit points can be changed from 171 to 169 by transferring courses EE4301 - Electromagnetic Theory and EE4701 — High Voltage Engineering to the professional electives and by adding one credit point to EE4303 — Electric Circuit Analysis.

> Semester - III

• EE4304 - Analog and Digital Electronics is discussed and proposed to be separated as two courses such as (1) Analog Electronic Circuits and (2) Integrated Circuits and Digital Electronics.

> Semester - IV

• EE4402 - Transmission and Distribution can be renamed as Generation, Transmission and Distribution by including Generation topics in the Unit I.

> Semester - VI

- EE4602 Protection and Switchgear can be shifted to seventh semester.
- Embedded System from Professional Elective can be shifted to sixth semester as core subject.
- EE4601 Solid State Drives subject can be renamed as Power Electronic Drives and Control.

RESOLVED TO APPROVE the curriculum and syllabi of I to VIII Semesters for the B.E. Electrical and Electronics Engineering Program under Autonomous Regulations R2022 after incorporating the above suggestions and modifications.

The meeting concluded with the vote of thanks by Board Chairman to all the external and internal members for having spared their time and participated in the second Board of Studies Meeting.

Dr.D.Kirubakaran

Chairman, Board of Studies

Professor & Head

Department of Electrical and Electronics

Engineering

St. Joseph's Institute of Technology OMR,

Chennai.

Dr Bogaraj T

Department of Electrical and Electronics Engineering

PSG College of Technology, Coimbatore

Dr.S.Senthil Kumar

Associate Professor

National Institute of Technology,

Tiruchirappalli

Dr.K.Vijayakumar

Assistant Professor

Indian Institute of Information Technology, Design

and Manufacturing, Kancheepuram

Mr.Rahulkumar J

Junior Research Fellow & Research Scholar

Department of EEE

SRM Institute of Science and Technology,

Chennai

Mr.S.Selvakumar

Business Head

Power Projects,

Chennai

List of Faculty Members

S. No	Name of the Faculty with Designation	Signature
1.	Dr.S.Hemalatha / professor	8.1 Letter
2.	Mr.R.Manivannan / Associate Professor	8
3.	Mrs.M.R.Faridha Banu / Assistant Professor	tal
4.	Mr.I.Cephas / Assistant Professor	6
5.	Mrs.M.Latha Devi / Assistant Professor	Mhi
6.	Mr.S.Karthick / Assistant Professor	s. Cuda
7.	Mr.R.Sampath Kumar/Assistant Professor	Sot
8.	Mrs.S.Vasanthi / Assistant Professor	be
9.	Mrs.G.Konamma / Assistant Professor	G. Comanum.
10.	Mrs.S.Izzat Fathima / Assistant Professor	Igget B. Visth
11.	Mr.B.Vinoth / Assistant Professor	R. Visth